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Abstract

The purpose of this study is to construct the concept of direct product of bitonic algebras,
and investigate some respective features. Also, the concept of direct product of commutative
bitonic algebras, bitonic homomorphism are studied. Then the notion of direct product of bitonic

algebras is expanded to finite family of bitonic algebras and their qualifications are practised.
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Bitonic Cebirlerin Direkt Carpimlari
Oz
Bu calismanin amaci bitonic cebirlerin direkt ¢arpimlari olup bitonic cebirlerin direkt
carpimlarinin ilgili ozelliklerini c¢aligmaktir. Ayrica, degismeli bitonic cebirlerinin direkt
carpimlari, bitonic homomorfizmalar incelenmis ve degismeli bitonic cebirlerin direkt

carpimlarinin da degismeli oldugu elde edilmis ve direkt carpimlarin homomorfizmalar1 da

calisilmustir.
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1. Introduction

In 1984, the form of BCC-algebras was presented by Komori [1] and Dudek [2] as a
generalization of BCK algebra that was introduced by Iseki [3] in 1966 and studied by him and
Tanaka [4] in 1978. A dual BCC-algebra is an algebraic system (X, *, 1) satisfies the following
axioms: (D1) (x * y) * (y * z) * (x * 2)) =1,(D2) 1 * x = x, (D3) x * 1 = 1, (D4)
x*x =1, (D5)x »x y= land y * x =1 imply x = y. The notion of dual BCC-algebra is
a generalization of DBCK-algebras [5-7], Hilbert algebras [8-11], Heyting algebras [12, 13],
implications algebras [14] and lattice implication algebras [15, 16]. The property (P): x <y
impliesz * x < z » yandy* z < x * z is satisfied by all such algebras. Indeed, it can be
said that these are the algebras that have the axiom (P). The notion of bitonic algebra as a
generalization of dual BCC-algebra was introduced by Yong Ho Yon and Sule Ayar Ozbal in
2018 [17]. The notion of direct product was firstly studied in group and some of their
generalizations were obtained, such as the direct product of the group is a group and the direct
product of the abelian group is again an abelian group are the ones that can be given as properties
that are obtained in these studies. In 2016, the notion of direct product of B-algebra, O-
commutative B-algebra and B-homomorphism were studied by Lingcong and Endham [18]. In
2020, the concept of direct product of BP-algebras was given by Setani, Gemawati and Deswita
[19]. The purpose of this study is to construct the concept of direct product of bitonic algebras,
and investigate commutative direct product of commutative bitonic algebras and also

homomorphisms on direct product of bitonic algebras are studied.
2. Preliminaries

Definition 1. [17] A bitonic algebra is an algebraic systems (A,*, 1) where A is a set, 1 is
an element in A and * is a binary operation on A, satisfying the following axioms for every

a,b,c € A,
Bl)ax1=1,
B2)1* a=a,
(B3)a* b=1and b * a=11impliesa = b,
(B4)ax* b=1implies (c* a) * (c*b)=1land (b*c)*(a*xc) =1.

Example 1. [17] Let N = {1, x,y, z, w} be a set. If we define a binary operation * on N
by the following table:
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Table 1: Cayley table of binary operation * on N

* 1 x y z w
1 1 X y z w
X 1 1 y z w
y 1 X 1 z w
z 1 1 1 1 x
w 1 1 1 z 1

Then (N,*, 1) is a bitonic algebra with Hasse diagram given below.

1

Diagram 1: Hasse diagram of the bitonic algebra N in Example 1

Definition 2. [17] Let A be a bitonic algebra a nonempty subset S of 4 is labeled a bitonic
subalgebraof 4 if x * y € S forevery x,y € S and F as a nonempty subset of 4 is labeled a filter
of A4 if it performs:

(F1)1 € F
(F2)e € Fandext € F implyf € F forany ¢, € F.

Definition 3. [17] A bitonic algebra (4,*, 1) is said to be commutative if (a * b) * b =
(b*a)+*aforalla,b € A.

3. Direct product of Bitonic algebras

Definition 4. Let (4; *,1,) and (B; *', 1) be bitonic algebras. The direct product of 4 and
B is an algebraic nature A X B = (AX B;®,(14,15)) where A X B is the set {(a,b)| a €
A, b € B} and the binary operation @ is given by (a, b1) ® (a,, by) = (ay * ay, by *', by).

