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Abstract

In the present investigation, making use of definition of the generalized Bivariate Fibonacci-Like polynomials that include polynomials such
as Horadam, Chebyshev polynomials two new subclasses of bi-univalent functions are introduced. Then, some bounds are determined for the
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1. Introduction

The usages some special polynomials such as Chebyshev, Faber, Horadam, Lucas and Fibonacci in geometric function theory has made
considerable effect on the many mathematicians. As a result of this effect numerious subclasses of univalent and bi-univalent functions
which are holomorphic in the unit disk were introduced in the literature. By using the well-known subordination notion and some basic
rules in geometric function theory of complex analysis, certain famous problems like initial coefficients estimate, Fekete-Szegö and Hankel
determinant problems were considered for these new subclasses of analytic functions. Motivated by the relations between special polynomials
and analytic function classes, we introduce two new subfamilies of analytic and bi-univalent functions in this paper. Later on, we obtain some
upper bounds for the first two coefficients of functions belonging to these new subclasses. Also, we deal with the Fekete-Szegö problems for
the defined function classes. Furthermore, we present several corollaries and remarks at the end of the main results.
It is worth to mention here that special polynomials reduce to the some well-known special number sequences for certain values of the
parameters. Thus, we find opportunity to study few function subclasses connected with the special polynomials and number sequences
together. That is, our main results are generalized certain earlier results given in some previous paper which will be mentioned in the sequel.
This paper is organized as follow: Section 1 is divided into three subsections. Some basic definitions of geometric function theory is
remembered in the first subsection, while we present knowledge about the generalized bivariate Fibonacci-like polynomials in the second
subsection. In third subsection, two new function subfamilies of analytic bi-univalent functions is introduced by making use of generalized
bivariate Fibonacci-like polynomials. In Section 2 and Section 3, we determine some upper bounds for the second and third coefficients
of the functions belonging to the subclasses introduced. In Section 4, the well-known Fekete-Szegö problem is discussed for these new
subclasses. At the end of the last three section, we also present some remarks and corollaries for the initial coefficient estimations and
Fekete-Szegö inequalities.

1.1. Some basic concepts in Geometric Function Theory

Let A denote the class of all holomorphic functions of the form

f (z) = z+a2z2 + · · ·= z+
∞

∑
n=2

anzn, (1.1)

in the open unit disk U = {z ∈ C : |z|< 1} normalized by the conditions f (0) = f ′(0)−1 = 0. Let S show the subfamily of A consisting
of functions univalent in A . Due to the well-known Koebe one quarter theorem (see [12]), it can be easily said that if f ∈S , then there
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exists the inverse function f−1 satisfying

f−1 ( f (z)) = z,(z ∈U ) and f
(

f−1(w)
)
= w,

(
|w|< r0( f ),r0( f )≥ 1

4

)
,

where

f−1(w) = w−a2w2 +
(

2a2
2−a3

)
w3−

(
5a3

2−5a2a3 +a4

)
w4 + · · ·=: g(w). (1.2)

It is well-known that if both functions f and f−1 are univalent in U , then the function f ∈A is called bi-univalent function in U . In general,
bi-univalent functions’ class is shown by Σ. Very recently Srivastava et al. gave comprehensive informations about bi-univalent functions in
their pioneering work [22]. Interested readers can find some interesting examples and a short history about the class Σ in this paper.
In the literature several important coefficient estimates of the analytic bi-univalent functions can be found. For example, Lewin proved
the first estimation as |a2| < 1.51, while Brannan and Clunie presented a bound for the second coefficient as |a2| ≤

√
2 in [17] and [7],

respectively. Further, Netenyahu found that max |a2| = 4
3 and Tan showed that |a2| ≤ 1.485 for f ∈ Σ in [19] and [27], respectively. In

addition, Brannan and Taha studied on some subclasses of bi-univalent functions and presented some coefficient estimates in [8]. In
Geometric Function Theory, the problem of the finding a coefficient estimate on |an| for n ∈ N,n≥ 3, is still an open problem. Nowadays,
many mathematicians focused on this problem to solve it. For this purpose, so many new subclasses of analytic bi-univalent functions is
defined and also investigated coefficient bounds for these subclasses. For instance, motivated by the some earlier works (like [7, 8, 17] and
[22] the authors defined some new subclasses of bi-univalent functions and presented certain non-sharp estimates on the initial coefficients of
these subclasses in [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 23, 24, 25, 26, 28] and references therein. In the above papers, the authors utilize
generally the principle known as subordination. Now, we would like to remind this principle as follow:
If the functions f and F ∈A , then f is said to be subordinate to F if there exists a Schwarz function w such that

w(0) = 0, |w(z)|< 1 and f (z) = F (w(z)) (z ∈U ).

