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Abstract

Blair et. al. [3] have recently determined the maximum number of edges of a chordal graph
with a maximum degree less than d and the matching number at most ν by exhibiting a
family of chordal graphs achieving this bound. We provide simple proof of their result.

1. Introduction

Consider a graph G = (V,E) with maximum degree ∆(G)< d and matching number ν . Vizing’s theorem states that there exists a coloring of
E using at most ∆(G)+1≤ d colors. Each color class contains at most ν edges, since it constitutes a matching. Therefore, G has at most
d ·ν edges, i.e., bounding both the matching number and the maximum degree of a graph bounds the number of its edges. We want to note
that none of the parameters d and ν alone is sufficient to bound the number of edges of G, as the following examples show. The graph mK2
that is a matching with m vertices has maximum degree 1 and an unbounded number of edges. On the other hand, the graph K1,m which is a
star with m leaves has matching number 1 and an unbounded number of edges.
This observation gives rise to the following two questions

• What is the maximum number m(d,ν) of edges of a graph with matching number at most ν and maximum degree less than d?
• What is the set M (d,ν) graphs with maximum degree less than d and matching number at most ν that contain (exactly) m(d,ν)

edges ?

The first question is resolved in the work [1] and the second is resolved later in the work [2] that provided a constructive proof.
The same questions can be posed by confining ourselves to any graph class C , therefore defining:

• mC (d,ν) as the maximum number of edges of a graph G ∈ C with maximum degree ∆(G)< d and matching number at most ν , and
• MC (d,ν) the set of graphs G ∈ C with maximum degree ∆(G)< d, matching number at most ν having mC (d,ν) edges.

A graph G ∈M (d,ν) (resp. G ∈MC (d,ν)) is said to be edge-extremal (resp. edge-extremal-C ).
The authors of [3] consider the class of chordal graphs, and determine the number mCHORDAL(d,ν) by exhibiting a set of edge-extremal-
chordal graphs. In this work we provide a short proof of their following result.

Theorem 3.3. [3] There exists an edge-extremal graph in MCHORDAL(d,ν) that is a disjoint union of cliques and stars.

The result is obtained by showing that all the minimal elements of a carefully chosen preorder on the set of minimal representations of the
graphs in MCHORDAL(d,ν) have this property. Namely, they are disjoint unions of cliques and stars.

2. Preliminaries

A vertex v of a graph G is simplicial if its neighbourhood is a clique and universal if its closed neighbourhood is the entire graph. A star
is a tree with at most one non-leaf vertex. A d-star is a star with maximum degree d. Any total order on a set A defines a corresponding
lexicographic order on the set A∗ of all sequences over the elements of A. In a way similar to a dictionary, the order between two distinct
elements a,b of A∗ in the lexicographic order is determined by the order of the entries ai,bi ∈ A where i is the lowest index such that ai 6= bi.
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Observation 2.1. A simplicial vertex of a graph G is of maximum degree if and only if G is a complete graph.

A graph G is factor-critical if every subgraph obtained by the removal of a single vertex from G admits a perfect matching. It is easy to see
that a factor-critical graph is odd and connected.

Definition 2.2. A graph class C is special hereditary if

• C is closed under the vertex deletion and disjoint union operations, and
• C contains all stars and cliques.

We will use the following theorem proven in [2].

Theorem 2.3. [2] Let C be a special hereditary graph class. Let G ∈ C be an edge-extremal graph having the maximum possible number
of connected components that are stars . Then every other connected component of G is factor-critical.

