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Abstract

A ring R is called a left Tkeda-Nakayama ring (left IN-ring) if the right annihilator of the
intersection of any two left ideals is the sum of the two right annihilators. As a general-
ization of left IN-rings, a ring R is called a right SA-ring if the sum of right annihilators of
two ideals is a right annihilator of an ideal of R. It would be interesting to find conditions
under which an Ore extension R[z;«, d] is IN and SA. In this paper, we will present some
necessary and sufficient conditions for the Ore extension R[z;a,d] to be left IN or right
SA. In addition, for an («, §)-compatible ring R, it is shown that: (i) If S = R[z; «, 4] is a
left IN-ring with Idm(R) = Idm(R[x; «v, d]), then R is left McCoy. (ii) Every reduced left
IN-ring with finitely many minimal prime ideals is a semiprime left Goldie ring. (iii) If R
is a commutative principal ideal ring, then R and R[z] are IN. (iv) If R is a reduced ring
and n is a positive integer, then R is right SA if and only if R[z]/(z"™1) is right SA.
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1. Introduction and preliminary definitions

According to [5], aring R is called a left Ikeda-Nakayama ring (left IN-ring) if rp(INJ) =
rr(I) + rr(J) for all left ideals I, J of R. For example, all left self-injective rings, all left
uniserial rings and all left uniform domains are left IN-ring. Kaplansky [13] introduced
Dual rings as rings which every right or left ideal of them is an annihilator. Hajarnavis
and Norton [7] proved that every dual ring is a right (and left) IN-ring. Wisbauer et al.
[19] extended the notion of an Ikeda-Nakayama ring to bimodules and derived various
characterizations and properties for modules with this property.

As a generalization of IN-rings, Birkenmeier et al. [3,4] introduced SA-rings. A ring R
is called a right SA-ring, if for any ideals I and J of R, there is an ideal K of R such that
rr(I) + rr(J) = rr(K). They showed that this class of rings is exactly the class of rings
for which the lattice of right annihilator ideals is a sub-lattice of the lattice of ideals. The
class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings
(hence all right self-injective rings). Also they showed that this class is closed under direct
products, full and upper triangular matrix rings and certain classes of polynomial rings.
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Throughout this paper, R denotes an associative ring with unity, « : R — R is an
endomorphism, and J is an a-derivation of R (i.e., J is an additive map such that §(ab) =
d(a)b+ aa)i(b), for all a,b € R). We denote by S = R|z;a,d] the Ore extension whose
elements are the polynomials over R, where addition is defined as usual and multiplication
by xb = a(b)x + §(b) for any b € R. For a subset A C R, we denote the right annihilator
and left annihilator of A in R by rr(A) and ¢r(A), respectively. The set of all right zero
divisors of R is denoted by Z.(R).

It is natural to ask if these properties (IN and SA) can be extended from R to R[z; «, d].
The purpose of the present paper is to study Ore extensions over IN-rings and SA-rings.
In this note we show that some portions of the results in [18] can be generalized to the Ore
extension R[z;a, d], where the base coefficient ring R is an («, )-compatible ring. In addi-
tion, in Section 2, we show that if R[x; «, d] is a left IN-ring with Idm(R|z; «, §]) =Idm(R),
then piy.q.51(9) N R # {0}, for each g € Z,(R[x; o, ]). Furthermore, it is proved that every
reduced left IN-ring R with finitely many minimal prime ideals is a semiprime left Goldie
ring and R[z;a, 0] is a left IN-ring. Finally, for a commutative principal ideal ring, it is
shown that the IN property is inherited by polynomial extensions. In the third section,
we investigate Ore extensions over SA-rings. For example, it is proved that if R[x;«, ]
is a right SA-ring, then so is R, and the reverse is true when R satisfy SQA1 condition.
In addition, it is shown that for a reduced ring R and a positive integer n, R is right SA
if and only if R[z]/(z"*1) is right SA. Moreover, each section contains some examples to
show that the “(«, §)-compatible” assumption on R is not superfluous. Also, examples of
non-reduced IN-ring R such that R[z] is left IN-ring are provided.

2. Skew polynomials over IN-rings

In this section, we will present some necessary and sufficient conditions for the Ore
extension R[z;«,d] to be an IN ring. To fulfill this plan, we shall need to find a McCoy-
like property of an IN Ore extension. The aim of our first result in this section is to state
and prove it.

