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Abstract 

In this study, we examine the tube surfaces formed by normal curves in Galilean 3-

space, and we give Clairaut’s theorem on the tube surfaces using geodesic normal 

curves. Also, we attempted to explain why the specific kinetic energy and angular 

momentum of particles may be on tube surfaces.  

 

 
1. Introduction 

 

The development of partial differential equations 

plays an important role in mathematics. A geodesic is 

a locally length-minimizing curve. The geodesic 

equation is expressed by establishing a one of the 

necessary theoretical foundations of relativity. 

 A Lagrangian formulation of the geodesic 

deviation equations is constructed for particle 

interpretations of quantum. The constants of motion 

that are of course constant along a geodesic are 

expressed by the geodesic equations. This constant is 

the result of one-parameter group of symmetries on 

the surface, and the surface is invariant under any one-

parameter group of symmetries. In mathematical 

language, this quantity is a constant obtained by 

Clairaut for geodesic movement on a surface defined 

in a coordinate system adapted to this one-parameter 

group of symmetries [19].  

Many studies of tube surfaces, including 

rectifying curves, the Darboux frame, the geodesic 

curve, the Mean curvature, the Gaussian curvature, 

have received much attention from our researchers. 

Among them, we can cite our work [2], in which we 

described the rotational surfaces using curves and 

matrices in Galilean 4-space. We examined the tube 

surfaces generated by special curves in G3 and gave 

certain conditions describing the geodesics on the 

surfaces [3,5]. We studied Weingarten, 𝐻𝐾-quadric, 

harmonic tubular surfaces, the conditions of geodesic 

on this surface using the help of Clairaut’s theorem in 

G3 [4]. We expressed the specific kinetic energy, the 
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specific angular momentum, and the conditions of 

being geodesic on a rotational surface generated by a 

magnetic curve with the Killing magnetic field [6]. 

The tubular surface and the characterizations 

of the parameter curves of this surface have been 

investigated in Euclidean space, see [1,10-11]. In [8], 

the author defined the tubular surfaces in Galilean 

space and the differential features of tubular surfaces. 

In [12], they analyzed the problem of constructing a 

family of surfaces from a given space-like (or time-

like) geodesic curve using the Frenet frame of the 
curve in Minkowski space and they expressed the 

family of surfaces as a linear combination of the 

components of this frame and the necessary and 

sufficient conditions for the coefficients to satisfy 

both the geodesic and the isoparametric requirements 

were given by the authors. In [6], the authors 

investigated some curves on a plane and in space and 

they stated the position vectors and gave some 

theorems about such curves in the Galilean plane 𝐺2. 

Furthermore, the slant helices were given in 𝐺3. In 

[20], the theory of the curves in Galilean space was 

studied. Also, some results were studied on surfaces 

in 𝐺3 [9,13,18,22,25]. 

According to references [23, 24], the specific 

energy of the particle is constant because of its motion 

in space, which is very important in terms of its 

specific energy and angular momentum.  

In this paper, the speed being constant along 

a geodesic is shown on the tube surface using 

Clairaut’s  
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theorem. Furthermore, the geodesic formulae are  

given using some parameters. Also, the energy and 

angular momentum on these surfaces that generated 

normal curves in G3 are expressed. 

momentum on these surfaces generated normal 

curves in G3 are expressed. 

2. Preliminaries 

 

The classical context of Euclidean space is the origin 

of results that could be transferred to some other 

geometries. One way of defining new geometries is 

through Cayley-Klein spaces. They are expressed as 

projective spaces 𝑃𝑛𝑅 with an absolute figure, a 

subset of 𝑃𝑛𝑅 originating of a sequence of quadrics 

and planes 1. By means of the absolute figure, metric 

connections are also well defined, and they are 

invariant under the group of movements. 

The scalar product and cross product of the vectors  

𝑈 = (𝑢1, 𝑢2, 𝑢3), 𝑉 = (𝑣1, 𝑣2, 𝑣3) in 𝐺3 is defined as  

⟨𝑈, 𝑉⟩ = {
𝑢1𝑣1, 𝑖𝑓  𝑢1   ≠ 0 or 𝑣1   ≠ 0
𝑢2𝑣2 + 𝑢3𝑣3, 𝑖𝑓  𝑢1   = 0, 𝑣1   = 0

         (1)  

 and  

𝑈 × 𝑉 =

{
 
 

 
 (

0,
𝑣1𝑢3 − 𝑣3𝑢1,
𝑣2𝑢1 − 𝑣1𝑢2

) , if 𝑢1 ≠ 0 or 𝑣1   ≠ 0

(

𝑣3𝑢2 − 𝑣2𝑢3,
0,
0

) , if 𝑢1   = 0, 𝑣1 = 0

      (2)                                           

[14]. 

Let 𝜚: 𝐼 ⊂ ℝ → 𝐺3 be a curve given by  

𝜚(𝑠) = (𝑠, 𝑦(𝑠), 𝑧(𝑠)). 