This subordination is shown by

f ≺ F or f (z)≺ F(z) (z ∈U ).

If F is univalent function in U , then this subordination is equivalent to

f (0) = F(0), f (U )⊂ F (U ) .

There are comprehensive informations about the subordination notion in Monographs written by Miller and Mocanu(see [18]). Also, a
function f ∈ S is said to be Bazilevic function, if it satisfies (see [21]):

R

{
z1−λ f ′(z)
( f (z))1−λ

}
> 0, z ∈U , λ ≥ 0.

This class of functions was denoted by Bλ . It is observed that for λ = 0, we have the class of starlike functions.

1.2. Generalized bivariate Fibonacci-like polynomial

Chebyshev, Faber, Horadam, Lucas, Fibonacci polynomials and their generalizations have great importance in applied sciences such as
physics, engineering and so on. The Fibonacci polynomial is one of the very important special polynomials. Its several generalizations is
defined in the literature since this polynomial has common usage in the applied sciences (see [16]). The Fibonacci numbers are defined as
the following recurrence relation:

Fn = Fn−1 +Fn−2, F0 = 0, F1 = 1

for n≥ 2. In [20] and its references, the readers may find a short history and comprehensive informations about the generalized bivariate
Fibonacci polynomial. Also, the authors gave a new generalization of the Fibonacci polynomial which is called generalized bivariate
Fibonacci-like polynomial in [20].

Let p,q be positive integers and x,y be real numbers. For, n≥ 2, the generalized bivariate Fibonacci-like polynomials are defined by the
recurrence relation:

Hn(x,y) = pxHn−1(x,y)+qyHn−2(x,y), (1.3)

where H0(x,y)= a, H1(x,y)= b and px, qy 6= 0, p2x2+4qy 6= 0. The generating functions of generalized bivariate Fibonacci-like polynomials
is (see[20])

H(x,y)(z) =
∞

∑
n=0

Hn(x,y)zn =
a+(b−apx)z
1− pxz−qyz2 . (1.4)

For the different choosing p,q,a,b and y, we obtain different polynomial sequences by using recursive relation. These polynomial sequences
are given in the Table 1 below:

(p,q) (a,b) (x,y) Hn(x,y)
(1,1) (0,1) (x,y) Bivariate Fibonacci, Fn(x,y)
(1,1) (0,1) (x,1) Fibonacci, Fn(x)
(2,1) (0,1) (x,1) Pell, Pn(x)
(1,1) (2,x) (x,y) Bivariate Lucas, Ln(x,y)
(2,1) (1,2t) (t,−1) Chebyshev of the second kind, Un(x)
(p,q) (a,bx) (x,1) Horadam, Hn+1(x)

Table 1: Special cases of the generalized bivariate Fibonacci-like polynomials
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1.3. Two new subclasses of Bi-univalent functions

In this part, two new subclasses of bi-univalent functions are introduced as follows:

Definition 1.1. Let 0≤ γ ≤ 1. A function f ∈ Σ of the form (1.1) is said to be in the class H
(p;q;x;y)

n,Σ,γ (h(z)) if the following subordinations
hold true:

z f ′(z)+ γz2 f ′′(z)
(1− γ) f (z)+ γz f ′(z)

≺ h(z) = H(x,y)(z)+1−a (1.5)

and

wg′(w)+ γw2g′′(w)
(1− γ)g(w)+ γwg′(w)

≺ h(w) = H(x,y)(w)+1−a, (1.6)

where p2x2 +4qy > 0, z,w ∈U and the function g is of the form (1.2).