According to [8], an ideal I is called an a-compatible ideal if for each a,b € R, ab €
I & aa(b) € I. In addition, I is said to be a d-compatible ideal if for each a,b € R,
ab € I = ad(b) € 1. If I is both a-compatible and §-compatible, we say that I is an («, J)-
compatible ideal. If I = 0 is a-compatible (resp., J-compatible), then the ring R is called
a-compatible (resp., d-compatible). Also, if R is both a-compatible and §-compatible,
then R is said to be («, d)-compatible. The concept of a-compatible rings were defined in
[9], as a common generalization of a-rigid rings. It was proved [9, Lemma 2.2] that R is a-
rigid if and only if R is a-compatible and reduced. Clearly, each compatible endomorphism
is a monomorphism.

We begin this section with the following essential lemmas.

Lemma 2.1. [10, Lemma 2.1] Let R be an («,d)-compatible ring and a,b € R. Then we
have the following:

(1) If ab =0, then aa™(b) = 0 = a™(a)b for each non-negative integer n.

(2) If &*(a)b = 0 for some non-negative integer k, then ab = 0.

(3) If ab= 0, then a™(a)d™(b) = 0= 6" (a)a™(b) for any non-negative integers m,mn.

(4) If ab= 0, then a(a)a(b) =0 =d(a)d(b).

(5) If ab= 0, then ax™b =0 in R[x;q,d], for each m > 0.

(6) If az™b =0 in R[x;«,d], for some m > 0, then ab = 0.

Lemma 2.2. [9, Lemma 2.3] Let R be an (a,d)-compatible ring. If f = ap + a1z +-- -+
anz™ € Rlx;a, 0], r € R and fr =0, then a;r =0 for each i.

We denote the set of all idempotent elements of R by Idm(R).
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Proposition 2.3. Let R be an («, d)-compatible ring. Also, let f = ag+arx+ -+ apa”™
and g = by + byx + -+ + bpx™ be non-zero elements of R[x;a,d] such that fg = 0. If
S = R[x;«, 0] is a left IN-ring with Idm(R) =Idm(R|x;,d]), then f = ag or there exists
r € R such that 0 # ra, and ra,g = 0.

Proof. Since fg =0, then by Lemma 2.1, a,b,, = 0. Also, since S = R[z; «, d] is left IN,
we have rg(f) + rs(an) = rs(Sf N Sa,). Now, we consider the following two cases:

Case 1: Assume that Sf N Sa, = {0}. Then there exists an idempotent e € R, such
that Sf C Se and Sa,, C S(1 —e), by [5, Corollary 4]. Then f = fe and a,, = a,(1 — e).
Hence a,, = a,a™(e), and since R is a-compatible, we have a,, = ane. Therefore, a,, = 0,
which implies that f = ag.

Case 2: Assume that Sf N Sa, # {0}. Let (), 3(1) € S such that 0 # (V) f = 3Waq,,.
Assume that Ma,, = Bio + Bz + -+ Bre,xtt, with By, # 0. Clearly, By, = r1a't(ay),
for some ;1 € R. Since apb,, = 0, hence by Lemma 2.1, #81;b,, = 0, for each 0 < i <
t1. Then (vMf)g1 = (Ma,)g1 = 0, where g1 = by + b1z + -+ + by_12™'. Hence
B1t,bm—1 = 0, since R is a-compatible. Since S is left IN, we have rs(ﬁ(l)an) +rs(Piy) =
rs((SWMa,) N (SPis,)). If (SBWMay,) N (SBi,) = {0}, then by Case 1, 3Ma,, = B1o. Since
B10bm = 0 = B1og1, hence [19g = 0, and the result follows.

If (SBMay,) N (SP1,) # {0}, then there exist v, 52) € § such that 0 # v (8Ma,,) =
5(2)5lt1- Assume that 5(2)51t1 = B0 + Borx + -+ + Por,xt?, with Boy, # 0. Clearly,
Bat, = m20'2(B1t,), for some ro € R. Hence Bo, = roal?(B1y,) = mat?(riati(ay,)) =
roat?(r1)at1*2(a,). Since Bi¢,bm—1 = 0, hence by Lemma 2.1, B9;b,,—1 = 0, for each
0 <i <t Then (1P Df)g = (;@Wan)g = (3D Br)gs = 0, where gy =
bo + b1z + -+ + byyga™ 2.

By continuing this process we can find a non-zero element ﬁ(m—l)tmf y € R such that

Bm=1)t(n_n9 =0 and Bty ) = T(m—1y@ (m=D (T(m—2))Oé(t(m‘”ﬂ(m‘z))?”(m—:a)) e

a(t(m_1)+-..+t2)(rl)a(t(m—1)+---+t2+t1)(an , for some 1, ..., T(m—1) € R and some non-negative
integers t1,..., (m—1)- Then T(m—1)---T2r1ang = 0, by Lemma 2.1. By considering
T =T(m-1)---T271, the result follows. B

As an immediate consequence of Proposition 2.3, we get the following result.