The vectors of the Frenet-Serret frame are defined by 

𝑡(𝑠) = (1, 𝑦′(𝑠), 𝑧′(𝑠));  𝑛(𝑠) =
𝑡′(𝑠)

𝜅(𝑠)
; 𝑏(𝑠) =

𝑛′(𝑠)

𝜏(𝑠)
, 

where the real valued functions 𝜅(𝑠) =∥ 𝑡′(𝑠) ∥ is 

defined as the first curvature the curve and               

𝜏(𝑠) =∥ 𝑛′(𝑠) ∥  is said to be as the second curvature 

function. Frenet-Serret equations are given by 

𝑡′ = 𝜅𝑛, 𝑛′ = 𝜏𝑏, 𝑏′ = −𝜏𝑛. (3)                                                      

Let the equation of a surface Γ = Γ(𝑠, 𝑣) in 𝐺3 be 

given by  

Γ(𝑠, 𝑣) = (𝑥(𝑠, 𝑣), 𝑦(𝑠, 𝑣), 𝑧(𝑠, 𝑣)),           (4)                                                 

and the unit normal vector field 𝜂 on Γ(𝑠, 𝑣) is given 

by  

𝜂 =
Γ,1×Γ,2

‖Γ,1×Γ,2‖
,    (5)                                                                   

and the partial differentiations according to 𝑠 and 𝑣 

are expressed by  

Γ,1 =
𝜕Γ(𝑠,𝑣)

𝜕𝑠
; Γ,2 =

𝜕Γ(𝑠,𝑣)

𝜕𝑣
. (6)                                                       

Also, 𝛿 is written as 

𝛿 =
𝑥,2Γ,1−𝑥,1Γ,2

𝑤
, (7)                                                                 

where 𝑥,1 =
𝜕𝑥(𝑠,𝑣)

𝜕𝑠
, 𝑥,2 =

𝜕𝑥(𝑠,𝑣)

𝜕𝑣
 and 𝑤 = ‖Γ,1 × Γ,2‖. 

Let us define  

𝑔1 = 𝑥,1, 𝑔2 = 𝑥,2, 𝑔𝑖𝑗 = 𝑔𝑖𝑔𝑗; 𝑔
 1 =

𝑥,2

𝑤
, 

𝑔 2 =
𝑥,1

𝑤
, 𝑔𝑖𝑗 = 𝑔𝑖𝑔𝑗; 𝑖, 𝑗 = 1,2;  (8)                                              

ℎ11 = ⟨Γ,1
∗ , Γ,1

∗ ⟩; ℎ12 = ⟨Γ,1
∗ , Γ,2

∗⟩;   ℎ22 = ⟨Γ,2
∗ , Γ,2

∗ ⟩,  (9)                                       

where Γ,1
∗  and Γ,2

∗  are the projections of the vectors Γ,1 

and Γ,2 on the 𝑦𝑧-plane, respectively, and the 

corresponding matrix of the first fundamental form 

𝑑𝑠2 of the surface Γ(𝑠, 𝑣) is given by  

𝑑𝑠2 = 𝑑𝑠1
2 + 𝑑𝑠2

2 = (𝑔1𝑑𝑠 + 𝑔2𝑑𝑣)2 +    𝜀(ℎ11𝑑𝑠2 +

2ℎ12𝑑𝑠𝑑𝑣 + ℎ22𝑑𝑣2)                                              (10) 

where  

𝜀 = {
0, 𝑑𝑤: 𝑑𝑣1non − isotropic
1, 𝑑𝑤: 𝑑𝑣1isotropic

,    [19]. (11)                                          

In this case, the coefficients of 𝑑𝑠2 are defined as 𝑔𝑖𝑗
∗ . 

That is, it can be given in terms of 𝑔𝑖 and ℎ𝑖𝑗 by  

𝑤2 = 𝑔1
2ℎ22 − 2𝑔1𝑔2ℎ12 + 𝑔2

2ℎ11. 

The Gaussian and mean curvatures are expressed by 

means of the coefficients of  𝐿𝑖𝑗, they are the normal 

components of Γ,𝑖,𝑗(𝑖, 𝑗 = 1,2). That is,  

Γ,𝑖,𝑗 = ∑
2

Γ𝑖𝑗
𝑘Γ,𝑘 + 𝐿𝑖𝑗𝜂, (12)                                                            

where 𝐿𝑖𝑗 are written by  

𝐿𝑖𝑗 =
1

𝑔1
⟨𝑔1Γ

 ,𝑖,𝑗
∗ − 𝑔𝑖,𝑗Γ,1

∗ , 𝜂⟩   

     =  
1

𝑔2
⟨𝑔2Γ,𝑖,𝑗

∗ − 𝑔𝑖,𝑗Γ,2
∗ , 𝜂⟩,  (13) 

and the curvatures 𝐾 and 𝐻 of the surface are wtitten 

as follows 

𝐾 =
𝐿11𝐿22−𝐿12

2

𝑤2 , 𝐻 =
𝑔2

2𝐿11−2𝑔1𝑔2𝐿12+𝑔1
2𝐿22

2

𝑤2 ,    (14)  

[21].                            
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Definition 1. A surface generated by the rotation of a 

regular parametrized plane curve  𝜚(𝑠) =

(ℎ(𝑠), 0, ℎ(𝑠))  around an z-axis in its plane. Then, the 

position vector of the rotational surface is 

𝜎(𝑠, 𝑣𝑖) = (𝜌(𝑠)cos𝑣𝑖 , 𝜌(𝑠)sin𝑣𝑖 , ℎ(𝑠)); (15) 

𝑠 ∈ 𝐼, 0 ≤ 𝑣𝑖 ≤ 2𝜋, 𝑥 = 𝜌(𝑠) > 0, 𝑧 = ℎ(𝑠), 

where 𝜌 is the distance between a point on the surface 

and the z-axis  of rotation and 𝑣𝑖 is the angle of 

rotation, [14, 19].  