Example 2. Let A = {1,,a, b, c} be a set. If a binary relation * on 4 is illustrated by the

following table:
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Table 2: Cayley table of binary relation * on 4 in Example 1

* 1, a b c
1, 1, a b c
a 1, 1, b c
b 1, a 1, c
c 14 14 14 14

then (4; *, 1,) is a bitonic algebra.
Let B = {13, x,y, 0} be a set. If we define a binary relation *" on B by the following table:

Table 3: Cayley table of binary relation *’ on 4 in Example 1

*! 1p X y 0
1p 1p X y 0
X 1p 1p y y
y 1g by 1g 0
0 1p 1p 1p 1p

then (B; #’,1p) is a bitonic algebra. It is clear that the direct product of A and B is a bitonic

algebraA X B = (A X B; ®,(14,15)) whose Cayley table is given below
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Table 4: Cayley table of binary relation ® on A X B given in Example 1

® (Aalp) Aux) Auy) 1,0 (@1 (@x) (@y) (@0 (Bl Gx) Gy B0 (¢l @x (©y) (0

(1,15) | (1o 1) (Aax) (1Y) (140 (alp) (ax) (ay) (@0 (Bbl) (GBx) By B0 (6l (©x) (@y) (c0)
(%) | Qalp) (alp) (y) (Lay) (@lp) (al) (@y)  (ay) (Bl (Bl By By (1) (1) (©y)  ©y)
(1Y) | Qalp) (Aax) Axle) (140 (alp) (als) (ax) (@0 (b1l (bx) (Bl (B0 (61l (©x) (ol (c0)
(1,,0) | (La1p) (alp) (Aalp) (Aalp) (alp) (alp) (alp) (al) (b1l ((b1) (bly) ((b1) (1) (61)  (61p) (¢ 1p)
(@1p) | (Aalp) (ax) (1ay) (1400 (Aulp) Apx) Aay) (140 (Bl  GBx) by B0 (6l (6x) (6y)  (c0)
(@x) | (alp) (alp) (ay) Qay) Aalp) (Qalz) (Qy) Quy) b1 (Bl By By (1) (1) (@) (©y)
(@y) | alp) (Aax) Aale) (140 (Aalp) Aax) (Qalp) (1,0 (b1  (Bx) (b1l (B0 (61l (6x) (ol (V)
(@,0) | (1alp) (1alp) Aale) Aalp) Aalp) (Aalp) (Qalp) (Aalz) b1z (1) (b1) (b1l (61lp) (1) (61p) (6 1p)
(b,1p) | (alp) (ax) (1ay) (140 (alp) (@x)  (ay) (@0 (Aulp) Aux) Lay) 140 (61lp)  (6x)  (6y)  (c0)
(b,x) | Qalp) (ale) Qay) Qay) (@lp) (alp) (@y)  (@y) (4l Aalp) Lay) Qay) (1) (1) (©y) (©y)
(by) | Aalp) (Aax) Aale) (140 (alp) (ax) (alz) (@0 (1alp) Aaly) Aax) (140 (61 (©x)  (61lp)  (c0)
(b,0) | (1alp) (1alp) Aule) Aalp) (alp) (alp) (als) (alp) Aalp) (Aaly) (Qale) (Aals) (61lp) (1) (61p)  (c1p)
(c1p) | (lalp) (Aax) (1Y) (140 (Aalp) (Aax) (1ay) (140 (Qalp) Aax) Quy) (140 (Axls) (Aax)  (1ay)  (1,0)
(x) | Qulp) (ale) (Aalp) (Qalp) (Qalp) (ale) Aale) (ale) Qay)  ay) Qy) Quy) Qy)  Qay)  Qy)  Aay)
(y) | Qalp) (alp) (Aalp) (Aalp) Aax) (Aax)  (Qax)  (Aax) (Qalp) (Aals) Q4y) (Aals) (140 (1,0 (1,00  (1,0)
(©0) | Anlp) (Axlp) (Aalp) (Qalp) (Qalp) (ale) Aule) (ale) (ale) (ale) (als) (alp) (Aalp) (Aals) (Aals) (1a1p)
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The next theorem is one of the main theorems of this study.

Theorem 1. (4;%,1,) and (B;*',15) are bitonic algebras if and only if (4 X
B; &, (14, 1)) is a bitonic algebra.