Corollary 2.4. Let R be an («,0)-compatible ring. Let f = ag + a1x + -+ + apa™, g =
bo + b1z + - - - + bypx™ be non-zero elements of R[x;«, ] satisfy fg =0. If S = R[z;a, 0]
is a left IN-ring with Idm(R) =Idm(R|x;«,d]), then there exists r € R such that 0 # rf
and ra;b; =0, for each 0 <i <mn and 0 < j < m.

It is often taught in an elementary algebra course that if R is a commutative ring, and
f(z) is a zero-divisor in R[z], then there is a non-zero element r € R with f(z)r = 0. This
was first proved by McCoy [16, Theorem 2]. Recall from [17] that a ring R is called left
McCoy when the equation f(x)g(z) = 0 over R[z], where f(z),g(z) # 0, implies there
exists a non-zero r € R with rg(z) = 0.

Taking o = idr and § = 0, the following result is immediate from Proposition 2.3.

Corollary 2.5. Let S = R[z| be a left IN-ring with Idm(R) = Idm(R[z]). Then R is left
McCoy.

Now, we give some classes of rings R, such that Idm(R) = Idm(R]z; «, d]). Recall that
a ring R is called abelian if all idempotent elements of R are central.

Example 2.6. (i) Let R be an («, d)-compatible ring. If R[z; «,d] is an abelian ring, then
Idm(R) = Idm(R[z; a, d]).
(ii) Let R be an abelian a-compatible ring. Then Idm(R) = Idm(R[z; a]).
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Proof. (i) Let e = ey + e1z + -+ - + e,2™ be an idempotent element of R[z;«,d]. Since
re = ex, we have

(o) = 0; (2.1)

a(eg) + d(e1) = eo;

a(er) + d(ex) = eq;

a(en—1) +d(en) = en—1;
aey) = ep.

Since €? = e, then e +e16(eg)+- - +e,0"(eg) = eg and e,a"(ey,) = 0. Then by using (2.1),
we have e = eg. Now, by the abelian assumption on R|[z;a, 6] and by using [12, Theorem
3.13], we obtain e € Idm(R).

(ii) By a similar argument as used in the proof of (i), one can show that
Idm(R) = Idm(R[z; o). O

Corollary 2.7. Let R be an («, d)-compatible ring and g € Z,(R[x; e, d]). If R[x; v, 0] is
an abelian left IN-ring, then {py.q 5(9) N R # {0}.

Corollary 2.8. Let R be an abelian a-compatible ring and g € Z,(R[z;al). If R[x;a] is
a left IN-ring, then Lg[.q1(9) N R # {0}.

Question 1: Let R be an («, d)-compatible ring and S = R[x; «,d] be a left IN-ring. Let
f=a+az+ -+ ana™ g="by+bix+ -+ b,x™ be non-zero elements of R[z;«, d]
satisfy fg = 0. Can we conclude a;b; = 0, for each 4, 57

Let a be an endomorphism and § an a-derivation on a ring R. Recall that an ideal I of
R is called a-ideal if a(I) C I; I is called a d-ideal if 6(I) C I; I is called an (v, d)-ideal
if it is both a- and J-ideal. Clearly, if K is an (a, d)-ideal of R, then K{[z;a, d] is an ideal
of R[x;a,d].

Proposition 2.9. Let R be an («,d)-compatible ring. If S = R[z; o, d] is a left IN-ring,
then for any («,d)-ideals I and J of R, rr(I) +rgr(J) =rr(INJ).

Proof. Let I,J be («,d)-ideals of R. Clearly rgr(I) + rr(J) C rr(I N J). To prove the
reverse inclusion, let ¢ € rr(I N J). Then ¢t € rs((I N J)[x; ,d]), by Lemma 2.2. On the
other hand, rs(I[z; o, 0])+rs(J[z; o, 0]) = rs(L]z; o, d]NJ[x; ¢, 6]), since S is a left IN-ring.
Now, since rg((INJ)[x; , 6]) = rs(I[z; a, 0]NJ[x; @, §]), it follows that ¢ = h(z)+k(x), for
some h(z) = >" o hia' € rs(I[x;a,6]) and k(x) = S0 o kiz' € rg(J[z; o, 6]). Then, since
Thy = 0= Jko and t = ho+ko, hence t € rr(I)+rgr(J) and thus rr(I)+rr(J) = rr(INJ)
as claimed. O

Lemma 2.10. Let R be a reduced ring and {P;};c1 be the set of all distinct minimal prime
ideals of R. If X is a non-zero left ideal of R contained in N, P;, for some i € I, then
TR(X) = Pi.

