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Abstract

In this paper, we showed that the set of displacements of generalized space is a group under the composite operation. We obtained this screw
axis of displacement in generalized space. Using this screw axis, we obtained the Rodrigues equation in terms of spatial displacement in this
space. Finally, the components of a dual generalized quaternion and the dual orthogonal matrix were obtained using Euler parameters in
generalized space.
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1. Introduction

Dual quaternions are useful tools for describing rigid body motions. Dual numbers were initially introduced by Clifford in 1873 [7]. Their
first applications to kinematics were held by Kotel’nikov in 1895, and Study in 1903 [14, 20]. Bottema and Roth used dual numbers in
theoretical kinematics [6]. Hiller and Woernle in 1984 used dual matrices and dual-vectors for the representation of spatial displacement
[11]. Agrawal in 1987 applied dual quaternions to spatial kinematics [1]. Herve in 2008 employed Lie’s theory of groups to describe
displacement sets of rigid bodies and their connections [10]. Kula and Yaylı in 2019 obtained screw motion by means of Hamilton operators
in 3−dimensional Lorentzian space L3 [13] (see details [2, 6, 15, 16, 20]).
Vector spaces with a quadratic form generate an unital associative algebra called Clifford algebra. The quaternion algebra, subalgebra of
Clifford algebra, is isomorphic to the algebra in which the set of rotations under composite operation. ( see for details [1, 3, 6, 7, 15, 16, 19]).
The generalized quaternions E3(α,β ) are four-dimensional algebra which is associative but not commutative. The algebra of generalized
quaternion is a natural generalization of quaternion algebra H. Jafari and Yaylı in 2011 described a rotational motion in generalized space
using quaternions and studied the algebraic properties of generalized quaternions [12]). Ata and Savci in 2021obtained that generalized
Cayley formula, Rodrigues equation and Eulerparameters of a rotation in space E3(α,β ) [5]. ( see for details[4, 5, 9, 12]). Özkaldı and
Gündoğan in 2011 introduce the screw axis of displacement and Rodrigues equation for a spatial displacement in 3-dimensional Lorentzian
space L3 [18].
In this study, we will obtain that the screw axis of displacement in E3(α,β ) . Rodrigues equation for a spatial displacement will be obtained
by using the screw axis in E3(α,β ). The components of a dual generalized quaternion, corresponding to a coordinate transformation, will be
found using the generalized dual Euler parameters. Finally, we will get that the generalized dual orthogonal matrix via those components
E3(α,β ) which includes the Euclidean and Lorentzian spaces, for every possible value of α and β except α,β = 0.

2. Introduction

Definition 2.1: Let r = (r1,r2,r3), s = (s1,s2,s3) be two vectors in R3 and α,β ∈ R. The generalized scalar product is defined by

< r,s >G= αr1s1 +β r2s2 +αβ r3s3.

The vector space R3 with the generalized scalar product defined over it is called 3−dimensional generalized space and is denoted by
E3(α,β ) = (R3,<,>G). This space includes the Euclidean and semi-Euclidean spaces i.e;
If α = β = 1, then E3(1,1) = E3 3-dimensional Euclidean space.
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If α = 1 and β =−1, then E3(1,−1) = E3
1 3-dimensional semi-Euclidean space. The generalized vectorial product is defined as follow;

r∧G s = β (r2s3− r3s2)i−α(r1s3− s3r2) j+(r1s2− r2s1)k,

here i∧G j = k, j∧G k = β i, and k∧G i =−α j [12].
Remark : For the sake of the short in the next part of our article, we will use notation G- instead of generalized such as generalized
quaternions (G-quaternions).
Definition 2.2: Let q̂ be a G-dual quaternion, then Hamilton operators

H+(q̂) =


q̂0 −α q̂1 −β q̂2 −αβ q̂3
q̂1 q̂0 −β q̂3 β q̂2
q̂2 α q̂3 q̂0 −α q̂1
q̂3 −q̂2 q̂1 q̂0


and

H−(q̂) =


q̂0 −α q̂1 −β q̂2 −αβ q̂3
q̂1 q̂0 β q̂3 −β q̂2
q̂2 −α q̂3 q̂0 α q̂1
q̂3 q̂2 −q̂1 q̂0

 ,

are defined. The product of two quaternions q̂ and p̂ can be done in two different ways by using these operators;

q̂ p̂ = H+(q̂)p̂ = H−(p̂)(q̂)

[4, 12].