Proof. Let (4; *,1,) and (B; *', 15) be bitonic algebras, then we have 3* 14 = 14 and
F+' 1pg =1p5,14* 3 =3and 15 ¥ # = # for ant elements 3 € A and # € B. The direct product
of 4 and B is an algebraic nature (A X B; ®, (14, 15)).

Thus, for all (3,#) € A X B we have

GOy, 1p) = G * 14, # *' 1p) = (14, 1p). (1
Then axiom (B1) is satisfied.
We have

(14, 15)8G.#) = (14 *3, 15 *' §) = 3, $). 2
Then the axiom (B2) is satisfied.

Let 3,#), (8 %) € A x B. Then 3, #) ®(&,X) = (14,15) and (& X) QB #) =
(14,1p), thatis 3 * K, # *' X) = (14, 1) and (K *3, X *' #) = (14,15). Since 3, R EA, #,X €
Bwehave 3* R =1yand R *x3 =1, implyg=Kand f+ X =1gand X+ # = 15 imply f =
Xweget (3, #) = (K %). So, axiom (B3) is satisfied.

Let 3, %), (8%),(2,9) € A X Band (3, #)®(K, X) = (14,15). Hence, we get 3* & =
14, £+ X =1p forall 3, ] € A, #,X € B. Since 4 and B are bitonic algebras, we have (2 * 3) *
@A*K) =1L and(q+ $)+ (¢*' X) = 1pand (R* ) * (3*2) = Lyand (X +' q) *' (F *' q) =

15. Then we have

(A®GH)B(Q PO X)) =2*39+ ) OQ*K q+ %)
=(@A*3)*@Q*RK), (@ X+ (¢ X))

= (14, 15) (3)

and
((x, )8, ))®((a,h)®(p,q)) = (x *p,y * ()®(a*p,b «" q)

=((x*p)*(a*p), (v @+ (b+ )

61



Ayar Ozbal (2022) ADYU J SCI, 12(1), 56-69

= (14, 1p). “4)

So, the axiom (B4) is satisfied. Finally, it is obvious that (B1), (B2), (B3), (B4) are satisfied

for bitonic algebras. Hence, A X B is a bitonic algebra.

Conversely, let A X B be bitonic algebras and let (a, b), (x,y), (p,q) bein A X B. Then
we have (a,b)®(14,15) = (14,1p) that is a* 1, = 14 and b *' 15 = 15. So, axiom (B1) is
satisfied for 4 and B.

Also, (14,15)®(a,b) = (a,b), thatis 1, *a = a and 15 *'= b. This means that axiom
(B2) is satisfied for 4 and B.

We also have (3, #)®(K,X) = (14,15) and (& X)®@,#) = (14, 15) implying that
(8%,%)=@G#). That is 3*xK=14and K*x3=1, implying 3=K, and #+ X = 1 and
X ' # = 15 implying # = X. Hence, axiom (B3) is satisfied for 4 and B.

Additionally,(a, b)®(x,y) = (14, 15) implies that ((p,q)®(a, b))R((p,1)R(x,y)) =
(14,1p) and ((x, y)®(p, 9))®((a, b)®(p, q)) = (14,1p). So, a * x = 1, implies that (p * a) *
(p*x)=14and (x *p) x (a*p) =14 and b *' y = 15 implies that (q *' b) *' (q " y) = 1p
and (y ' q) * (y *' b) = 1p. Thus, axiom (B4) is satisfied for 4 and B. Therefore, 4 and B are

bitonic algebras.
Also, we can generalize this product to any finite family of bitonic algebras.

Definition 5. Let (4;,%},1;) be a finite family of bitonic algebras for each i € {1,...,s}.

Then we can define direct product of A; to be the structure (I—[leAi &), (1,4 P 1 As)) whose
operation is (ay,...,a5) & (x1,...,%5) = (a; *1 x1,...,as x5 x5) for all a;x; EA; i€

{1,...,s}.
Then we have the following corollary.

Corollary 1. (A1,%%, 1), (4,,%2,1,),..., (As*°, 1) are bitonic algebras if and only if
(I1721 A5®, (14, ..., 14,)) is a bitonic algebra for i € {1,...,s}.

Proof. Clear.