Proof. This follows from [6, Proposition 7.1]. O

Proposition 2.11. Let R be a reduced left IN-ring. If R has finitely many minimal prime
ideals, then rR has a finite left uniform dimension.

Proof. Assume that P, P, ..., P, are all of the distinct minimal prime ideals of R. It
is easy to see that rr(FP;) = NjxPj for each 1 < i < n. Now since N}_F; = 0 and R
is a left IN-ring, we have rgr(P1) + -+ + rr(FPn) = rr(PrN---N P,) = R. Therefore,
(Nix1P;) ® --- @ (NiznP;) = R and it is sufficient to prove that N;x;P; is a uniform left
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ideal of R, for each 1 < i < n. To see this, suppose that X,Y are non-zero left ideals of R
contained in Nj;; P; with X NY = 0. By using the left IN property of R and Lemma 2.10,
we have Pj = Pj+ Pj = rr(X) +rr(Y) = rr(X NY) = R, which is a contradiction.
Therefore N;; P; is a uniform left ideal of R, for each 1 <4 < n. O

Corollary 2.12. Let R be a reduced left IN-ring. If R has finitely many minimal prime
ideals, then R is a semiprime left Goldie ring.

Proof. 1t follows from Proposition 2.11 and [15, Theorem 2.15]. O
Recall that an ideal P of R is called completely prime whenever R/P is a domain.

Theorem 2.13. Let R be a reduced («,d)-compatible left IN-ring. If R has finitely many
minimal prime ideals, then R[x;«,d] is a left IN-ring.

Proof. Let P, ..., P, be all of the distinct minimal prime ideals of R. By using Lemma
2.10 and the left IN property of R, we have P, + P; = rr(NjzPj) + rr(NjzsPj) =
rr(0) = R, for each r # s. Now, by the Chinese Remainder Theorem, we have R =
R/P; x --- x R/P,. Since R is a reduced ring, hence P; is completely prime and by
Corollary 2.12 and [15, Theorem 2.5], R/P; is a prime left Goldie ring, for each i. Also,
since P; is an annihilator ideal of R, hence P; is an («, §)-compatible ideal of R, and so
R/P; is an (&, )-compatible ring, by [8, Proposition 2.1], where & : R/P; — R/P; is
defined by a(a+ P;) = a(a)+ P; and 6 : R/P; — R/P; is defined by é6(a+ P;) = 6(a) + P;,
for each a € R. Then, by [14, Corollary 3.5], R/P;[x; &, 0] is a left Ore domain, for each i.
Finally, suppose that X,Y are left ideals of R[z;«,d]. Since
R[z; 0, 0] = R/Py[z;a,0] X - - - X R/Pn[x; &, 6], hence for each z', there exist left ideals I;, J;
of R/P[x; &, 0], such that X = Il X -+ xIpand Y = J; x -+ x J,. Then it is clear that
TRiz;0,8) (X) = Ty pyjwsa,s) (1) X - X TR p 125 5(In) and by using the fact that R/Fi[z; & 0]
is a left Ore domain for each i, it follows that rg(z.q.5(X) +7Rz:0,5)(Y) = TR[z:0,5 (X NY),
which implies that R[z;a, 0] is a left IN-ring. O

Now, we give an example to show that the “a-compatible” assumption on R, in Theorem
2.13 is not superfluous.

Example 2.14. Let Zy be the field of integers modulo 2 and R = Zy & Zy. Clearly
R is a reduced commutative IN-ring. Let o : R — R be the endomorphism defined
by a((a,b)) = (b,a). Then « is an automorphism of R, and since (1,0)(0,1) = 0 but
(1,0)c((0,1)) # 0, hence R is not a-compatible. Now let p(z) = (1,0) + (1,0)z and
qg(z) = (0,1) + (0,1)x € R[x;a]. Let I and J be the left ideals of R[z;a] generated by
p(z) and g(x), respectively. By a simple computation one can show that

I ={(ro,0) + (ro,s1)@ + -+ (4, 8e-1)x" + (11,02 ry, 85 € Za, t = 2i}U
{(r0,0) + (10, 81)T + -+ + (re—1, 80)x" + (0, 8,)x"™ |ri, 85 € Lo, t =20+ 1}