Definition 2.3: A matrix S=

 0 β s3 β s2
αs3 0 −αs1
−s2 s1 0

 called a generalized skew-symmetric matrix if ST ε =−εS, where ε =

 α 0 0
0 β 0
0 0 αβ



and α,β ∈ R−{0} [4, 12].
Definition 2.4: Matrix A called a generalized orthogonal matrix if AT εA = |A|ε where

ε =

 α 0 0
0 β 0
0 0 αβ

 and α,β ∈ R−{0} . The set of all generalized orthogonal matrices with detA = 1 under the operation of ma-

trix multiplication forms a group and denoted as SO(α,β )(3) called rotation group in E3(α,β ) [4, 12].
The rotation is an important part of the rigid transformation. To determine the rigid transformation in E3 (α,β ), we will give necessary
fundamental properties about the rotations.
i) Let α > 0 and β > 0. Let the unit vector s = (s1,s2,s3). The G-orthogonal matrix B can be written as following

A = I +(sinθ)S+(1− cosθ)S2. (2.1)

ii) Let α > 0 and β < 0. Let the vector a be a time-like vector. The G-orthogonal matrix B can be written as following

A = I +(sinhθ)S+(coshθ −1)S2 (2.2)

[5].
There are two different cases for all possible non zero values of α and β . First case: α,β > 0 and second case: α > 0 and β < 0. We will
consider both cases separately in the end of the section 4.

3. Rigid Transformations in Generalized Space E3 (α,β )

3.1. Coordinate Transformations

Interconnections between the coordinate frames enable to determination of the position of one body in relation to another. Let the coordinates
of the moving body in frame M and fixed frame F be y = (y1,y2,y3) and x = (x1,x2,x3) , respectively. Then, D : F → M coordinate
transformation is as follows;

D(x) = y = A ·G x+d

here A is an 3× 3 matrix and d is an 3−dimensional vector. If A is an 3× 3 G-orthogonal matrix, then the transformation D is a rigid
transformation. D = (A,d), whose componenets are matrix and vector, defines a displacement in 3−dimensional generalized space E3 (α,β ).
Theorem: The set of displacements of E3 (α,β ) under the composite operation forms group.
Proof:
1. If D1 : F → M1 and D2 : M1 → M2 are displacements, then D = D1D2 : F → M2 is also a displacements. Indeed, D = D1D2 =
(A1,d1)(A2,d2) = (A1 ·G A2, A1 ·G d2 +d1).
2. I = (I3,0) is the unit element.
3. Since AT εA = ε for α,β 6= 0, every D = (A,d) have an inverse such that D−1 = (A−1, −A−1 ·G d). Consequently, this set in E3(α,β ) is
a group and called as G-group.
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4. Spatial Displacement in Generalized Space E3 (α,β )

4.1. Coordinate Transformations

y = A ·G x+d represents the transformation of the relative position of rigid bodies that the coordinates y = (y1,y2,y3) in M and x = (x1,x2,x3)
in F . A is an 3×3 G-orthogonal matrix and d = (d1,d2,d3) is the translation vector. Since D = (A,d) does not change the distance between
any two points, this transformation is called a spatial transformationin E3(α,β ).

4.2. Screw Axis of a Displacement

In this section, we investigate the points whose coordinates do not change after a spatial displacement in generalized space E3(α,β ). Let
these points k be, then they those points satisfy the equation

k = A ·G k+d

or

(I−A) ·G k = d.

The solution of this equation

k =−(A− I)−1 ·G d.

The (A− I) matrix is not regular because one of the eigenvalues of the G-orthogonal matrix is 1
As a result; a spatial displacement has not fixed point. But, it has a fixed-line, the points on the line moving only on this line under the
action of the displacement. This line called as screw axis in generalized space E3(α,β ). The direction of this axis is determined by the
-G-Rodrigues- vector b, which is obtained from the rotation vector A. Assume d∗ be projection of the translation vector d onto the a plane
which perpendicular to vector b. Thus we can write follow equation;

(I−A) ·G k = d∗.