Chordal graphs and subtree representations: A hole of a graph is an induced cycle of at least four vertices. A graph is chordal if it does
not contain a hole.
Consider a forest T and a set T = {T1, . . . ,Tn} of n subtrees of T . Without loss of generality we assume that every edge of T is used by at
least one tree in T . In other words, T is the union of the trees in T . We denote by G(T ) the intersection graph of these subtrees, i.e., the
graph with vertex set [n] = {1,2, . . .n} such that two vertices i, j ∈ [n] of G are adjacent if and only if Ti and Tj intersect (in at at least one
vertex of T ). Given a graph G, a set T of subtrees such that G(T ) = G is termed a subtree intersection representation of G. In the rest of
this work we refer to the vertices of T as nodes to distinguish them from the vertices of G. It is well known that a graph is chordal if and only
if it has a subtree intersection representation [4]. Note that the set of trees of the forest T is in one-to-one correspondence with the connected
components of G(T ).
Minimal representations and maximal cliques: For a node v of T , let Tv ⊆T be the set of subtrees in T that contain the node v, and let
Kv be the set of vertices of G that correspond to the subtrees Tv. It follows from the definitions that Kv is a clique. Moreover, it is known that
a chordal graph G has a subtree representation T in which the nodes of T are in one-to-one correspondence with the maximal cliques of
G. Such a representation is termed minimal (see also [5]) and the forest T is termed a clique forest of G. By definition, Ku \Kv 6= /0 and
Kv \Ku 6= /0 for any two maximal cliques Ku and Kv of a graph G. In particular, this holds whenever G is chordal and uv is an edge of a
clique forest T of G.
Let uv be an edge of T where u is a leaf. From the above definitions and facts, it follows that every vertex in Ku \Kv 6= /0 is simplicial. We
term such a vertex as leaf-simplicial vertex of T .

3. The Short Proof

We start with definitions that are needed for our proof.
Given a minimal representation T of a chordal graph G with T being the union of the subtrees in T we denote:

• by d2(T ) the number of degree-two nodes of T ,
• by L(T ) the set of leaves of T ,

• by `(T )
de f
= |L(T )| the number of leaves of T ,

• by k(T )
de f
= maxu∈L(T ) |Ku|, the maximum size of a clique of G that corresponds to a leaf of T , and

• by s(T ) the number of leaf-simplicial vertices of T .

We associate with every minimal representation T a quadruple Q(T )
de f
= (`(T ),−k(T ),−d2(T ),s(T )). Denote by ≺LEX the lexico-

graphic order on Z4 and by �LEX its reflexive closure. We write T ≺LEX T ′ (resp. T �LEX T ′) as a shorthand for Q(T )�LEX Q(T ′)
(resp. Q(T )�LEX Q(T ′)).

Lemma 3.1. Let d,ν be two integers. If all the graphs in MCHORDAL(d,ν) are factor-critical then K2ν+1 ∈MCHORDAL(d,ν).

Proof. Among all minimal representations of graphs in MCHORDAL(d,ν) let T be one such that Q(T ) is minimum in�LEX . Let G = G(T )
and let T be the union of the subtrees in T . By the assumption of the lemma G is factor-critical, thus contains n = 2ν +1 vertices.
If T consists of one node then G has one maximal clique, i.e., G is a clique and the proof is completed. If T has exactly two nodes, then
they are necessarily adjacent, i.e., G consists of two maximal cliques with at least one common vertex. Then this vertex is universal and
has degree at most d−1. Therefore, n−1 < d, i.e., n≤ d. Then, the clique Kn on n vertices is a chordal graph with matching number ν ,
maximum degree less than d and more edges than G contradicting the assumption that G ∈MCHORDAL(d,ν). In the rest of the proof we
assume that T has at least three nodes.
We will now present two successive transformations on T by which we obtain two minimal representations T ′ and T ′′ such that

T ′′ �LEX T ′ ≺LEX T . (3.1)

Denote G′ = G(T ′), G′′ = G(T ′′). The transformations will preserve the number of subtrees, thus the number of vertices of the graphs.
Therefore, the graphs G′ and G′′ will be chordal graphs on n = 2ν +1 vertices. As such, their matching numbers are at most ν .
The transformations ensure that G′ is obtained by adding one edge i j to G where j is a simplicial vertex of G, and G′′ is obtained from G′ by
removing one edge i j′. The only vertex whose degree increases after these transformations is j. Since j is simplicial in G it does not have
maximum degree. Therefore, ∆(G′′)≤ ∆(G)< d. Clearly, G and G′ have the same number of edges. Then G′′ ∈MCHORDAL(d,ν). Since
T ′′ ≺LEX T , this is a contradiction to the way T is chosen.
We now describe the first transformation: Let u ∈ L(T ) be a leaf of T such that |Ku| = k(T ) and let v be the unique neighbour of u in
T . Let also T̄ = T \{u,v} be the forest obtained by removing the nodes u and v from T . If Kv contains a simplicial vertex i then it is not
of maximum degree. Then adding the edge i j to G will not violate the degree restriction, contradicting the fact that G ∈MCHORDAL(d,ν).
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Figure 3.1: The first transformation

Therefore, Kv does not contain simplicial vertices. Consider a vertex i ∈ Kv \Ku. Since i is not simplicial, it has at least one neighbour in
G\Ku \Kv In other words, the subtree Ti ∈T that corresponds to vertex i has a non-empty intersection with the forest T̄ .
We consider four disjoint and complementing cases. Consult Figure 3.1 for illustrations.