Definition 1.2. Let λ ≥ 0 and 0 < δ ≤ 1. A function f ∈ Σ of the form (1.1) is said to be in the class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)) if the following
subordinations hold true:

1
2

 z1−λ f ′(z)

( f (z))1−λ
+

(
z1−λ f ′(z)

( f (z))1−λ

) 1
δ

≺ h(z) = H(x,y)(z)+1−a (1.7)

and

1
2

w1−λ g′(w)

(g(w))1−λ
+

(
w1−λ g′(w)

(g(w))1−λ

) 1
δ

≺ h(w) = H(x,y)(w)+1−a, (1.8)

where p2x2 +4qy > 0, z,w ∈U and the function g is of the form (1.2).

Remark 1.3. It is important to emphasize here that it can be obtained more subclasses of analytic bi-univalent functions (like bi-Bazilevic̆,
bi-Starlike, bi-Convex and so on) by giving certain special values to the parameters p,q,γ,λ and δ in the Definition 1.1 and Definition 1.2.

If we take γ = 0 in Definiton 1.1, we obtain the following definition:

Definition 1.4. A function f ∈ Σ of the form (1.1) is said to be in the class H
(p;q;x;y)

n,Σ,0 (h(z)) if the following subordinations hold true:

z f ′(z)
f (z)

≺ h(z) = H(x,y)(z)+1−a (1.9)

and

wg′(w)
g(w)

≺ h(w) = H(x,y)(w)+1−a, (1.10)

where p2x2 +4qy > 0, z,w ∈U and the function g is of the form (1.2).

If we take γ = 1 in Definiton 1.1, we obtain the following definition:

Definition 1.5. A function f ∈ Σ of the form (1.1) is said to be in the class H
(p;q;x;y)

n,Σ,1 (h(z)) if the following subordinations hold true:

1+
z f ′′(z)
f ′(z)

≺ h(z) = H(x,y)(z)+1−a (1.11)

and

1+
zg′′(w)
g′(w)

≺ h(w) = H(x,y)(w)+1−a, (1.12)

where p2x2 +4qy > 0, z,w ∈U and the function g is of the form (1.2).

If we take δ = 1 in Definiton 1.2, we obtain the following definition:

Definition 1.6. A function f ∈ Σ of the form (1.1) is said to be in the class H
(p;q;x;y)

n,Σ,λ ,1 (h(z)) if the following subordinations hold true:

z1−λ f ′(z)

( f (z))1−λ
≺ h(z) = H(x,y)(z)+1−a (1.13)

and

w1−λ g′(w)

(g(w))1−λ
≺ h(w) = H(x,y)(w)+1−a, (1.14)

where p2x2 +4qy > 0, z,w ∈U and the function g is of the form (1.2).
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If we take λ = 0, δ = 1 in Definiton 1.2, we obtain the Definition 1.4.
If we take λ = 1, δ = 1 in Definiton 1.2, we obtain the following definition:

Definition 1.7. A function f ∈ Σ of the form (1.1) is said to be in the class H
(p;q;x;y)

n,Σ,1,1 (h(z)) if the following subordinations hold true:

f ′(z)≺ h(z) = H(x,y)(z)+1−a (1.15)

and

f ′(w)≺ h(w) = H(x,y)(w)+1−a, (1.16)

where p2x2 +4qy > 0, z,w ∈U and the function g is of the form (1.2).

2. Coefficient estimates for the function class H
(p;q;x;y)

n,Σ,γ (h(z))

In this section, the upper bound estimates for the coefficients a2 and a3 of functions in the class H
(p;q;x;y)

n,Σ,γ (h(z)) are presented.

Theorem 2.1. Let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,γ (h(z)). Then

|a2| ≤
|b|
√
|b|√

|b2(1+2γ− γ2)− (pbx+aqy)(1+ γ)2|
(2.1)

and

|a3| ≤
|b|

2+4γ
+

b2

(1+ γ)2 . (2.2)

Proof. Let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,γ (h(z)). Then, there exist analytic functions u,v : U →U given by

u(z) =
∞

∑
k=1

ukzk and v(w) =
∞

∑
k=1

vkwk (2.3)

such that

|uk| ≤ 1and |vk| ≤ 1, (2.4)

where z,w ∈U . Then, from the Definition 1.1, we can write that

z f ′(z)+ γz2 f ′′(z)
(1− γ) f (z)+ γz f ′(z)