Definition 2. Let 𝜚: 𝐼 ⊂ ℝ → 𝑀 be a curve given as  

𝜚(𝑠) = (𝑥(𝑤(𝑠), 𝑣𝑖(𝑠)), 𝑦(𝑤(𝑠), 𝑣𝑖(𝑠)), 𝑧(𝑤(𝑠), 𝑣𝑖(𝑠))), 

which is an arc-length parametrized geodesic on an 

rotational surface for differential equations given by 
(𝑤(𝑠), 𝑣𝑖(𝑠)). By using the Lagrangian, the line 

element of the rotational surface is: 

𝐿 = 𝑤
.

2 + 𝜌2𝑣𝑖

. 2
, 

and 

𝜕

𝜕𝑠
(

𝜕𝐿

𝜕𝑤
𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
;   

𝜕

𝜕𝑠
(

𝜕𝐿

𝜕𝑣𝑖

𝜕𝑠

) =
𝜕𝐿

𝜕𝑣𝑖

; 

𝑤
..

= 𝜌𝜌′𝑣
.

𝑖
2;

𝑑

𝑑𝑠
(𝜌𝑣

.

𝑖
2) = 0 (16)                                                    

so that is a constant of the motion and the previous 

equations are said to be as Euler-Lagrange equations, 

[14,19].  

Definition 3. A vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) is called a 

non-isotropic if 𝑥1 ≠ 0. All unit isotropic vectors are 

of the form 𝑥 = (1, 𝑥2, 𝑥3). For isotropic vectors 𝑥1 =
0 hold, [14].  

Theorem 1. (Clairaut’s Theorem)Let M be a surface 

of rotation and let 𝜚 be a geodesic in M. Also, let 𝜌 be 

the distance from the curve to axis of rotation and let 

𝜃 express the angle between 𝜚′ and the longitudinal 

curve through 𝜚. Then, if  𝜚 is a geodesic 𝜌𝑠𝑖𝑛𝜃 is 

constant along the curve. On the contrary, if  𝜌𝑠𝑖𝑛𝜃 is 

a constant, then the curve 𝜚 is a geodesic, [19].  

Definition 4. A one-parameter group of 

diffeomorphisms of a manifold 𝑀 is a smooth map                

𝜓: 𝑀 × ℝ → 𝑀, such that 𝜓𝑡(𝑥) = 𝜓(𝑥, 𝑡), where 

1) 𝜓𝑡: 𝑀 → 𝑀 is a diffeomorphism, 

2) 𝜓𝑜 = 𝑖𝑑. 
3) 𝜓𝑠+𝑡 = 𝜓𝑠𝑜𝜓𝑡 .  

This group is associated with a vector field 𝑊 given 

by  
𝑑

𝑑𝑡
𝜓𝑡(𝑥) = 𝑊(𝑥). 

If a one-parameter group of isometries is formed by a 

vector field 𝑊 and this vector is said to be as Killing 

vector field, [15]. 

3. Some Characteristics of Normal Curves in 𝑮𝟑 

In this section, normal curves in 𝐺3 are described 

using the components of their position vectors. 

Theorem 2. Let 𝜚𝑖 : 𝐼 ⊂ ℝ → 𝐺3 be a regular isotropic 

normal curve with curvatures 𝜅(𝑤) ≥ 0, 𝜏 in 𝐺3, 𝑖 =

1,2. Then, the position vectors of 𝜚𝑖 hold following 

equalities: 

1) If 𝜏(𝑤) =constant, the normal curve is given by  

𝜚1(𝑤) = (2𝜂1𝑐𝑜𝑠𝜏𝑤)�⃖� − (2𝜂1𝑠𝑖𝑛𝜏𝑤)�⃖� ;  𝜂𝑖 ∈ ℝ, 𝑖 ∈ {1,2}. 

2) If 𝜏(𝑤) ≠constant, the normal curve is given by 

𝜚2(𝑤)

= 𝛾3𝑒
−𝜏

.

2𝜏
𝑤(𝑐𝑜𝑠ℎ(√(

𝜏
.

2𝜏
)

2

− 𝜏2𝑤))�⃖� 

+
𝛾3𝑒

−𝜏
.

2𝜏
𝑤

𝜏

(

 
 
 (

−𝜏
.

2𝜏
𝑤)𝑤𝑐𝑜𝑠ℎ(√(

𝜏
.

2𝜏
)

2

− 𝜏2𝑤)

+(√(
𝜏
.

2𝜏
)

2

− 𝜏2𝑤)𝑤𝑠𝑖𝑛ℎ(√(
𝜏
.

2𝜏
)

2

− 𝜏2𝑤)
)

 
 
 

�⃖� , 

where 𝛾3, 𝜂1, 𝜂2 ∈ ℝ0.  

Proof. Assume that 𝜚(𝑤) is an normal curve with the 

curvature functions 𝜅(𝑤), 𝜏(𝑤) in 𝐺3 as follows  

𝜚(𝑤) = Σ0�⃖� + Σ1�⃖� , (17)                                                              

for some differentiable functions Σ0(𝑤), Σ1(𝑤). Thus, 

differentiating (17) with respect to 𝑤 and using (3), 

we get 

𝑡 = (Σ
.

0 − 𝜏Σ1)�⃖� + (𝜏Σ0 + Σ
.

1)�⃖� , (18)                                                  

by multipling both sides of (3.2) by 𝑡, 𝑛, 𝑏, we have 

Σ
.

0 − 𝜏Σ1 = 0; 𝜏Σ0 + Σ
.

1 = 0, (19)                                                    

respectively and using (19) and making necessary 

calculations, we can write 

1) if 𝜏(𝑤) ≠constant, we get 
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Σ0 = 𝑒
−𝜏

.