Corollary 2. Let (4;,%},1;) be a finite family of bitonic algebras for each i € {1,...,s}.
Then each A; is commutative bitonic algebras if and only if ([[{=; 4;;®, (14,,-.-,14,)) is

commutative.
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Proof. Let each of (Ai,*i, 1;) be commutative for all i€ {l,...,s} If
(al, ey as), (bl' ey bs) € H?Zl Aia then (al- * bl) * bi = (bl *1 ai) x a; for all a;, bi € Ai and

i €{1,...,s}. Then we have
((@1,--+,a5) ® (by,-+, b)) ® ((by, .-, bs)) = ((ay *' by),..., (a5 ** bs)) ® (by,.., bs)
= ((ag ** by) #' by, ..., (a5 ** bg) *° by)
= ((by ** ay) ** at,..., (bs *° a5) ** ay)
= ((by * ay), ..., (bs *° a5)) ® (ay,..,as)
= ((by,..., bs) ® (ay,..,a5)) ® ((ay,.., as). (5)
This implies [[{_, 4; is commutative.

Conversely, let [T;=; A; be commutative. This is to say, if a;, b; € A; for all i € {1,...,s}
then (a4, ...,as), (by,..,bs) € [Ii=; A;. We have

((ay, -, as) ® (by,..,bs)) Q ((by,..,bs))
= ((b1,--,bs) ® (a1,--,a5)) @ ((a1,--,a5)).  (6)
That is
((ay ¥! by) ¥1 by,..., (as *° bg) *° bs) = ((by ** ay),..., (b *° a5)) @ ((ay,..,as)
= ((by ** ay) ¥* al,..., (bs *° a5) *° ag).  (7)

Hence, we get (a; *' b;) ' b; = (b; ** a;) *' a; for all a;,b; € A; and i € {1, ..., s}. Therefore,

each A; is commutative.
2. Homomorphisms of direct product of Bitonic algebras

Definition 6. Let (X;*, 1) and (Y;#', 1y) be bitonic algebras. An assignment f: X — Y
is labeled a bitonic homorphism if f(x * y) = f(x) *' f(y) forany x,y € X.

Theorem 2. Let (4;,%},1;) and (B;,*%,1;) be a finite family of bitonic algebras and
Bi: A; = B; be bitonic homomorphisms for each i € {1, ...,s}. If the mapping B: [~ 4; —
[, B; given by B(a4,...,as) = (B(ai), ..., B(as)), then B is a bitonic homomorphism with
kerg = [1i=1 kerp,, B(ITi=1 Ai) = [1i=1 Bi(A).
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Proof. Let (4;,*%,1;) and (B;,*, 1,) be a finite family of bitonic algebras and §;: 4; — B;
be bitonic homomorphisms for each i € {1, ..., s} and let B be the mapping [[;-, 4; = [I;=; B;
given by (a4, ...,as) = (f(aq), ..., B(as)).

Let (a4, ..., ag), (by, ..., bs) € [Ii=; A; then
B((ay, .., as) ® (by, ..., bs)) = Blay ** by, ..., as = by)
= (B1(as ** by), .., Bs(as *° by))
= (B1(ar) ' 1 (b1), .., Bs(as) *° Bsbs))
=(B1(a1), -, Bs(as)) & (B1(b1), ..., Bs(bs))
= B((ay, ., a5)) ® B((by, ., by)). )

Thus, we have that f is a bitonic homomorphism. Also, if § is a bitonic homomorphism, then

each f3; is a bitonic homomorphism.
Let (aq,...,a5) € kerﬁ. Then
(ay,...,as) € kerg & p((ay,...,as)) = (1y,..., 1)
< (Br(ay),...,Bs(as)) = (1y,..., 1)
& fi(a;) = 1; foreachi € {1,...,s}
& a; € kerg, foreachi € {1,...,s}
& (ay,...,a5) € [[i-; kerg,. 9
That is to say kerg = [[;_, kerp,.
Finally, let 8 be one-to-one. If B;(a;) = B;(b;) for eachi € {1,..., s}, then
B((ay,...,a5)) = (Bi(ar),..., Bs(as))
= (B1(b1), ..., Bs(bs))
= B((by,..., bs)). (10)

We have that  is one-to-one, therefore (aq,...,as) = (by,...,bs). Hence, a; = b; for eachi €

{1,...,s}. Thatis f5; is one-to-one for each i € {1,...,s}.
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Conversely, let f; be one-to-one for eachi€{l,...,s}. If p((ay,...,a5)) =
B((bll ) bs)), thel’l

(Br(ar), ..., Bs(as)) = B((ay,..., as))
= B((by, .-+, b5))
= (B1(b1), ..., Bs(Ds)). (11

Since B;(a;) = Bi(b;) for eachi € {1,...,s} and all f5; is one-to-one, we get a; = b; for

eachi € {1,...,s}and hence (ay,...,as) = (by,..., bs). So, B is one-to-one.