= h(u(z)) (2.5)

and

wg′(w)+ γw2g′′(w)
(1− γ)g(w)+ γwg′(w)

= h(v(w)). (2.6)

On the other hand, we know that

z f ′(z)+ γz2 f ′′(z)
(1− γ) f (z)+ γz f ′(z)

= 1+(1+ γ)a2z+[2(1+2γ)a3− (1+ γ)2a2
2]z

2 + · · ·

and

wg′(w)+ γw2g′′(w)
(1− γ)g(w)+ γwg′(w)

= 1− (1+ γ)a2w− [2(1+2γ)a3 +(γ2−6γ−3)a2
2]w

2 + · · · .

So, we may write that

h(u(z)) = 1+H1(x,y)u(z)+H2(x,y)(u(z))2 +H3(x,y)(u(z))3 + · · · (2.7)

and

h(v(w)) = 1+H1(x,y)v(w)+H2(x,y)(v(w))2 +H3(x,y)(v(w))3 + · · · . (2.8)

By comparing the coefficients of the equations (2.5) and (2.7), we can write

(1+ γ)a2 = H1(x,y)u1, (2.9)

2(1+2γ)a3− (1+ γ)2a2
2 = H1(x,y)u2 +H2(x,y)u2

1 (2.10)

and also, using the equations (2.6) and (2.8), we get

−(1+ γ)a2 = H1(x,y)v1, (2.11)
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−2(1+2γ)a3− (γ2−6γ−3)a2
2 = H1(x,y)v2 +H2(x,y)v2

1. (2.12)

From the equations (2.9) and (2.11), we can write

u1 =−v1 (2.13)

and

a2
2 =

H2
1 (x,y)(u

2
1 + v2

1)

2(1+ γ)2 . (2.14)

By adding the equation (2.10) to the equation (2.12), we deduce

2(1+2γ− γ
2)a2

2 = H1(x,y)(u2 + v2)+H2(x,y)(u2
1 + v2

1). (2.15)

By putting (2.14) in (2.15), we have

a2
2 =

H3
1 (x,y)(u2 + v2)

2H2
1 (x,y)(1+2γ− γ2)−2H2(x,y)(1+ γ)2 . (2.16)

By considering the inequalities in (2.4), we obtain

|a2| ≤
|b|
√
|b|√

|b2(1+2γ− γ2)− (pbx+aqy)(1+ γ)2|
. (2.17)

By subtracting (2.10) and (2.12), we have

4(1+2γ)[a3−a2
2] = H1(x,y)(u2− v2). (2.18)

Then, from the inequalities in (2.4) and equation (2.14), we deduce

|a3| ≤
|H1(x,y)|

2+4γ
+

b2

(1+ γ)2 . (2.19)

Remark 2.2. By giving different values to the paramaters in Theorem 2.1, we obtain some bounds on the coefficients |a2| and |a3| of
bi-starlike and bi-convex functions defined by the generalized bivariate Fibonacci-like polynomials, respectively.

i. For γ = 0, let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,0 (h(z)). Then

|a2| ≤
|b|
√
|b|√

|b2− pbx−aqy|

and

|a3| ≤
|b|
2

+b2.

ii. For γ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,1 (h(z)). Then

|a2| ≤
|b|
√
|b|√

|2b2−4pbx−4aqy|

and

|a3| ≤
|b|
6

+
b2

4
.

Remark 2.3. By giving b = bx,y = 1 in class H
(p;q;x;y)

n,Σ,γ (h(z)) of Theorem 2.1, we obtain some bounds on the coefficients |a2| and |a3| of
bi-starlike and bi-convex functions defined by the Horadam polynomials, respectively.

i. For γ = 0, let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;1)

n,Σ,0 (h(z)). Then

|a2| ≤
|bx|
√
|bx|√

|b2x2− pbx2−aq|

and

|a3| ≤
|bx|

2
+b2x2.
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ii. For γ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;1)

n,Σ,1 (h(z)). Then

|a2| ≤
|bx|
√
|bx|√

|2b2x2−4pbx2−4aq|

and

|a3| ≤
|bx|

6
+

b2x2

4
.

