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circuit has become a reference circuit for studying chaos. 
Chaotic systems can be found in physics (the Lorentz 
actuator), in finance, in biology, or electrical circuits 
(Chua’s electrical circuits) which have found interest in the 
literature (Sene 2021, Srisuchinwong et al. 2007). Here, 
we will study three different aspects: stability, instability 
and chaos properties of the circuit. We give the conditions 
(for NR) under which the present model exhibit stability, 
instability and chaos. We support our theatrical results with 
graphical representations in 3D. We turn out our discussion 
on the stability and instability of the defined circuit with 
the more general nonlinear characteristic of NR. We also 
discuss the chaotic behaviors of the circuit for symmetric 
piecewise–linear characteristics of .V INR NR-  Hence, 
understanding nonlinear phenomena will become more and 
more important as time goes ( Johnsen 2012), since nature 
itself is nonlinear. Therefore, the qualitative behavior of 

1. Introduction
In this study the handled Chua-like circuit is a third-order 
nonlinear autonomous circuit with at least one nonlinear 
element (NR), one linear resistor and three linear energy 
storage elements (Adamatzky et al. 2013).  In 1983, 
Chua realized that chaos could be produced in such third 
section- order circuits when shows symmetric piecewise–
linear characteristics ( )V INR NR- , but this is not necessary 
(Adamatzky et al. 2013), it can also be realized with a cubic 
characteristic (Chua 1992, Zhong 1994). Since Chua’s 
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many nonlinear systems (of any order) such as biological, 
electrical, mechanical and neural systems are analyzed today.

The term stability is a device of some sort that operates 
under certain general conditions (La Salle and Lefschetz 
1961). Stability is the heart of control theory (Gil 2005). 
Therefore, the Lyapunov direct method is a very efficient 
tool to determine the qualitative behaviors of dynamical 
systems (Sugie and Amano 2004, Zhang and Yu 2013). The 
Lyapunov characterizations of the fractional differential 
equations are detailed in (Sene 2020), and fractional input 
stability is addressed in a recent paper (Sene 2019). Unlike 
these studies, we construct the Lyapunov function from the 
storage elements of the circuit that fortified the application 
of the method. For stability analysis of differential equations, 
the proposed approach improves some relevant studies such 
as (Sugie and Amano 2004) and (Tunc and Tunc, 2007). 
Because the derivative of the Lyapunov functions in these 
studies may be in the form of (2) at a blow, but they are not 
(for explanation see section 4). So, the proposed approach 
can apply to a fourth-order elliptic filter (Seidi et al. 2007).

In this connection, we shall cite some excellent studies in 
the relevant literature discussing qualitative behaviors of 
certain circuit systems (Chua et al. 1986, Kennedy 1994, 
Tchitnga et al. 2012, Kocamaz and Uyaroğlu 2014). Here, 
we applied the Lyapunov method to certain third-order 
nonlinear  RLC circuit systems. Passive systems are stable, 
in this respect a novel passivity property of nonlinear RLC 
circuit investigated in ( Jeltsema et al. 2003). 

The rest of this paper is organized as follows. Section 2 
presents some definitions and auxiliary results. Section 3 
deals with three main results and simulations. Section 4 
deals with the discussion. Section 5 closes the paper with a 
short conclusion.

Let’s give the following fundamentals relevant to the subject 
before the main results.

2. Preliminaries
A dynamical system is investigated as a theoretic 
mathematical model that maps inputs (excitations, causes) 
into outputs (responses, effects) by a set of intermediate 
variables (state variables). In this investigation, we consider 
the nonlinear dynamical system of the form

( ) ( ( )), ( ) , ,≥x t f x t x x t0 00 6= =o   (1)

where ( [ , ))t 0R R 3! =+ + denotes time, x Rn!  denotes 
the state of the system, :f R Rn n"  satisfies global Lipschitz 

condition. The state vector ( )x t D! , in which D Rnl  
is a domain that contains the origin x 0= . A constant 
vector x De !  is said to be an equilibrium state of the 
system (1) if the condition ( )f x 0e =  is satisfied, where 0 
is the null vector. The velocity vector ( )x to  vanishes at the 
equilibrium state xe , and therefore the constant function 
x t xe=^ h  is a solution of (1). We assume that (1) is well 
posed, that is, there exists a unique solution : [ , )x 0 Rn"3  
for every initial data ( )x x0 Rn

0 != , and x  depends 
continuously on x0   according to the normed topology on 
.Rn  Let ( ) ,f 0 0=  ( )f x 0!  for x 0! . Let the measured 

output of (1) is ( )x t . The energy or the Lyapunov function 
( ) ( ) ( , )E t E x C R Rn1!= +  of (1) is positive definite 

function (pdf ) and continuously differentiable along the 
motions of (1) such as 

( ( )) ( ) .dt
d E x t E t= o

Now, we can define some properties of the energy (Lyapunov) 
functions. The following two definitions are from (Zhong et 
al. 2009). 