2𝜏
𝑤

(

 
 𝛾1𝑒

√(
𝜏
.

2𝜏
)
2

−𝜏2𝑤

+𝛾2𝑒
−√(

𝜏
.

2𝜏
)
2

−𝜏2𝑤

)

 
 

,  (20)                                                    

and taking 𝛾1 = 𝛾2 =
𝛾3

2
, we get  

Σ0 = 𝛾3𝑒
−𝜏

.

2𝜏
𝑤(cosh(√(

𝜏
.

2𝜏
)

2

− 𝜏2𝑤)) (21)                                                   

and using the equation Σ0

.
= 𝜏Σ1, we obtain 

Σ1 =
𝛾3

𝜏
𝑒

−𝜏
.

2𝜏
𝑤

(

 
(

−𝜏
.

2𝜏
𝑤)𝑤cosh(√(

𝜏
.

2𝜏
)

2

− 𝜏2𝑤)

+(√(
𝜏
.

2𝜏
)

2

− 𝜏2𝑤)𝑤sinh(√(
𝜏
.

2𝜏
)

2

− 𝜏2𝑤))

 .        (22)    

Hence, from (21) and (22), the position vector is 

obtained. 

2) if 𝜏(𝑤) =constant, we get 

Σ0 = (𝜂1 + 𝜂2)cos𝜏𝑤 + 𝑖(𝜂1 − 𝜂2)sin𝜏𝑤;      (23)                                      

Σ1 = 𝑖((𝜂1 − 𝜂2)cos𝜏𝑤 + 𝑖(𝜂1 + 𝜂2)sin𝜏𝑤) (24)                                     

and taking 𝜂1 = 𝜂2, we have 

𝜚1(𝑤) = (2𝜂1cos𝜏𝑤)�⃖� − (2𝜂1sin𝜏𝑤)�⃖� , 

where 𝜂𝑖, 𝛾𝑖 ∈ ℝ, 𝑖 ∈ {1,2,3}.  

4. The Special Tube Surfaces Formed by Normal 

Curves in Galilean 3-space 

In this part, special tube surfaces formed by a normal 

curve have been examined mathematically. 

A canal surface is defined as a one-parameter 

set of spheres whose centres are described by a radius 

function 𝜌 and the orbit 𝜚𝑖(𝑤)(spine curve), in 

addition to parametrizing the spine curve via the 

Frenet frame. If the radius function 𝜌 is constant, the 

canal surface is said to be the tube or pipe surface [9]. 

Let us denote by 𝜌 the vector connecting the 

point from the parametrized curve 𝜚𝑖(𝑤) with the 

point from the surface. Afterwards, we have the 

position vector 𝑅 of a point on the surface as  

𝑅 = 𝜚𝑖(𝑤) + 𝜌 = 𝜚𝑖(𝑤) + 𝐴 (cos𝑣𝑛
→

+ 𝑠in𝑣𝑏
→

),          (25)       

where 𝐴 is a constant radius of Euclidean circle of 

Frenet frame in G3, 𝑣 is the angle between  𝑛 and 𝜌 

that 𝜌 lies in the Euclidean normal plane of the curve 

𝜚𝑖(𝑤). 

4.1 The Clairaut’s Theorem on Special Tube 

Surface Formed by Normal Curve in G3 

In this subsection, using the Clairaut’s theorem, the 

specific tube surfaces with normal curve are 

characterized. Also, the general equation of geodesics 

on the tube surfaces is given in 𝐺3. 

Theorem 3.  Let 𝜚𝑖: 𝐼 ⊂ ℝ → 𝐺3 be a regular isotropic 

curve for 𝜅(𝑤) ≥ 0, 𝜏 in 𝐺3, 𝑖 = 1,2 and let 𝛤𝑖(𝑤, 𝑣) be 

the tube surface formed by the normal curve. Then, 

the following statements hold:  

𝑎) If 𝜏(𝑤) =constant, there is no the tube surface 

generated by the normal curve. 

𝑏) If 𝜏(𝑤) ≠constant, the tube surface generated by 

the normal curve is given by 

Γ2(𝑤, 𝑣) = (𝛾3𝑒𝑓cosh𝑔 + 𝐴𝑐𝑜𝑠𝑣)�⃖�   

+ {
𝛾3𝑒𝑓

𝜏
(𝑓𝑤cosh𝑔 + 𝑔𝑤sinh𝑔) + 𝐴𝑠𝑖𝑛𝑣 } �⃖�  

and 𝐴 =
−𝛾3𝜌(𝑤)cos𝑣

𝜏(𝑤)
, where 𝛾3 ∈ ℝ and for isotropic 

vectors, the first fundamental form is given by  

𝐼 = (
𝜏2(𝑤)𝐴2 + 𝛾3

2𝜌2(𝑤)

+2𝛾3𝜏(𝑤)𝜌(𝑤)𝐴cos𝑣
) 𝑤

. 2 + 𝐴2𝑣
.
2. 

𝑏1) For the equation 2 ∫ 𝐸(𝑤, 𝑣)𝜕𝑤 = 𝑐2𝑠 + 𝑐3, 𝜚2(𝑤) 

is a geodesic on Γ2(𝑤, 𝑣) necessary and sufficient 

condition the following equations satisfied 

𝐴2𝑣
..

+ 𝐴2𝜏(𝑤)𝛾3sin𝑣𝑤
.