Remark 2.4. By giving p = 2,q = 1,a = 1,b = 2t,x = t,y =−1 in class H
(p;q;x;y)

n,Σ,γ (h(z)) of Theorem 2.1, we obtain some bounds on the
coefficients |a2| and |a3| of bi-starlike and bi-convex functions defined by the Chebyshev polynomials which these results can be found as
Corollary 2 in [1], while Corollary 2.1 in [5].

i. For γ = 0, let f (z) = z+∑n≥2 anzn be in the class H
(2;1;t;−1)

n,Σ,0 (h(z)). Then

|a2| ≤ |2t|
√
|2t|

and

|a3| ≤ |t|+4t2.

ii. For γ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(2;1;t;−1)

n,Σ,1 (h(z)). Then

|a2| ≤
|t|
√
|2t|√

|1−2t2|

and

|a3| ≤
|t|
3
+ t2.

Remark 2.5. By giving p = q = 1,a = 0,b = 1,y = 1 in class H
(p;q;x;y)

n,Σ,γ (h(z)) of Theorem 2.1, we obtain some bounds on the coefficients
|a2| and |a3| of bi-starlike and bi-convex functions defined by the Fibonacci polynomials, respectively.

i. For γ = 0, let f (z) = z+∑n≥2 anzn be in the class H
(1;1;x;1)

n,Σ,0 (h(z)). Then

|a2| ≤
1√
|1− x|

and

|a3| ≤
3
2
.

ii. For γ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(1;1;x;1)

n,Σ,1 (h(z)). Then

|a2| ≤
1√
|2−4x|

and

|a3| ≤
5

12
.

3. Coefficient estimates for the function class H
(p;q;x;y)

n,Σ,λ ,δ (h(z))

In this section, the upper bound estimates for the coefficients a2 and a3 of functions in the class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)) are presented.

Theorem 3.1. Let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)). Then

|a2| ≤
2|b|
√
|b|δ√

|b2(λ +1)[δ (λ +2)(δ +1)+(λ +1)(1−δ )]− (pbx+aqy)(λ +1)2(δ +1)2|
(3.1)

and

|a3| ≤
2|b|δ

(λ +2)(δ +1)
+

4b2δ 2

(λ +1)2(δ +1)2 . (3.2)
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Proof. Let suppose that f (z) = z+∑n≥2 anzn ∈H
(p;q;x;y)

n,Σ,λ ,δ (h(z)). Then, there are two analytic functions u,v : U →U given by

u(z) =
∞

∑
k=1

ukzk and v(w) =
∞

∑
k=1

vkwk (3.3)

such that

|uk| ≤ 1and |vk| ≤ 1, (3.4)

where z,w ∈U . From the Definition 1.2, we have

1
2

 z1−λ f ′(z)

( f (z))1−λ
+

(
z1−λ f ′(z)

( f (z))1−λ

) 1
δ

= h(u(z)) (3.5)

and

1
2

w1−λ g′(w)

(g(w))1−λ
+

(
w1−λ g′(w)

(g(w))1−λ

) 1
δ

= h(v(w)). (3.6)

Also, we have

1
2

 z1−λ f ′(z)

( f (z))1−λ
+

(
z1−λ f ′(z)

( f (z))1−λ

) 1
δ

= 1+
(λ +1)(δ +1)

2δ
a2z

+

[
(λ +2)(δ +1)

4δ
(2a3 +(λ −1)a2

2)+
(λ +1)2(1−δ )

4δ 2 a2
2

]
z2 + · · ·

and

1
2

w1−λ g′(w)

(g(w))1−λ
+

(
w1−λ g′(w)

(g(w))1−λ

) 1
δ

= 1− (λ +1)(δ +1)
2δ

a2w

+

[
(λ +2)(δ +1)

4δ
((λ +3)a2

2−2a3)+
(λ +1)2(1−δ )

4δ 2 a2
2

]
w2 + · · · .