This equation describes points k that remain constant after rotation around the vector b and translation on a plane perpendicular to the vector
b. Therefore, position of this line can be determined as follows:

l = k+ tb.

ds = d−d∗ is translation amount along the screw axis. This vector in direction of translation unit vector s = b
‖b‖ .

4.3. Rodrigues Equation for Spatial Displacements

Let us obtain the the equivalent of the -G-Rodrigues equation- for spatial displacement using the screw axis l = k+ sb. Let k be on the screw
axis and take x− k instead of x and y− (dt + k) instead of y in G-Rodrigues equation. Thus, the equation

y− (ds+ k)− (x− k) = b∧G (y− (ds+ k)+ x− k),
y− x−ds = b∧G (y+ x−2ds−2k),

y− x = b∧G (y+ x−2k)+ds.

is obtained.

4.4. The Screw Matrix

In this section, let’s do the opposite of what we have done so far, that is, let’s determine the screw displacement D = (A,d) using given
displacement’ angle θ , distance d and screw axis l.
Let’s, the screw axis be l = k+ tb in F , s is a unit vector and let k such that < k,s >G= 0. From the known the rotation angle θ we can
easy get -G-Rodrigues vector- as b = (tan θ

2 ) . The components of the vector b gives G-skew symmetric matrix B and from the -G-Cayley
formula- we obtain G-rotation matrix A .
If the origin of the fixed frame F is on l, then k = 0, ie the translation vector d = ds. We get the displacement as Dp = (A,ds).
If the orijin of F fixed frame is not on l, k 6= 0. Let’s take a reference frame F p whose origin is at point k, the position of this frame relative to
the frame F i.e. T : F→ F p can be determine by a simple translation R = (I,k). If we change the coordinates of Dp = (A,ds) using R = (I,k);
such as D = RDpR−1. Since R−1 = (I,−k) , we get

D = RDpR−1 = (I,k)(A,ds)(I,−k) = (A, ds−A ·G k+ k).

The last equation gives the vector d as;

d = ds+(I−A) ·G k.

The resulting (A,d) is a 4×4 matrix that defines a displacement in the generalized space and is called a G-skew matrix.
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4.5. Generalized Dual Quaternions

The transformation T = (A,d) determines the position of M with respect to F can also be represented by G-dual quaternions q̂ = q+ εq∗.
The -G-Euler parameters- of the rotation matrix A gives q = q0 +q1i+q2 j+q3k, which is the real part of the G-dual quaternion q̂. We can
use the following formula to find the dual part q∗;

q∗ =
1
2

Dq,

here D = d1i+d2 j+d3k is the G-quaternion obtained from the vector d = (d1,d2,d3).

d can be written as d = ds+ c−A ·G k according to the screw parameters of the displacement in E3(α,β ). If these vectors are written the
form of G-quaternions, then we get that

D = dS+K−qKq,

and

q∗ = 1
2 (dS+K−qKq)q

q∗ = 1
2 (dSq+Kq−qK).

q∗ can be written in matrix form as follows:

q∗ =
1
2
(H−(q) ·G (dS+K)q−H+(q) ·G K) (4.1)

Now, there are two cases according to value of α and β .

case1: Let α > 0 and β > 0. Then equation (4.1) can be written;

H−(q) ·G (dS+K) =


cos θ

2 −αsx sin θ

2 −β sy sin θ

2 −αβ sz sin θ

2
sx sin θ

2 cos θ

2 β sz sin θ

2 −β sy sin θ

2
sy sin θ

2 −αsz sin θ

2 cos θ

2 αsx sin θ

2
sz sin θ

2 sy sin θ

2 −sx sin θ

2 cos θ

2

 ·G


0
(αd1sx +βd2sy +αβd3sz)sx + c1
(αd1sx +βd2sy +αβd3sz)sy + c2
(αd1sx +βd2sy +αβd3sz)sz + c3


and

H+(q) ·G K =


cos θ

2 −αsx sin θ

2 −β sy sin θ

2 −αβ sz sin θ

2
sx sin θ

2 cos θ

2 −β sz sin θ

2 β sy sin θ

2
sy sin θ

2 αsz sin θ

2 cos θ

2 −αsx sin θ

2
sz sin θ

2 −sy sin θ

2 sx sin θ

2 cos θ

2

 ·G


0
c1
c2
c3

 .