and
J = {(0,wp) + (v1,wo)x + -+ (vk_l,wk)xk + (O,Mk)xk+1|vi,wj € Lo,k = 2i}U

{(0,wo) + (01, wo)a + - - + (vg, w—1)2" + (vg, 0)" vy, wj € Zo, k = 2 + 1}
Then I NJ = 0 and hence rgj;.q(I NJ) = Rlr;a]. On the other hand, for each g =
(70, 80) + (71, 81)T 4 -+ (T, 8n)T™ € TR{z;0] (), we have rg = s, = 0 and r; +s;-1 = 0, for
each 1 <4 < n. Also, for each h(x) = (vo,wo) + (v, w1)T + - - -+ (Vim, Wi ) 2™ € TRz (S),
we have wg = v, = 0 and w; + v;—1 = 0, for each 1 < i < m. Now, one can easily show
that (1,1) ¢ TRrig:a)(I) + TR[wa)(J). Therefore, rgip.a)(1) + TR0 (J) # Rlx;al, which
implies that R[z;a] is not a left IN-ring. Thus, the “a-compatible” assumption on R in
Theorem 2.13 is not superfluous.
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The following example shows that we cannot eliminate the “reduced dé-compatible”
assumption in Theorem 2.13.

Example 2.15. Let R = Zy[t]/(t?) with the derivation § such that §(f) = 1 where
t =t+ (t?) is in R and Zy[t] is the polynomial ring over the field Zy of two elements. It is
clear that R is a non-reduced commutative IN-ring. Consider the differential polynomial
ring R[z;6]. By [2, Example 11], R[x; 0] = My (Za[2?]) = Ma(Zs)[y], where Ma(Zs)[y] is
the polynomial ring over My(Zsa). Since Zzy] is not a left self-injective ring, hence by
[5, Theorem 7], M2(Z2)[y] is not a left IN-ring.

In the following, we construct some classes of commutative non-reduced IN-rings R with
the property that R[z] is also IN. However, the reduced condition in Theorem 2.13 plays
an important role in the proof, the following examples show that it is not a necessary
condition.

For the remainder of this section, R will denote a commutative ring with identity.
Following Zariski and Samuel [20, page 22|, we say the elements a,b € R are relatively
prime, if (a,b) = 1. A principal ideal ring (PIR) is a ring with identity in which every
ideal is principal. Any PIR is obviously Noetherian, and the PIR’s may be considered the
simplest type of Noetherian rings. By Zariski and Samuel [20, page 245], a PIR is called
special if it has only one prime ideal P # R and P is nilpotent, that is, P™ = (0) for some
positive integer n. If we place P = pR, and if we denote by m the smallest integer such
that p™ = 0, then every non-zero element x in R may obviously be written in the form
x = ep®, where 0 < k < m — 1, and where e ¢ Rp (i.e, e and p are relatively prime).
Special principal ideal rings are examples of uniserial rings.

A ring R is called Armendariz whenever polynomials f = ag + a1z + - - + a,z” and
g="by+bix+ - +bya™ € R[z] satisfy fg = 0, then a;b; = 0, for each i,j. The name
“Armendariz ring” was chosen, because Armendariz had noted that a reduced ring satisfies
this condition.

Proposition 2.16. Let R be a special principal ideal ring. Then S = R[z] is an IN-ring.

Proof. Let R be a special principal ideal ring with maximal ideal M = mR and n be the
smallest integer such that m™ = 0. For an ideal K of S, we denote

Ko={a€R| acCy forsome feK}.

Now let I,J be non-zero ideals of S. It is clear that Iy, Jy are ideals of R. Assume
that Iy = mFR,Jy = m®R such that 0 < k < s < n — 1. Since rg(Iy) = m" "R,
rr(Jo) = m"*Rand R is an Armendariz ring, then we have rg(I) = rg(Io[z]) = m" % R[]
and rg(J) = rg(Jo[z]) = m"*R[z]. Hence rs(I) +rg(J) = rg(J) = m"*R[x].

Now we claim that rg(I'NJ) = rg((INJ)o)[x] = m"*R[x]. Since m* € Iy, there exists
a non-zero element f € I such that m* € Cy. Assume that f = rom*Ti0 + rymFtitg +
<+ + rpymFting® such that (r;,m) = 1 and i; = 0 for some 0 < j < n. Then we have
f = mkfi(x), where fi(z) = rom® + rymiiz + - - 4+ r,mina™ and i; = 0 for some
0 < j < n. By a similar argument, we can show that there exists a non-zero element g € J
such that g = m®gi(z), where gi(z) = rhm' + rimhz + - - + r;,mi;’x”/, (rf,m) =1 for
all 0 < ¢ < n' and z; = 0 for some 0 < j < n'. Thus, (m,d) = 1, for some d € Cy,g,.
Therefore m® fi(x)g1(x) € I NJ and m®d € (I N J)o where m and d are relatively prime.
Hence rr((I N J)og) C rr(m*R) = m™ 5R. Therefore, rr(I N J) = rr((I N J)o)[z] C
rs(m®R[z]) = m"~*R[x]. The reverse inclusion is trivial and the proof is completed. [

Theorem 2.17. [20, Theorem 33] Every principal ideal ring R is the direct sum of prin-
cipal ideal domains (PID) and special principal ideal rings.