Definition 1 A function ( , )R Ra + +  is of class K  if it is 
continuous, strictly increasing, and ( )0 0a =  A class K3

function ( )ra  is a subset of class K  if r " 3a^ h  as 
r " 3 .

We extend Proposition 2.1 (Zhong et al. 2009) as the 
following definition:

Definition 2 A function ( ) ( , )E x C R Rn1! +  is said to 
be positive definite, decrescent and radially unbounded 
function if there exist functions a  and b  of class K , and 
some pdf c  such that

(i) , , ,x x t x0 Rn6 6# $ !a b^ ^h h
(ii) ( ) ,E 0 0=

(iii) ( ) ( ) .E x x 0# #c-o

For globally asymptotically stability of our discussion, we 
may give the following definition (Haykin 2009).

Definition 3 The equilibrium state xe  is said to be globally 
asymptotically stable if it is stable and all trajectories of the 
system (1) converge to xe  as time t approaches infinity.

Corollary 1 For any unforced dissipative dynamical system, 
the time derivative of the storage (Lyapunov) function ( )E t
along the system trajectories is

( )E t R I R v
1

0i i
i

n

i
i

i

n2

1

2

1
#=- =-

= =
o / /   (2)

where R 0i $ is the resistance, Ii and vi  are the current 
and voltage of the ith component of the system. For a 

http://www.ams.org/mathscinet/search/author.html?mrauthid=736266
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conservative or Hamiltonian system , ( ) .R E t0 0i = =o^ h  
The physical significance of (2) may be found in a recent 
study (Ates 2021). 

We are now in a position to state and proof our main results.

3. Main Results
Now with the above projection, we can easily discuss 
the qualitative behaviors of the following Chua’s circuit 
(Adamatzky et al. 2013).

Figure 1: Chua’s circuit with nonlinear resistor , ( ) .NR I p xNR =

Here, INR  for the stability and instabilitty analysis of the 
above circuit may be in the form ( )p x k x x1 n2 1 != + , where  

, , , , ...n 1 2 3N N! = " ,  and k 0>  is a constant. The circuit 
shown in Figure 1 generates  the following system (with 

, ,x v y v z ic c L1 2= = = )

( ) ,

,

.

x c R
y x

p x

y c R
x y

z

z L y

1

1

1

1

2

=
-
-

=
-
-

=

o

o

o

9

9 C

C   

(3)

Theorem 1 The invariant equilibrium point (0,0,0) of (3) is 
globally asymptotically stable or this point makes the system 
lossless if ( )p x  satisfies the followings:

(i) ( ) ,p 0 0=

(ii) ( ) ,p x 0$o

(iii) ( ) ,xp x 0$

(iv) ( )p x " !3  as x " !3 .

Proof The storage energy function ( ) ( , , )E t E x y z1 1=  of the 
circuit in Figure 1 from power-energy relationship of the 
circuit theory is

( )E t C x C y Lz2
1

2
1

2
1

1 1
2

2
2 2= + + .

The energy function :E R R1
3 " +^ h  satisfies

(i) ( , , ) ,E 0 0 0 01 =

(ii) ( , , ) , , , , , .E x y z x y z0 0 0 0> R1 6 ! - " ,
E1  is confirmed by the Definitions 1 and 2. Thus, E1  is a 
pdf. Then, we write 

( ) .≥E t C x2
1

1 1
2

The time rate of change of ( )E t1  along trajectory (3) is 
given by

( )
( )

( ) .E t R R
x y

p x
x p x1

2
2= -

-
-o a bk l

( )E t1
o  is in the form of (2). Thus, ( )E t 01 #o  on R3 , 
( )E 01 3 = and ( )E x1 " 3  as x y z2 2 2 " 3+ + . Hence, 

(3) have bounded motions. The set S  where E 01 =o  is 
, ,0 0 0" , . This implies that the origin is the only invariant 

subset of S . Then, the zero motion , ,0 0 0" ,  or the 
equilibrium motion of (3) is globally asymptotically stable. 
Hence, E1  with the associated system satisfy the properrties 
of Definitions 1, 2 and 3. Consequently, one may conclude 
that (3) is lossless at infinity, that is, x 03 =^ h . For convince, 
see Figures 2a and 2b with , . , ,C C F L H R1 0 1 11 2= = = =  
and ( ) .p x x30

1 3=  

Figure 2A: Stable phase portrait of the system (3).