By using the equation d =< d,s >G= αd1sx +βd2sy +αβd3sz, we have that

q∗ = 1
2


-αs2

xd sin θ

2 -αsxc1 sin θ

2 -β s2
yd sin θ

2 -β syc2 sin θ

2 -αβ s2
z d sin θ

2 -αβ szc3 sin θ

2
sxd cos θ

2 + c1 cos θ

2 +β szc2 sin θ

2 −β syc3 sin θ

2
−αszc1 sin θ

2 + syd cos θ

2 + c2 cos θ

2 +αsxc3 sin θ

2
syc1 sin θ

2 − sxc2 sin θ

2 + szd cos θ

2 + c3 cos θ

2



+ 1
2


αsxc1 sin θ

2 +β syc2 sin θ

2 +αβ szc3 sin θ

2
−c1 cos θ

2 +β szc2 sin θ

2 −β syc3 sin θ

2
−αszc1 sin θ

2 − c2 cos θ

2 +αsxc3 sin θ

2
syc1 sin θ

2 − sxc2 sin θ

2 − c3 cos θ

2

 .

if s∗ = (s∗x ,s
∗
y ,s
∗
z ) = k∧G s, we obtain that

q∗ =


− d

2 sin θ

2
d
2 sx cos θ

2 +β s∗x sin θ

2
d
2 sy cos θ

2 +αs∗y sin θ

2
d
2 sz cos θ

2 + s∗z sin θ

2 ,

 .

Therefore, it is obtained that

q∗0 =−
d
2 sin θ

2
q∗1 =

d
2 sx cos θ

2 +β s∗x sin θ

2
q∗2 =

d
2 sy cos θ

2 +αs∗y sin θ

2
q∗3 =

d
2 sz cos θ

2 + s∗z sin θ

2 .
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Let the G-axis is represented by G-dual vector ŝ = s+ εs∗, the rotation along ŝ can be defined via the θ̂ = θ + εd;

q̂ = cos θ

2 + sx(sin θ

2 )i+ sy(sin θ

2 ) j+ sz(sin θ

2 )k
+ ε[− d

2 sin θ

2 +( d
2 sx cos θ

2 +β s∗x sin θ

2 )i
+( d

2 sy cos θ

2 +αs∗y sin θ

2 ) j+( d
2 sz cos θ

2 + s∗z sin θ

2 )k].

Thus, we get that

q̂ = cos θ

2 − ε
d
2 sin θ

2 + sx(sin θ

2 + ε
d
2 cos θ

2 )i+ εβ s∗x sin θ

2 i
+ sy(sin θ

2 + ε
d
2 cos θ

2 ) j+ εαs∗y sin θ

2 j
+ sz(sin θ

2 + ε
d
2 cos θ

2 )k+ εs∗z sin θ

2 k.

Later, q̂ = q+ εq∗ can be written as

q̂ = cos
θ̂

2
+ ŝx(sin

θ̂

2
)i+ ŝy(sin

θ̂

2
) j+ ŝz(sin

θ̂

2
)k.

which called as dual G-Euler parameters of the spatial displacement in E3(α,β ).
The G-dual orthogonal matrix can be represented by means of the dual G-Euler parameters as follows;

Â = I +(sin θ̂)Ŝ+(1− cos θ̂)Ŝ2,

we get a dual version of the equation (2.1).
case 2: Let α > 0 and β < 0. We can write the equation (4.1) as follows, where s is a timelike vector

H−(q) ·G (dS+K) =


cosh θ

2 −αsx sinh θ

2 −β sy sinh θ

2 −αβ sz sinh θ

2
sx sinh θ

2 cosh θ

2 β sz sinh θ

2 −β sy sinh θ

2
sy sinh θ

2 −αsz sinh θ

2 cosh θ

2 αsx sinh θ

2
sz sinh θ

2 sy sinh θ

2 −sx sinh θ

2 cosh θ

2

 ·G


0
(αd1sx +βd2sy +αβd3sz)sx + c1
(αd1sx +βd2sy +αβd3sz)sy + c2
(αd1sx +βd2sy +αβd3sz)sz + c3