Then, we get

h(u(z)) = 1+H1(x,y)u1z+(H1(x,y)u2 +H2(x,y)u2
1)z

2 + · · · (3.7)

and

h(v(w)) = 1+H1(x,y)v1w+(H1(x,y)v2 +H2(x,y)v2
1)w

2 + · · · . (3.8)

By using the equations (3.5) and (3.7), we deduce

(λ +1)(δ +1)
2δ

a2 = H1(x,y)u1, (3.9)

(λ +2)(δ +1)
4δ

(2a3 +(λ −1)a2
2)+

(λ +1)2(1−δ )

4δ 2 a2
2 = H1(x,y)u2 +H2(x,y)u2

1 (3.10)

and from the equations (3.6) and (3.8), we obtain

− (λ +1)(δ +1)
2δ

a2 = H1(x,y)v1 (3.11)

and

(λ +2)(δ +1)
4δ

((λ +3)a2
2−2a3)+

(λ +1)2(1−δ )

4δ 2 a2
2 = H1(x,y)v2 +H2(x,y)v2

1. (3.12)

Comparing the equations (3.9) and (3.11) imply that

u1 =−v1 (3.13)

and

a2
2 =

2H2
1 (x,y)δ

2(u2
1 + v2

1)

(λ +1)2(δ +1)2 . (3.14)

By summing the equations (3.10) and (3.12), we get[
(λ +2)(δ +1)(λ +1)

2δ
+

(λ +1)2(1−δ )

2δ 2

]
a2

2 = H1(x,y)(u2 + v2)+H2(x,y)(u2
1 + v2

1). (3.15)
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By putting (3.14) in (3.15), we have

a2
2 =

2H3
1 (x,y)δ

2(u2 + v2)

H2
1 (x,y)(λ +1) [δ (λ +2)(δ +1)+(λ +1)(1−δ )]−H2(x,y)(λ +1)2(δ +1)2 . (3.16)

By considering the inequalities in (3.4), we get

|a2| ≤
2|b|
√
|b|δ√

|b2(λ +1) [δ (λ +2)(δ +1)+(λ +1)(1−δ )]− (pbx+aqy)(λ +1)2(δ +1)2|
. (3.17)

By subtracting (3.10) and (3.12), we obtain

(λ +2)(δ +1)
δ

[a3−a2
2] = H1(x,y)(u2− v2). (3.18)

Then, from the inequalities in (3.4) and the equation (3.14), we have

|a3| ≤
2|H1(x,y)|δ

(λ +2)(δ +1)
+

4b2δ 2

(λ +1)2(δ +1)2 . (3.19)

Remark 3.2. By giving some special values to the paramaters in Theorem 3.1, we obtain some bounds on the coefficients |a2| and |a3| of
bi-univalent function classes (like Bi-Bazilevic̆ and Bi-starlike) related with the generalized bivariate Fibonacci-like polynomials.

i. For δ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,λ ,1 (h(z)). Then

|a2| ≤
2|b|
√
|b|√

|2b2(λ +1)(λ +2)−4(pbx+aqy)(λ +1)2|

and

|a3| ≤
|b|

λ +2
+

b2

(λ +1)2 .

ii. For λ = 0, δ = 1, the obtained bounds coincide with the condition i. in Remark 2.2.
iii. For λ = δ = 1, let f (z) = z+∑n≥2 anzn be in the class H

(p;q;x;y)
n,Σ,1,1 (h(z)). Then

|a2| ≤
|b|
√
|b|√

|3b2−4pbx−4aqy|

and

|a3| ≤
|b|
3

+
b2

4
.

Remark 3.3. By giving b = bx,y = 1 in class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)) of Theorem 3.1, we obtain some bounds on the coefficients |a2| and |a3| of
bi-univalent function classes (like Bi-Bazilevic̆ and Bi-starlike) related with the Horadam polynomials which results are also found in [2]
and [24].

i. For δ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;1)

n,Σ,λ ,1 (h(z)). Then

|a2| ≤
2|bx|

√
|bx|√

|2b2x2(λ +1)(λ +2)−4(pbx2 +aq)(λ +1)2|

and

|a3| ≤
|bx|

λ +2
+

b2x2

(λ +1)2 .

ii. For λ = 0, δ = 1, the obtained bounds coincide with the condition i. in Remark 2.3.
iii. For λ = δ = 1, let f (z) = z+∑n≥2 anzn be in the class H

(p;q;x;1)
n,Σ,1,1 (h(z)). Then

|a2| ≤
|bx|
√
|bx|√

|3b2x2−4pbx2−4aqy|

and

|a3| ≤
|bx|

3
+

b2x2

4
.