Finally, let B be onto. If b; € B; for eachi € {1,...,s} then (b4,...,bs) € [];=, B;. Since
B is onto, there exist (ay,...,as) € [I=;A4; such that (by,...,bs) =B((ay,...,as)) =
(B1(aq),...,Bs(as)) . Hence b; = B;(a;) for some i € {1,...,s}. Therefore, f3; is onto for all i €
{1,...,s}

Conversely, let 8; be onto foralli € {1,...,s}. If (by,...,bs) € [I;=, B; then b; € B; for
alli € {1,...,s}. So, there exists a; € A; such that b; = 8;(a;) for some i € {1,...,s} since f;
is onto. Therefore, (b4,...,bs) = (B1(ay),..., Bs(as)) = f((aq,...,as)) . Hence, £ is onto.

Theorem 3. Let (4;,%},1;) and (B;,*%,1;) be a finite family of bitonic algebras and
Bi: A; = B; be bitonic homomorphisms for i € {1,...,s} and let let B be given by [[;—; 4; —
[I;=1 B; given by (ay,...,as) = (B(a1),...,B(as)), then kery = [[;_; kerp, is a filter.

Proof. Let (4;,+, 1;) and (B;,*%, 1;) be a finite family of bitonic algebras and 5;: X; — B;

be bitonic homomorphisms for i € {1,...,s}. Then
B((1y,...,19)) = Blas *' 1y,..., a5 %° 15) = (Br(as *' 11),..., Bs(as *° 1))
= ((Bi(a1),..., Bs(as)) @ (B1(11),..., Bs(1))
= (14,...,15). (12)
So, (14,...,15) € kerg, kerg # 0.
Let (a4,...,a5) € ker/; and (aq,...,a5) Q@ (by,...,bs) € kerl;. Consider

(14,...,15) =B(ay,...,as) @ (by,...,bs))

=B(a1 *1 bl!""as *5 bs)
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= (Br(ar) #* B1(b1), ..., Bs(as) ** Bs(bs))

=pB(ay,...,a5)) @ B((by, ..., bs))

= (13,...,15) ® B((by,..., bs))

= B((by,..., by)). (13)
This implies (by, ..., bs) € kerg. Therefore, kery is a filter.

Theorem 4. Let (4;,%},1;) and (B;,*%,1;) be a finite family of bitonic algebras and
Bi: A; = B; be bitonic homomorphisms for i € {1,...,s} and let B:[[{=; 4; - [1;=, B; given
by B(ay,...,as) = (B(a1),..., B (as)) then

i) B is a bitonic monomorphism if and only if f5; is a bitonic monomorphism.
ii) B is a bitonic onto homomorphism if and only if f; is a onto homomorphism.

Proof. Let (4;,%%, 1;) and (B;,*%, 1;) be a finite family of bitonic algebras and §;: 4; — B;
be bitonic homomorphisms for i€ {1,...,s} and let B:[[;=;4; » [I;=;B; given by
B(ay,...,as) = (B(ay),.-.,B(as)). Then

i) Let B be a bitonic monomorphism and S;(a;) = B;(b;) fori € {1,...,s}. Then,
(B1(ar),..., Bs(as)) = (B1(b1),..., Bs(bs)) = B((ay,...,as)) = B((by,..., bs)). (14

Since £ is a bitonic monomorphism we have (aq,...,as) = (by,...,bs), thatis a; = b; fori €

{1,...,s}. Hence, we get f3; is a bitonic monomorphism.