2 = 0; 

𝑣 = arccos (
𝜏𝜏𝑤𝐴2 + 𝜌𝜌𝑤

𝐴𝛾3(𝜏𝑤𝜌 + 𝜏𝜌𝑤)
) ; 𝑤 = ∫ cos𝜃𝑑𝑠, 

where  

𝜉1 = 𝑒𝑓cosh𝑔, 𝜉2 = 𝑓𝑤cosh𝑔 + 𝑔𝑤sinh𝑔, 

𝜉3 = 𝑒𝑓𝜉2 = 𝜉𝑤
1 ; ℎ(𝑤) =

𝑑

𝑑𝑤
(
𝜉3

𝜏
) ; 

𝜌(𝑤) = 𝜏(𝑤)𝜉1(𝑤) + ℎ(𝑤); 

𝑓 =
−𝜏

.

2𝜏
𝑤, 𝑔 = cosh(√(

𝜏
.

2𝜏
)2 − 𝜏2𝑤). 

Proof. The specific tube surface generated by normal 

curve 𝜚2(𝑤) is parametrized by 
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Γ2(𝑤, 𝑣) = 𝜚2(𝑤) + 𝐴(cos𝑣�⃖� + sin𝑣�⃖� ). (26) 

𝑖) For 𝜏(𝑤) ≠constant, by using the following 

equation  

𝜚2(𝑤) = (𝛾3𝑒𝑓(𝑤)cosh𝑔(𝑤))�⃖� +

         +
𝛾3𝑒𝑓(𝑤)

𝜏
(𝑓𝑤cosh𝑔(𝑤) + 𝑔𝑤sinh𝑔(𝑤))�⃖� ,          (27) 

where 

𝑓(𝑤) = −
𝜏
.

2𝜏
𝑤; 𝑔(𝑤) = √(

𝜏
.

2𝜏
)

2

− 𝜏2𝑤, 

we can write the tube surface as  

Γ2(𝑤, 𝑣) =

{𝛾3𝑒𝑓(𝑤)cosh𝑔(𝑤) + 𝐴cos𝑣}�⃖� 

+ {
𝛾3𝑒𝑓(𝑤)

𝜏
(

𝑓𝑤cosh𝑔(𝑤)

+𝑔𝑤sinh𝑔(𝑤)
)

+𝐴sin𝑣

} �⃖� ,
 (28)                                 

where 𝑣 is the angle between �⃖�  and �⃖�, we can write 

the equation  

𝐴 =
−𝛾3𝜌(𝑤)cos𝑣

𝜏(𝑤)
,  (29)                                             

where  

𝜉1 = 𝑒𝑓cosh𝑔, 𝜉2 = 𝑓𝑤cosh𝑔 + 𝑔𝑤sinh𝑔, 

𝜉3 = 𝑒𝑓𝜉2 = 𝜉𝑤
1 ; 

ℎ(𝑤) =

𝑑 (
𝑒𝑓

𝜏
(𝑓𝑤cosh𝑔 + 𝑔𝑤sinh𝑔))

𝑑𝑤
=

𝑑 (
𝜉3

𝜏
)

𝑑𝑤
; 

𝜌(𝑤) = 𝜏(𝑤)𝜉1(𝑤) + ℎ(𝑤). 

Recall, since 𝜏 ≠ 0, we can write 

Γ𝑤
2 = (−𝜏𝐴sin𝑣)�⃖� + {𝛾3𝜌(𝑤) + 𝜏𝐴cos𝑣}�⃖� ) = 𝑁𝑤; 

Γ𝑣
2 = 𝐴(−sin𝑣�⃖� + cos𝑣�⃖� ) = 𝐴𝑁𝑣 , 

it follows that the vector cross product of these 

vectors is found out by 

Γ𝑤
2 × Γ𝑣

2 = 𝐴𝛾3𝜌(𝑤)sin𝑣𝑡 (30) 

and from (30) , the unit normal vector 𝜂 of Γ2(𝑤, 𝑣) is 

found as follows  

𝜂 = 𝑡. (31)                                       

Furthermore, from (7), we get  

𝛿 =
−Γ𝑣

2

𝐴
= sin𝑣�⃖� − cos𝑣�⃖� . 

For the isotropic vectors �⃖�  and �⃖�  and by using the 

Frenet frame in  Galilean space, we can find 

𝑥(𝑤, 𝑣) = 0; 𝑥𝑤 = 𝑔1 = 0, 𝑥𝑣2
= 𝑔2 = 0;       

𝑔11 = 𝑔12 = 𝑔22 = 0; 𝑔1 = 0, 𝑔2 = 0; (32) 

ℎ11 = 𝐸(𝑤, 𝑣) = 𝜏2(𝑤)𝐴2 + 𝛾3
2𝜌2(𝑤) +

                               2𝛾3𝜏(𝑤)𝜌(𝑤)𝐴cos𝑣; (33) 

ℎ12 = 0, ℎ22 = 𝐴2. (34)                                        

Then, we substitute (33) and (34), (32) into the 

equation (10). Hence, the first fundamental form of 

the tube surface by generated normal curve in 

Galilean space can be written as  

 𝐼 = 𝐸(𝑤, 𝑣)𝑑𝑤2 + 𝐴2𝑑𝑣2 . (35) 

Furthermore, since 𝜏 ≠ 0, we obtain the first 

fundamental form with two variable parameter. 

Hence, we write  orthogonal coordinates of 

parametrization. So, by considering the first 

fundamental form, the Lagrangian can be written as 

𝐸(𝑤, 𝑣)𝑤
. 2 + 𝐴2𝑣

.
2 = 𝐿 (36) 

and we know that a geodesic on the surface Γ2(𝑤, 𝑣) 

can be found by using the Euler-Lagrangian equations 

𝜕

𝜕𝑠
(

𝜕𝐿
𝜕𝑤

𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
;

𝜕

𝜕𝑠
(

𝜕𝐿
𝜕𝑣

𝜕𝑠

) =
𝜕𝐿

𝜕𝑣
. (37)                                      

𝑎) If 𝜏(𝑤) ≠constant, for the equation given by  

𝐴2𝑣
..