In addition, recall that ( , , )0 0 0  is the only invariant 
equilibrium state of (3). For ( )p x x x3= + , we have the 
following Jacobian matrix for (3) about equilibrium state 
(with R C C L 11 2= = = = )

2
1
0

1
1
1

0
1
0

-
- -

R

T

S
S
S

V

X

W
W
W

which has the following eigenvalues: 
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equilibrium point for large time t. This explanation matches 
with Figures 3a and 3b. Here, all the parameters of (3) are 
the same as defined in the above simulations, but only ( )p x  
is different. The explanation for the new ( )p x  will be given 
in the following example.

Moreover, in this case, the Jacobian matrix 
0
1
0

1
1
1

0
1
0

- -

R

T

S
S
S

V

X

W
W
W

verifies the instability of the system (3). 

Example 1 For , ( )n p x x x1 30
1 3= = -  third-order, 

( )xp x 0<  (in the neighborhood of the equilibrium) which 
contradicts with (iii) of Theorem 1. 

Theorem 3 The system (3) is chaotic if the nonlinear resistor  
NR in Chua’s circuit represents symmetric piecewise-linear 
( )V INR NR-  characteristics  with negative slopes.

Proof Now, NR can represent the working process of a 
memristor or Chua’s diode such that 

( )
( ) ,
,
( ) ,

p x
bx b a x if x x
ax if x x x
bx a b x if x x

<

<

0 0

0 0

0 0

# #=
+ - -
-

+ - -
*    (4)

where ,x a0 0> <0 , and b 0<  are constants. In this case, 
the system (3) can be represented by (4). With the following 
graphic (Figure 4) which has three equilibrium points: 
one at the origin where NR has a locally negative slope or 
conductance a, and the two others occur at x0! , where 
NR has a locally negative conductance b. The new one may 
represent an affine system, that is, ( )p 0 0! . The Lyapunov 
function at the equilibrium points:

-2.5214 + 0.0000i,   -0.2393 + 0.8579i,   -0.0.8579i.

The negative real part of the eigenvalues implies that system 
(3) is stable. Both the results obtained by the Lyapunov 
method and the Jacobian matrix method are compatible 
with Definition 3.

Figure 2b. Stable time series solutions of system (3).

Theorem 2 The system (3) is unstable if the (ii) condition of 
Theorem 1 is replaced by

p 0 01o ^ h .

Proof  In this case, let p x k x x1 n2 1= -+^ h . Now,  the condi-
tion (iii) of Theorem 1 is not satisfied in the neighborhood 
of the origin, that is, ( )xp x 0< . In this case, ( )E t 0>1

o  
implies that system (3) is unstable. The phase portrait in 
the neighborhood of the origin (0,0,0) blow-up which is 
a fundamental difficulty in the study of nonlinear systems 
and the time series solutions of (3) do not converge to the 

Figure 3: A) Unstable phase portrait of the system (3). B) Unstable time series solutions of system (3).

A A
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4. Discussion
The proposed approach can also be used in the stability 
analysis of first, second and higher-order (more than 3rd 
order) differential systems, especially RLC circuits and 
elliptic filters (Saeidi 2007). In addition, the nonlinear 
element (NR) of Chua’s circuit is treated as a cubic nonlinear 
element form ( )p x ax bx3= +  where ,a b 0>  are constants 
in the relevant literature (Zhong 1994). But, in this study, 
we relaxed this condition to the most general characteristic 
of the element as defined above system (3). Moreover, 
according to the proposed approach the directional 
derivative of the Lyapunov function of an unforced system 
is equal to the negative value of the dissipated power. This 
approach improves some existing conclusions. For example, 
according to the proposed approach, the derivative of 
Lyapunov function for system ( E* ) in (Sugie and Amano 
2004) will be V y2= -o  that is in the form of (2). But in 
(Sugie and Amano 2004) it is a long equation and it is not 
in the form of (2). This is just one example.

5. Conclusion
In this paper, the global asymptotic stability, instability and 
memristive performance of nonlinear third-order systems 
have been investigated. The paper presents a new idea to 
determine the construction and derivative of the Lyapunov 
function from the perspective of physical meaning. We 
precisely construct the suitable (real) Lyapunov function by 
using the power-energy relationship of basic circuit theory. 
Therefore, the stability and instability of the systems framed 
by LRC circuits. So, the obtained results can be unified with 
(2) and different from the existing literature. Symmetric 
piecewise-linear ( )V INR NR-  characteristics with negative 
slopes of NR determine the memristive performance of 
Chua’s circuit. The numerical examples have been presented 
to prove the applicability of the proposed theoretical results. 
The methodology handled here may be applicable for 
higher-order differential systems and impressive for future 
stability analysis.
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