Conversely, let f§; be bitonic monomorphisms. And consider, B((a4,...,a5)) =

B((by,...,bs)) for a;b; €[li-1A;. Then (Bi(ar),...,Bs(as)) = (Bi(b1),-..,Bs(bs)) =
Bi(a;) = B;(b;). Since B; is bitonic monomorphism we have a; = b; fori € {1,...,s}. Therefore,

(aq,...,as) = (bq,...,bs) and p is a bitonic monomorphism.
i1) Let 8 be a bitonic onto homomorphism and let b; € B; fori € {1,..., s} then we have

(b4,...,bs) € [Ii=, B;. Since B is a onto homomorphism, then (a4, ..., as) € [[;=, 4; for all a;
fori € {1,...,s}, so (by,...,bs) =f(ay,...,as) = (f1(ai),...,Bs(as)) implying that b; =

Bi(a;) fori € {1,...,s}. Therefore, it is proved that ; is an onto homomorphism.

Conversely, let §; be a bitonic epimorphism for all i € {1,...,s} and (bq,...,bs) €

$_1Bi, then b; € B; . Since f3; is an onto function, then there exists a; € [[}_; 4; for all i €
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{1,...,s} such that b; =pf;(a;) implying that (bq,...,bs) = (B1(ai),...,Bs(as)) =

B(a4,...,as). Hence, it is proved that £ is a bitonic epimorphism.

Theorem 5. Let {4; = (4;,%,1,)|i € {1,...,5}} be a family of bitonic algebras and let J;
S . .
be a filter of A;. Then []_, J; is a filter of [[7_; 4; and Hi:lAl/ s =8| (Al/ )
Hl:l]l -]l
Proof. Let {4; = (4;,*%,1;)|i € {1,...,s}} be a family of bitonic algebras and let J; be a
filter of A;. Then (14,...,15) € [[{=,/; since 1; € J; for all i € {1,...,s} and so []{-,/; is not
empty. Let (ay,...,a5) €[l=1)i and (aq,...,a5) @ (by,...,bs) €[[;=1Ji. Then
(ay #* by, ..., a5 *° b) € [[5_, J;. This is to say that (a; *' b;) € J; fori € {1,...,s}. Since J; is a
filter of A; we have b; € J;. Hence, (by,..., bs) € [1;=,J;. Therefore, [[;-,J; is a filter.
— TS —TIs Ay . s (A ;
Let J=][l{-1/; and A=][.;4;. Define w: /]. — Hi:1( /])glven by

w((ay,...,a9))) = (ays, ..., asfs) € A/] forall (ay,...,as)] € A/].

Let (al,...,as)],(bl,...,bs)]EA/]. If (ay,...,a5)] = (by,...,bs)J,  then

(ay,...,a5)~;(by,...,bs), that is (a; *1by,...,as x5 bg) = (aq,...,as) ® (by,...,bs) €].
Thus, a; *' b; €J; for all i €{1,...,s}, that is a;~;b; so that a;J; = b;J;. Therefore,

w((aq,...,a5))) = (@y)q,---,a5)s) = (biJ1,---, bsJs) = @((by,...,bs)]). Hence, @w is well -
defined.

If (ay,...,as)], (by, ..., bs) € A/], then

w((al, ] as)] +l (b1' L] bs)]) = w(((al, L] as) ® (bl' L] bs))])
= w((al *1 blﬂ ey g *5 bs)])
= ((a4 *! b1, .-, ((as ** bs)Js))

= (aljl *1 byJ1,...,as]s *5 bs]s)

(aljl' ey as]s) ® (bljll : --'bs]s)

w((al,...,as)]) ® Zﬂ((bl,,bs)]) (15)

This gives us that @ is a homomorphism.

fw((ay,...,a5)]) = @((by,...,bs)J), then
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(a1]1; ey as]s):w ((al' e aS)])

= @((by, .., bs)]) = (biJy,- .-, bs/s). (16)

Therefore, a;/; = b"/], forall i € {1,...,s}. Hence, a;~/,b; that is a; xl b, €]; foralli€
l

{1,...,s} so that (ay,...,as) ® (by,...,bs) = (a; ** by,...,as *5 bs) € ]. Therefore,

(ay,...,a5) ~j (by,...,bs) and so (ay,...,as)] = (by,...,bs)] . This implies @ is one-to-one.

If (@yy,..., a4 )€ r[f:l(Ai/],), then a; € 4; for all i €{l,...,s), that is
L
(ay,...,a;) €A. It gives wus that (aq/,,...,a )=w ((ay,...,as)]), where

(aq,...,a5)] € A/ T This follows that @ is onto. Therefore, @ is a bitonic isomorphism

A = ()
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