(a) Ku \Kv = { j} and Kv \Ku = {i}: In this case we contract the edge uv to obtain a node w and set Kw = Ku∪Kv = Ku∪{ j}. If w is not
a leaf then `(T ) decreases. Otherwise, w is a leaf and |Kw|= |Kv|+1, i.e., `(T ) remains intact and k(T ) increases.

(b) Ku \Kv = { j} and Kv \Ku ) {i}: In this case we add i to Ku, leaving the number of leaves intact and increasing k(T ) by one.
(c) Ku \Kv ) { j} and Kv \Ku = {i}: In this case we add j to Kv decreasing s(T ) and leaving the rest of the parameters intact.
(d) Ku \Kv ) { j} and Kv \Ku ) {i}: In this case subdivide the edge uv by adding a new node w and set Kw = (Ku∩Kv)∪{i, j}. This

does not affect `(T ) and k(T ) and increases d2(T ) by one.

In all the above cases we have T ′ ≺LEX T as required.
We now proceed with the second transformation. Let u′ be a leaf of Ti∩ T̄ that is most distant from v. Let v′ be the unique neighbour of u′ in
Ti∩ T̄ (possibly v′ = v) and let j′ be a vertex of Ku′ \Kv′ . By definition i ∈ Ku′ ∩Kv′ . We consider two disjoint and complementing cases.
Consult Figure 3.2 for illustrations.

(a) Ku′ \Kv′ = { j′}: In this case we remove i from Ku′ , effectively removing the edge i j′ from G′. Note that this transformation does not
disconnect G′ since we assume that all the graphs in MCHORDAL(d,ν) are factor-critical, thus connected. Therefore, T is not affected
by the transformation, leaving `(T ) and d2(T ′) intact. Since i is not simplicial, s(G) is left intact too.

(b) Ku′ \Kv′ ) { j′}: In this case we subdivide the edge u′v′ by adding a new node w′ and set Kw′ = Ku′ \{i}. As in the previous case this
modification does not disconnect G′. The transformation leaves `(T ′) intact and increases d2(T ′).

Since the transformation does not modify Ku and |Ku| = k(T ′) does not decrease. In both of the cases above we have T ′′ �LEX T ′ as
required.

Observation 3.2. Let C be a special hereditary graph class, and d,ν two positive integers, and let G be a graph of MC (d,ν) with maximum
number of connected components that are stars and maximum number of connected components subject to this constraint. Let ν ′ > 1 be the
matching number of a connected component G′ of G. Then all the graphs in MC (d,ν ′) are factor-critical.

Proof. Suppose that MC (d,ν ′) contains a graph G′′ that is not factor-critical. By replacing G′ by G′′ in G we obtain a graph in MC (d,ν).
If G′′ contains a connected component that is a star then the resulting graph has one star more than G. If G′′ is not connected then the
resulting graph has one more connected component than G. If G′′ is connected it contradicts Theorem 2.3.

We are now ready to prove the main result.

Theorem 3.3. There exists a graph G ∈MCHORDAL(d,ν) that is the disjoint union of (d−1)-stars and odd cliques.

Proof. Let G be a graph in MCHORDAL(d,ν) with maximum number of stars and maximum number of connected components subject to this
condition. Clearly, every connected component of G that is a star, is a (d−1)-star, since otherwise we can add at least one edge to G. Let
G1, . . . ,Gk be the connected components of G that are not stars, and let νi be the matching number of Gi for every i ∈ [k]. It is easy to verify
that the class of chordal graphs is special hereditary. By Observation 3.2, all the graphs in MCHORDAL(d,νi) are factor-critical. By Lemma
3.1, Gi can be replaced by a K2νi+1.
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Figure 3.2: The second transformation

4. Conclusion

We have presented a short proof of the number of edges of an edge-extremal chordal graph. The simplicity of our technique opens room for
further improvements. We believe that this proof may be further enhanced to characterize the edge-extremal chordal graphs.
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