+ 2𝜏(𝑤)𝐴𝛾3sin𝑣𝑤
.

2 = 0,  (38)                                     

the second Lagrangian equation is given by 

𝜕

𝜕𝑠
(

𝜕𝐿
𝜕𝑣

𝜕𝑠

) =
𝜕𝐿

𝜕𝑣
≠ 0 and for the equation  

 𝑣 = arccos (
𝜏𝜏𝑤𝐴2+𝜌𝜌𝑤

𝐴𝛾3(𝜏𝑤𝜌+𝜏𝜌𝑤)
), 

the equation 
𝜕

𝜕𝑠
(

𝜕𝐿
𝜕𝑤

𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
= 0 holds. Thus, we can 

write 
𝜕𝐿
𝜕𝑤

𝜕𝑠

= 2𝐸(𝑤, 𝑣)𝑤
.
 = constant and which means  

2 ∫ 𝐸(𝑤, 𝑣)𝜕𝑤 = 𝑐2𝑠 + 𝑐3 (39)                                          
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and let 𝜚2(𝑤) be a geodesic on the surface of Γ2(𝑤, 𝑣), 

so it is given by (𝑤(𝑠), 𝑣(𝑠)). Also, let 𝜃 be the angle 

between 𝜚
.

2 and a meridian and 𝑁𝑤 is the vector 

pointing along meridians of Γ2; 𝑁𝑣 is the vector 

pointing along parallels of Γ2. Hence, we can say that 

orthonormal basis {𝑁𝑤, 𝑁𝑣} and  𝜚
.

2 is found out as 

𝜚
.

2 = 𝑁𝑤cos𝜃 + 𝑁𝑣sin𝜃 = 𝑤
.
Γ𝑤

2 + 𝑣
.
Γ𝑣

2 = 𝑤
.
𝑁𝑤 + 𝑣

.
𝐴𝑁𝑣 . 

We see that 𝑤
.

= cos𝜃, so we can write as 2𝐸(𝑤, 𝑣)𝑤
.

=

2𝐸(𝑤, 𝑣)cos𝜃=constant along 𝜚2(𝑤). Conversely, 

𝜚2(𝑤) is the normal curve with 2𝐸(𝑤, 𝑣)cos𝜃 = 

constant. Hence, the second Euler Lagrange equation 

is held. If the differential of the 𝐿 value is taken and 

added to the first equation we have 

𝑤 = ∫ cos𝜃𝑑𝑠.    (40)                                              

𝑏) For 𝜏 =constant, the tube surface generated by the 

curve 𝜚1 is parametrized by  

Γ1(𝑤, 𝑣) = 𝜚1(𝑤) + 𝐴1(cos𝑣�⃖� + sin𝑣�⃖� ),   (41)                                      

where 𝑣 is angle between the isotropic vectors �⃖�  and 

𝐴1
 ⃖   . Clearly, 

Γ1(𝑤, 𝑣) = (2𝜂cos𝜏𝑤 + 𝐴1cos𝑣)�⃖�  

                   +(−2𝜂sin𝜏𝑤 + 𝐴1sin𝑣)�⃖� . (42) 

Recall, we can write 

Γ𝑤
1 = (−𝜏𝐴1sin𝑣)�⃖� + 𝜏𝐴1cos𝑣�⃖� = 𝜏𝐴1𝑁𝑤; 

Γ𝑣
1 = 𝐴1(−sin𝑣�⃖� + cos𝑣�⃖� ) = 𝐴1𝑁𝑣 . 

Therefore, we have Γ𝑤
1 × Γ𝑣1

1 = 0, that means there is 

no such surface in 𝐺3.  

Theorem 4. The general equations of geodesics on 

the tube surface 𝛤2 formed by the normal curve in G3, 

for the special parameters 𝑤 = ∫ 𝑐𝑜𝑠𝜃𝑑𝑠(or 

2 ∫ 𝐸(𝑤, 𝑣)𝜕𝑤 = 𝑐2𝑠 + 𝑐3) and 𝑣 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝜏𝜏𝑤𝐴2+𝜌𝜌𝑤

𝐴𝛾3(𝜏𝑤𝜌+𝜏𝜌𝑤)
), 

are given by  

𝑑𝑣

𝑑𝑤
=

𝑐11𝐸(𝑤, 𝑣)

𝐴
√𝐿 −

𝑐10

𝐸(𝑤, 𝑣)
; 

𝑑𝑣

𝑑𝑤
=

1

𝐴cos𝜃
√𝐿 − 𝐸(𝑤, 𝑣)cos2𝜃, (43) 

where 𝑐𝑖 ∈ ℝ0.  

Proof. We consider the Euler-Lagrange equations in 

(4.13) for the general equation of geodesics.  For 𝑤 =

∫ cos𝜃𝑑𝑠 or 2 ∫ 𝐸(𝑤, 𝑣)𝜕𝑤 = 𝑐2𝑠 + 𝑐3, we explain the 

equation of geodesic, solving the  equation in  

𝜕

𝜕𝑠
(

𝜕𝐿
𝜕𝑤

𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
= 0, we obtain 

𝑤
.

=
𝑐2

2𝐸(𝑤, 𝑣)
; 𝑤

.
= cos𝜃. 