Theorem 2.18. Let R be a principal ideal ring (PIR). Then R[z] is an IN-ring.
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Proof. By Theorem 2.17, R can be written in the form Ry X --- X R, where R; is either
a principal ideal domain or a special principal ideal ring for each 1 < i <n. Then we have
R[z] = Ri[z] x - - - X Ry[z]. Now let I, J be ideals of R[x]. Hence, [ = I x---x I, and J =
J1 X - x Jp, for some ideals I;, J; of R;[z]. Clearly, 7giy)(1) = 7R [2)([1) X - -+ X TR, [2](In)-
Now, since integral domains are IN-ring, hence by Proposition 2.16, one can easily prove
that TR[I](IQJ) :TR[:B](I)—l-TR[m](J). O

Corollary 2.19. Every principal ideal ring is an Armendariz IN-ring.

Example 2.20. Let R = F[x]/(z"), where n > 2, F' is a field and (2™) denotes the ideal
of F[z] generated by z™. Then it is clear that R is a principal ideal ring. Thus, R is a
non-reduced IN-ring and by Theorem 2.18, R[y] is an IN-ring.

Let R be a commutative ring and M an R-module. Recall that R® M with coordinate-
wise addition and multiplication given by (r,m)(r’,m') = (rr’,rm’+ms’) is a commutative
ring with unity called the idealization of M or the trivial extension of R by M. By
Anderson and Camillo [1], a right R-module M is called Armendariz if m(x)f = 0 with
m(z) =Y gmx' € M[z] and f = Y%, fiz! € R[x], implies m; fj = 0 for each i, j.

Example 2.21. (i) Let R be an integral domain and M a torsion-free R-module. Then
T = R® M is a commutative non-reduced ring. We show that 7" is an IN-ring. To see this,
it suffices to know that for a non-zero ideal I of T', either I contains an element (r,m),
where 0 # r € R and 0 # m € M, which implies rp(I) = 0, or all elements of I has the
form (0,m), where m € M, which implies r7(I) = 0 & M. Then it is not hard to check
that T" is an IN-ring.

(77) Let R be an integral domain and M an Armendariz torsion-free R-module. Now,
since M is an Armendariz torsion-free module, M[z] is a torsion-free as an R[z]-module.
Therefore, by (i), T[z] = R[z] ® M|z] is an IN-ring.

3. Skew polynomials over SA-rings

According to [3, Definition 2.1], a ring R is called a right SA-ring, if for any ideals I and
J of R there is an ideal K of R such that rr(I)+7rr(J) = rr(K). Since rr(X) = rr(RX)
for all right ideal X of R, R is a right SA-ring, if for any right ideals X and Y of R there
is a right ideal V' of R such that rr(X) +rr(Y) = rr(V). In this section, we will present
some necessary and sufficient conditions for the Ore extension R[z;«,d] to be an SA ring.

For a left (right) ideal I of R, we use I[z;a,d] to denote the set of all polynomials of
R[z; a, 8] with coefficients in I.

Proposition 3.1. Let R be an («, d)-compatible ring. If S = Rlx;«,d] is a right SA-ring,
then R is a right SA-ring.

Proof. Let I,J be right ideals of R. It is easy to show that I[z;a, 0] and J[x; «, ] are
right ideals of S. Since S is a right SA-ring, there exists a right ideal K of S such that
rs(Ilz; o, 6]) + rs(J[z; o, 8]) = rs(K). Now let Ky be the right ideal of R generated by
the set Upcx Cp. We show that rg(I) + rr(J) = rr(Ko). Let b € rr(l) and c € rg(J).
Then b € rg(I[z; o, d]) and ¢ € rg(J[z; @, d]), by Lemma 2.1. Thus b+ ¢ € rg(K). Hence
b+ c € rr(Kp), by Lemma 2.2. Therefore, rg(I) + rr(J) C rr(Ko).

Now let d € rg(Kjp). Then d € rg(K), by Lemma 2.1. Hence there exist h = 7 h;a' €
rs(Ilx;a,8)) and g = 31" gix® € rg(J[z;a,d]) such that d = h + g and so d = hg + go.
Since hg € rr(I) and go € rgr(J), we have d € rg(I) + rr(J). This shows that rr(Ky) C
rr(I) 4+ rr(J) as claimed. O

Authors in [8] introduced the SQA1 condition, which is a skew polynomial version
of the quasi-Armendariz rings. Let a be a monomorphism of R and § an a-derivation.
We say R satisfies the SQAI condition, if whenever f = ag + a1z + --- + apx™ and
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g=bo+biz+---+bya™ € Rlx;,0] satisfy fR[z;a,d]g =0, then a;rb; = 0, for each i, j
and r € R. They showed that if R is an («, §)-compatible quasi-Baer ring, then R satisfies
SQA1 condition [8, Corollary 2.8].