and

H+(q) ·G K =


cosh θ

2 −αsx sinh θ

2 −β sy sinh θ

2 −αβ sz sinh θ

2
sx sinh θ

2 cosh θ

2 −β sz sinh θ

2 β sy sinh θ

2
sy sinh θ

2 αsz sinh θ

2 cosh θ

2 −αsx sinh θ

2
sz sinh θ

2 −sy sinh θ

2 sx sinh θ

2 cosh θ

2

 ·G


0
c1
c2
c3


By letting d =< d,s >G= αd1sx +βd2sy +αβd3sz, we have

q∗ = 1
2


-αs2

xd sinh θ

2 -αsxc1 sinh θ

2 -β s2
yd sinh θ

2 -β syc2 sinh θ

2 -αβ s2
z d sinh θ

2 -αβ szc3 sinh θ

2
sxd cosh θ

2 + c1 cosh θ

2 +β szc2 sinh θ

2 −β syc3 sinh θ

2
−αszc1 sinh θ

2 + syd cosh θ

2 + c2 cosh θ

2 +αsxc3 sinh θ

2
syc1 sinh θ

2 − sxc2 sinh θ

2 + szd cosh θ

2 + c3 cosh θ

2



+ 1
2


αsxc1 sinh θ

2 +β syc2 sinh θ

2 +αβ szc3 sinh θ

2
−c1 cosh θ

2 +β szc2 sinh θ

2 −β syc3 sinh θ

2
−αszc1 sinh θ

2 − c2 cosh θ

2 +αsxc3 sinh θ

2
syc1 sinh θ

2 − sxc2 sinh θ

2 − c3 cosh θ

2

 .

if s∗ = (s∗x ,s
∗
y ,s
∗
z ) = k∧G s, and vector s is timelike vector, then we get that

q∗ =


d
2 sinh θ

2
d
2 sx cosh θ

2 +β s∗x sinh θ

2
d
2 sy cosh θ

2 +αs∗y sinh θ

2
d
2 sz cosh θ

2 + s∗z sinh θ

2 ,

 .

Thus, we have following equations:

q∗0 =
d
2 sinh θ

2
q∗1 =

d
2 sx cosh θ

2 +β s∗x sinh θ

2
q∗2 =

d
2 sy cosh θ

2 +αs∗y sinh θ

2
q∗3 =

d
2 sz cosh θ

2 + s∗z sinh θ

2 .

Let the G-axis is represented by G-dual vector ŝ = s+ εs∗, the rotation along ŝ can be defined via the θ̂ = θ + εd;

q̂ = cosh θ

2 + sx(sinh θ

2 )i+ sy(sinh θ

2 ) j+ sz(sinh θ

2 )k
+ ε[ d

2 sinh θ

2 +( d
2 sx cosh θ

2 +β s∗x sinh θ

2 )i
+( d

2 sy cosh θ

2 +αs∗y sinh θ

2 ) j+( d
2 sz cosh θ

2 + s∗z sinh θ

2 )k],
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and

q̂ = cosh θ

2 + ε
d
2 sin θ

2 + sx(sinh θ

2 + ε
d
2 cosh θ

2 )i+ εβ s∗x sinh θ

2 i
+ sy(sinh θ

2 + ε
d
2 cosh θ

2 ) j+ εαs∗y sinh θ

2 j
+ sz(sinh θ

2 + ε
d
2 cosh θ

2 )k+ εs∗z sinh θ

2 k.

Therefore, q̂ = q+ εq∗ can be written as

q̂ = cosh
θ̂

2
+ ŝx(sinh

θ̂

2
)i+ ŝy(sinh

θ̂

2
) j+ ŝz(sinh

θ̂

2
)k.

which called as dual G-Euler parameters of the spatial displacement in E3(α,β ).
The G-dual orthogonal matrix can be represented by means of the dual G-Euler parameters as follows;

Â = I +(sinh θ̂)Ŝ+(cosh θ̂ −1)Ŝ2

we get a dual version of the equation (2.2).
Conclusion: In this article, we obtained the screw axis of displacement and Rodrigues equation for a spatial displacement in generalized
space. Finally, we find that, the components of a dual generalized quaternion, and the generalized dual orthogonal matrix from those
components.
Consequently, we show that the coordinate transformation, which defines the position of a body relative to the fixed frame, can be expressed
by using generalized dual quaternions. This result shows that generalized dual quaternion algebra can be used to determine the representation
of the screw motion in generalized space.
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