Remark 3.4. By giving p = 2,q = 1,a = 1,b = 2t,x = t,y =−1 in the class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)) of Theorem 3.1, we obtain some bounds on
the coefficients |a2| and |a3| of bi-univalent function classes (like Bi-Bazilevic̆ and Bi-starlike) related with the Chebyshev polynomials which
these results may be found as Corollay 3 in [1], while Corollary 2 in [9].
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i. For δ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(2;1;t;−1)

n,Σ,λ ,1 (h(z)). Then

|a2| ≤
4 |t|

√
|2t|√

|4t2(λ +1)(λ +2)−4(4t2−1)(λ +1)2|

and

|a3| ≤
|2t|

λ +2
+

4t2

(λ +1)2 .

ii. For λ = 0, δ = 1, the obtained bounds coincide with the condition i. in Remark 2.4.
iii. For λ = δ = 1, let f (z) = z+∑n≥2 anzn be in the class H

(2;1;t;−1)
n,Σ,1,1 (h(z)). Then

|a2| ≤
|t|
√
|2t|√

|1− t2|

and

|a3| ≤
|2t|
3

+ t2.

Remark 3.5. By giving p = 1,q = 1,a = 0,b = 1,y = 1 in class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)) of Theorem 3.1, we obtain some bounds on the coefficients
|a2| and |a3| of bi-univalent function classes (like Bi-Bazilevic̆ and Bi-starlike) related with the Fibonacci polynomials.

i. For δ = 1, let f (z) = z+∑n≥2 anzn be in the class H
(1;1;x;1)

n,Σ,λ ,1 (h(z)). Then

|a2| ≤
2√

|2(λ +1)(λ +2)−4x(λ +1)2|

and

|a3| ≤
1

λ +2
+

1
(λ +1)2 .

ii. For λ = 0, δ = 1, the obtained bounds coincide with the condition i. in Remark 2.5.
iii. For λ = δ = 1, let f (z) = z+∑n≥2 anzn be in the class H

(1;1;x;1)
n,Σ,1,1 (h(z)). Then

|a2| ≤
1√
|3−4x|

and

|a3| ≤
11
12

.

4. Fekete-Szegö inequality for the class H
(p;q;x;y)

n,Σ,γ (h(z)) and H
(p;q;x;y)

n,Σ,λ ,δ (h(z))

In this section, the upper bound estimates for the Fekete-Szegö functional |a3− µa2
2| of functions in the classes H

(p;q;x;y)
n,Σ,γ (h(z)) and

H
(p;q;x;y)

n,Σ,λ ,δ (h(z)) are presented.

Theorem 4.1. Let suppose that f (z) = z+∑n≥2 anzn ∈H
(p;q;x;y)

n,Σ,γ (h(z)). Then

|a3−µa2
2| ≤


|b|

2(1+2γ)
, |µ−1| ≤ |b

2(1+2γ−γ2)−(pbx+aqy)(1+γ)2|
2b2(1+2γ)

|1−µ||b3|
|b2(1+2γ−γ2)−(pbx+aqy)(1+γ)2| , |µ−1| ≥ |b

2(1+2γ−γ2)−(pbx+aqy)(1+γ)2|
2b2(1+2γ)

Proof. By using the equations (2.16) and (2.18), we have

a3−µa2
2 =(1−µ)

(u2 + v2)b3

2b2(1+2γ− γ2)−2(pbx+aqy)(1+ γ)2 +
b(u2− v2)

4(1+2γ)

=

[
(1−µ)b3

2b2(1+2γ− γ2)−2(pbx+aqy)(1+ γ)2 +
b

4(1+2γ)

]
u2

+

[
(1−µ)b3

2b2(1+2γ− γ2)−2(pbx+aqy)(1+ γ)2 −
b

4(1+2γ)

]
v2.