If we put the value of 𝑤
.
 at the Lagrange equation, 

𝐸(𝑤, 𝑣) (
𝑑𝑤

𝑑𝑠
)

2

+ 𝐴2 (
𝑑𝑣

𝑑𝑤

𝑑𝑤

𝑑𝑠
)

2

= 𝐿. 

Hence, we obtain the general equation of geodesics 

on Γ2 as    

𝑑𝑣

𝑑𝑤
=

𝑐11𝐸(𝑤, 𝑣)

𝐴
√𝐿 −

𝑐10

𝐸(𝑤, 𝑣)
. 

Furthermore, according to the parameters  

𝑤 = ∫ cos𝜃𝑑𝑠, 𝑣 = arccos (
𝜏𝜏𝑤𝐴2 + 𝜌𝜌𝑤

𝐴𝛾3(𝜏𝑤𝜌 + 𝜏𝜌𝑤)
), 

the geodesic equation on 𝐺3 is given as 

𝑑𝑣

𝑑𝑤
=

1

𝐴cos𝜃
√𝐿 − 𝐸(𝑤, 𝑣)cos2𝜃, 

where 𝑐𝑖 ∈ ℝ.  

5. A Physical Study on the Special Tube Surface 

with Normal Curve in G3 

In this article, we have carried out experiments to 

explain why the specific kinetic energy and angular 

momentum of particles, following a path called the 

trajectory of the particle. 

Let Γ2(𝑤(𝑠), 𝑣(𝑠)) be a curve on the surface 

and we can write the position vector of this curve as  

Γ2(𝑤(𝑠), 𝑣(𝑠) = (𝛾3𝜉1(𝑤(𝑠)) + 𝐴cos𝑣(𝑠))�⃖�  

              +(
𝛾3

𝜏(𝑤(𝑠))
𝜉3(𝑤(𝑠)) + 𝐴sin𝑣(𝑠))�⃖� . 

Calculating the derivative of this tangent vector along 

the curve on Γ2 and using the product and chain rules. 

Thus, the tangent vector is obtained by  

𝑑Γ2(𝑤(𝑠),𝑣(𝑠))

𝑑𝑠
=

𝑑𝑤(𝑠)

𝑑𝑠
Γ𝑤

2 +
𝑑𝑣(𝑠)

𝑑𝑠
Γ𝑣

2;  (44)                                                  

𝜚
.

2 = 𝑁𝑤cos𝜃 + 𝑁𝑣sin𝜃 

     = 𝑤
.
Γ𝑤

2 + 𝑣
.
Γ𝑣

2 = 𝑤
.
𝑁𝑤 + 𝑣

.
𝐴𝑁𝑣 . (45) 
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The tangent vector of the geodesic curve is said to be 

as the velocity given as 

�⃖�   =
𝑑Γ2(𝑤(𝑠),𝑣(𝑠))

𝑑𝑠
= 𝑊𝑤Γ𝑤

2 + 𝑊𝑣Γ𝑣
2     (46) 

and the norm of 𝑊 is called as the speed. Take into 

account that 𝑊𝑤∗
= √𝐸(𝑤, 𝑣) . 𝑊𝑤 = 𝑊cos𝜃 is the 

radial velocity and 𝑊𝑣 is the horizontal angular 

velocity. Hence, 𝑊𝑣∗
= 𝐴𝑊𝑣 = 𝑊sin𝜃 is the 

horizontal component of the velocity vector.  

Physically, the role of the radial variable in 

this velocity plane can be explained by the speed: the 

angle 𝜃 is expressed the side of the velocity in 

accordance with  Γ𝑤∗
2 , and the physical properties such 

as energy and momentum that have the mass as a 

proportional element can be taken instead of the 

specific statements obtained by partitioning out the 

mass. So, we can write the specific kinetic energy 

𝐸𝑒𝑛𝑒𝑟𝑔𝑦 as 

𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =

(√2𝐸𝑒𝑛𝑒𝑟𝑔𝑦cos𝜃)
2

+(√2𝐸𝑒𝑛𝑒𝑟𝑔𝑦sin𝜃)
2

2
=

𝑊2

2

=
1

2
(𝑊2cos2𝜃 + 𝑊2sin2𝜃) 

            =
1

2
𝐸(𝑤, 𝑣) (

𝑑𝑤

𝑑𝑠
)

2

+
1

2
𝐴2 (

𝑑𝑣

𝑑𝑠
)

2

, (47)        

from the right side of equ. (5.4) the specific energy 

and speed are constant along geodesic. Physically, the 

specific energy is constant on account of attribute of 

its motion, it is thought perpendicular to the surface. 

Therefore, the specific energy 𝐸𝑒𝑛𝑒𝑟𝑔𝑦  and the speed 

𝑊 = √2𝐸𝑒𝑛𝑒𝑟𝑔𝑦 have to be constant along a geodesic. 

Therefore, we can give following theorems in respect 

to previous expressions that we explain. 

Theorem 5. Let 𝛤2(𝑤, 𝑣) be the tube surface 

generated by the normal curve. Then, for the 

parameters  

𝑣 = arccos (
𝜏𝜏𝑤𝐴2 + 𝜌𝜌𝑤

𝐴𝛾3(𝜏𝑤𝜌 + 𝜏𝜌𝑤)
), 

𝑤 = ∫ cos𝜃𝑑𝑠(𝑜𝑟 ∫ 𝐸(𝑤, 𝑣)𝜕𝑤 = 𝑐2𝑠 + 𝑐3) 

and the equation 𝐴2𝑣
..