Proposition 3.2. Let R be an («,d)-compatible right SA-ring. If R satisfies the SQA1
condition, then S = R[x;«, 6] is a right SA-ring.

Proof. For an ideal K of S, let Ky be the right ideal of R generated by the set ey Cf-
Assume that I, J are right ideals of R[z;,d]. By assumption, there is a right ideal P
of R such that rr(ly) + rr(Jo) = rr(P). We claim that rg(I) + rg(J) = rs(Plx; «, d]).
To see this, let f =ap+a1z+---+apz™ € rg(I) and g = by + b1z + - - - + bpx™ € rg(J).
For each a € Iy, there is r; € R and ¢; € Cy,, for some h; € I, such that a = Zle CiT-
Since R satisfies the SQA1 condition and h;Sf = 0, for each 1 < ¢ < k, hence we have
ciraj = 0, for each ¢; € Cp;,r € R, 1 < i < kand 0 < j < n. Thus aa; = 0, for each
0 < j < n. It follows that a; € rr(lp), for each 0 < j < m. By a similar argument, one
can show that b; € r(Jy) for each 0 <4 < m and hence a; + b; € rg(P). Then by Lemma
2.1, we have f + g € rg(P[x; «, d]), which implies that rg(I) + rs(J) C rg(P[z; «, d]).

To prove the reverse inclusion, let h = dg + dix + - - - + dpz* € rg(P[z;,]). Since
R satisfies the SQA1 condition, we have Pd; = 0, for each 0 < ¢ < k. Thus there exist
a; € rr(ly) and b; € rr(Jy) such that d; = a; + b;, for each 0 < ¢ < k. Assume that
f=ay+aw+--- +aprFand g =bg+bix+--- +bpa*. Then h= f+g, f € rg(I) and
g € rs(J), by Lemma 2.1. Therefore, rg(P) C rg(I) + rg(J). O

As a generalization of Armendariz rings, Hirano [11] introduced quasi-Armendariz rings.
A ring R is called quasi-Armendariz if whenever polynomials f = ag + a1z + - - - + anz"
and g = by + b1z + - - + byx™ € R[z] satisfy fR[x]g =0, we have a;Rb; = 0, for each i, j.
Clearly, each Armendariz ring is quasi-Armendariz, but the converse is not true in general.
Birkenmeier et al. [3, Theorem 3.8] proved that if R is an Armendariz ring, then R is right
SA if and only if R[x] is right SA. Now we extend this result to quasi-Armendariz rings.

Corollary 3.3. Let R be a quasi-Armendariz ring. Then R is right SA if and only if R[x]
is right SA.

Question 2: Let R be an («, d)-compatible ring and S = R[z;a, ] be a right SA-ring.
Does R satisfy SQA1 condition?

We end this section with study SA property over a special subring of upper trian-
gular matrix rings. Let R be a ring and n a positive integer. An (n+ 1) x (n + 1) matrix
A with entries in R is called an upper triangular Toeplitz matriz if

ao al ag e (079

0 aq al

A=10 0 a - asl:
: ’ al
0 ... ... ... ag
where ag, a1, ..., a, are elements of R. For simplicity we can write
A=(a;)=(ap a1 az ... ay).

We denote the set of all such matrices by S, (R) that is a subring of upper triangular
matrix ring. In [3, Theorem 3.5], the authors proved that R is a right SA-ring if and only
if T),(R) is a right SA-ring, for some positive integer m (where T,,(R) denotes the set of
all m-by-m upper triangular matrices over R).

In the following, we will prove an analogous result for S, (R).
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Theorem 3.4. Let T = S, (R) be a right SA-ring for some positive integer n. Then R is
a right SA-ring.

Proof. Let I and J be right ideals of R. Set I' = S, (I) and J = S,(J). It is clear that
I' and J are right ideals of T'. By assumption, there is a right ideal K of T such that
rp(I') 4+ rp(J) = rp(K). Clearly the set

Y ={ceR|c=cyfor some C = (¢) € K}
is a right ideal of R. We claim that rr(I) + rr(J) = rr(Y). To see this, let = € rr(l)

and y = rg(J). Since (x 0 0 ... 0)€rp(l)and (y 0 O ... 0)€rp(J), then
we have (t+y 0 0 ... 0)€rr(I')+rp(J) =rp(K). Thus 2 +y € rg(Y) and hence
rr(I)+rr(J) C TR(Y). )

Now, let z € 7g(Y). Hence (0 0 ... 0 2) € rp(K) =rp(I') +rp(J ). Therefore,
there exist A = (a;) € r(I') and B = (b;) € r7(J ) such that A+ B=(0 0 ... 0 2).
Then z = a,, +by,. Since foreachz €I, (x 0 0 ... 0)eS,(I)= I', then a, € rr(l).
Also, since for each y € J, (y 0 0 ... 0) € S,(I) =J, then b, € rg(J). Therefore,
z € rr(I) + rr(J) and the proof is complete. O

Theorem 3.5. Let R be a reduced right SA-ring. Then T = S, (R) is a right SA-ring,
for each positive integer n.