+ 2𝜏(𝑤)𝐴𝛾3sin𝑣𝑤
. 2 = 0, the 

specific angular momentum ℓ is given by  

ℓ = √𝜏2𝐴2 + 𝛾3
2𝜌2 + 2𝛾3𝜏𝜌𝐴cos𝑣𝑊cos𝜃, 

where 𝜌 = 𝜏(𝑒𝑓cosh𝑔) +
𝑑

𝑑𝑤
(

(𝑒𝑓cosh𝑔)
𝑤

𝜏
) and the 

specific energy 𝐸𝑒𝑛𝑒𝑟𝑔𝑦 is given by 

𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =
1

2
(

ℓ2

𝜏2𝐴2 + 𝛾3
2𝜌2 + 2𝛾3𝜏𝜌𝐴cos𝑣

 

+
𝛾3

2𝜌2cos2𝑣

𝜏2 (
𝑑𝑣

𝑑𝑠
)

2

), 

𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =
ℓ

√2cos𝜃
, 

where the curve 𝜚2(𝑤) is a geodesic on the surface Γ2.  

Proof. For the equations  

𝑣 = arccos (
𝜏𝜏𝑤𝐴2+𝜌𝜌𝑤

𝐴𝛾3(𝜏𝑤𝜌+𝜏𝜌𝑤)
),  

𝑤 = ∫ cos𝜃𝑑𝑠 (or 2 ∫ 𝐸(𝑤, 𝑣)𝜕𝑤 = 𝑐2𝑠 + 𝑐3) 

and 

𝐴2𝑣
..

+ 2𝜏(𝑤)𝐴𝛾3sin𝑣𝑤
. 2 = 0, 

we can write  

2√𝐸(𝑤, 𝑣)𝑤
.

= 2√𝐸(𝑤, 𝑣)cos𝜃 (48)                                                 

being constant along 𝜚2(𝑤) . Also, we may consider as 

in the case of circular movement round an axis with 

radius ‖�⃖� ‖ = √𝐸(𝑤, 𝑣) or �⃖� = −√𝐸(𝑤, 𝑣)𝑒2 ⃖  ,  and the 

velocity 𝑊𝑤∗
= √𝐸(𝑤, 𝑣)𝑊𝑤 = 𝑊cos𝜃 = 

√𝐸(𝑤, 𝑣)
𝑑𝑤

𝑑𝑠
  = √2𝐸𝑒𝑛𝑒𝑟𝑔𝑦cos𝜃 in the angular 

direction multiplied by the radius √𝐸(𝑤, 𝑣) of the 

circle. From the first geodesic equation ℓ is constant 

along geodesic and the specific angular momentum ℓ 

can be taken down as following equation  

ℓ = 𝑒3 ⃖  . (�⃖� ×𝐺3
�⃖�   ) = √𝐸(𝑤, 𝑣)𝑊cos𝜃,  (49)                                           

where 𝐸(𝑤, 𝑣) = 𝜏2𝐴2 + 𝛾3
2𝜌2 + 2𝛾3𝜏𝜌𝐴cos𝑣 and 𝜌 =

𝜏(𝑒𝑓cosh𝑔) +
𝑑

𝑑𝑤
(

(𝑒𝑓cosh𝑔)
𝑤

𝜏
) and since √𝐸(𝑤, 𝑣)

𝑑𝑤

𝑑𝑠
=

𝑊cos𝜃, we can write 𝐸(𝑤, 𝑣)
𝑑𝑤

𝑑𝑠
= √𝐸(𝑤, 𝑣)𝑊cos𝜃, 

and ℓ is constant along geodesic. Hence, one gets 

 ℓ = 𝐸(𝑤, 𝑣)
𝑑𝑤

𝑑𝑠
⇒

𝑑𝑤

𝑑𝑠
=

ℓ

𝐸(𝑤,𝑣)
  

  or ℓ = √𝐸(𝑤, 𝑣)√2𝐸𝑒𝑛𝑒𝑟𝑔𝑦cos𝜃. (50) 

Hence, using (50)  from the radial motion and another 

constant of the motion the specific energy 𝐸𝑒𝑛𝑒𝑟𝑔𝑦  

can be written  by 
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𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =
1

2
(𝐸(𝑤, 𝑣) (

𝑑𝑤

𝑑𝑠
)

2

+ 𝐴2 (
𝑑𝑣

𝑑𝑠
)

2

); 

𝐸𝑒𝑛𝑒𝑟𝑔𝑦 =   
1

2
(

ℓ2

𝜏2(𝑤)𝐴2+𝛾3
2𝜌2(𝑤)+2𝛾3𝜏(𝑤)𝜌(𝑤)𝐴cos𝑣

+
𝛾3

2𝜌2(𝑤)cos2𝑣2

𝜏2(𝑤)
(

𝑑𝑣

𝑑𝑠
)

2 ) (51) 

and from ℓ = √𝐸(𝑤, 𝑣) √2𝐸𝑒𝑛𝑒𝑟𝑔𝑦cos𝜃, we find  

ℓ2

2𝐸(𝑤, 𝑣)cos2𝜃
= 𝐸𝑒𝑛𝑒𝑟𝑔𝑦 . 

 

6. Conclusion 

 

In this study, the special tube surface formed by a 

normal curve is investigated, and certain results of 

describing geodesics on the tube surface are 

expressed. One important conclusion of our analysis 

is that the specific energy and the specific angular 

momentum on free particles of the tube surfaces can 

be considered in Galilean 3-space. We have carried 

out to research  explain the conditions of being a 

geodesic normal curve. 
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