Proof. Let K be a right ideal of S,,(R). For each 0 < i < n, let
K;={a€ R|aisthe ith entry of some elements of K}.

Clearly, each K; is a right ideal of R and K; C K;iq, for each 0 < ¢ < n — 1. Let
KM = {(a;) € Su(R) | a; € K;, for each 0 < j < n}. Clearly, K is a right ideal of
Sp(R) and K € KW, Let (a;), (bj) € Su(R), with (a;)(b;) = 0. Let j € {0,1,...,n}.
Since R is reduced, one can easily show that a;b; = 0, for each 0 < i < n — j. Then
TT(K) = TT(K(l)).

Let I and J be right ideals of T. As mentioned in the previous paragraph, rp(I) =
rr(IM) and rp(J) = rp(JM). Since R is right SA, hence for each 0 < i < n, rgr(l;)
rr(J;) = rr(K;), for some right ideal K; of R. Since rgr(li+1) C rr(l;) and rgr(Jiy1) C
rr(J;), for each ¢, hence rr(K;1+1) C rr(K;), and so we can assume that K; C K; 41, for
cach i. Now, by a simple calculation, one can show that r7(IM)) 4 r7(JM) = rp(KM),
and the proof is complete. O

~

For each positive integer n, it is a well known result that S, (R) = R[z]/(z"*1), where
(1) denotes the ideal of R[x] generated by "1, Then, by using Theorems 3.4 and 3.5,
we have the following result.

Corollary 3.6. Let R be a reduced ring and n be a positive integer. Then R is right SA
if and only if R[x]/(x™*1) is right SA.

Acknowledgment. We would like to appreciation the referee for his/her valuable
comments and suggestions which significantly improved the manuscript quality.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Al-
gebra 26, 2265-2272, 1998.

[2] E. P. Armendariz, H. K. Koo and J. K. Park, Isomorphic Ore extensions, Comm.
Algebra 15, 2633-2652, 1987.

[3] G.F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals
an annihilator ideal?, Comm. Algebra 43, 2690-2702, 2015.



[4]

[10]
[11]

[12]

On sum annihilator ideals in Ore extensions 713

G. F. Birkenmeier, M. Ghirati, A. Ghorbani, A. Naghdi and A. Taherifar, Corrigen-
dum to: When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra
46 (10), 4174-4175, 2018.

V. Camillo, W. K. Nicholson and M. F. Yousif, Ikeda-Nakayama rings, J. Algebra
226, 1001-1010, 2000.

K. R. Goodearl and R. B. Warfield Jr, An Introduction to Noncommutative Noe-
therian Rings, London Mathematical Society Student Texts 61, 2nd ed. Cambridge:
Cambridge University Press, 2004.

C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93,
253-266, 1985.

E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12,
349-356, 2006.

E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math.
Hungar. 107, 207-224, 2005.

E. Hashemi, M. Hamidizadeh and A. Alhevaz, Some types of ring elements in Ore
extensions over noncommutative rings, J. Algebra Appl. 16 (11), 1750201, 2017.

Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring,
J. Pure Appl. Algebra 168, 45-52, 2002.

A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (3-4),
355-363, 1992.

I. Kaplansky, Dual rings, Ann. of Math. 49, 689-701, 1948.

A. Leroy and J. Matczuk, Goldie conditions for ore extensions over semiprime 1ings,
Algebr. Represent. Theory 8 (5), 679-688, 2005.

J. C. McConnell, J. C. Robson and L. W. Small, Noncommutative Noetherian Rings,
Vol. 30. Providence, Rhode Island: American Mathematical Society, 2001.

N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49, 286-295, 1942.
P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298, 134-141,
2006.

M. Paykanian, E. Hashemi and A. Alhevaz, On skew polynomials over Ikeda-
Nakayama rings, Comm. Algebra 49 (9), 4038-4049, 2021.

R. Wisbauer, M. F. Yousif and Y. Zhou, Ikeda-Nakayama modules, Beitr. Algebra
Geom. 43, 111-119, 2002.

O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton,
1960.