Hence, we get

a3−µa2
2 =

[
h(µ)+

b
4(1+2γ)

]
u2 +

[
h(µ)− b

4(1+2γ)

]
v2, (4.1)
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where

h(µ) =
(1−µ)b3

2b2(1+2γ− γ2)−2(pbx+aqy)(1+ γ)2 . (4.2)

Then, by taking modulus of the equation (4.1), we conclude that

|a3−µa2
2| ≤


|b|

2(1+2γ)
, 0≤ |h(µ)| ≤ |b|

4(1+2γ)

2|h(µ)|, |h(µ)| ≥ |b|
4(1+2γ)

.
(4.3)

Remark 4.2. Let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,γ (h(z)). By taking some special values in the parameters in Theorem 4.1 we
obtain the followings:

i. For µ = 1,

|a3−a2
2| ≤

|b|
2(1+2γ)

.

ii. For γ = 0,

|a3−µa2
2| ≤


|b|
2 , |µ−1| ≤ |b

2−pbx−aqy|
2b2

|1−µ||b3|
|b2−pbx−aqy| , |µ−1| ≥ |b

2−pbx−aqy|
2b2 .

iii. For γ = 1,

|a3−µa2
2| ≤


|b|
6 , |µ−1| ≤ |b

2−2pbx−2aqy|
3b2

|1−µ||b3|
|2b2−4pbx−4aqy| , |µ−1| ≥ |b

2−2pbx−2aqy|
3b2 .

Theorem 4.3. Let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,λ ,δ (h(z)). Then

|a3−µa2
2| ≤


2|b|δ

(λ+2)(δ+1) , |µ−1| ≤ A
4|1−µ||b3|δ 2

|b2(λ+1)[δ (λ+2)(δ+1)+(λ+1)(1−δ )]−(pbx+aqy)(λ+1)2(δ+1)2| , |µ−1| ≥ A

and

A =
|b2(λ +1) [δ (λ +2)(δ +1)+(λ +1)(1−δ )]− (pbx+aqy)(λ +1)2(δ +1)2|

2b2δ (λ +2)(δ +1)
.

Proof. Since the proof is similar to the proof of Theorem 4.1 we omitted the details.

Remark 4.4. Let f (z) = z+∑n≥2 anzn be in the class H
(p;q;x;y)

n,Σ,γ (h(z)). By taking some special values in the parameters in Theorem 4.3 we
obtain the followings:

i. For µ = 1, we obtain

|a3−a2
2| ≤

2|b|δ
(λ +2)(δ +1)

.

ii. For δ = 1, we have

|a3−µa2
2| ≤


|b|

λ+2 , |µ−1| ≤ |2b2(λ+1)(λ+2)−4(pbx+aqy)(λ+1)2|
4b2(λ+2)

4|1−µ||b3|
|2b2(λ+1)(λ+2)−4(pbx+aqy)(λ+1)2| , |µ−1| ≥ |2b2(λ+1)(λ+2)−4(pbx+aqy)(λ+1)2|

4b2(λ+2) .

iii. For λ = 0, δ = 1, the obtained results coincide with the condition ii. in Remark 4.2.
iii. For λ = δ = 1, we get

|a3−µa2
2| ≤


|b|
3 , |µ−1| ≤ |3b2−4pbx−4aqy|

3b2

|1−µ||b3|
|3b2−4pbx−4aqy| , |µ−1| ≥ |3b2−4pbx−4aqy|

3b2 .

Remark 4.5. As the above remarks, the solving of Fekete-Szegö problem can be given for Horadam, Chebyshev and Fibonacci polynomials
by taking p,q,a and b as special values. For example,

i. if we take γ = 0, p = 2,q = 1,a = 1,b = 2t,x = t,y = −1 in Theorem 4.1, we obtain the result related to Fekete-Szegö problem of
Corollary 2 in [1].

ii. if we take λ = δ = 1, p = 2,q = 1,a = 1,b = 2t,x = t,y =−1 in Theorem 4.3, we obtain the result related to Fekete-Szegö problem of
Corollary 3 in [1].
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Conclusion

In this paper, by making use of the generalized bivariate Fibonacci-like polynomials two new subclasses of analytic bi-univalent functions
are introduced. Firstly, initial coefficients estimates are discussed and then the well-known Fekete-Szegö problem for these subclasses are
solved. Note that, if we take p,q,x,y,a and b be as certain values, our evaluations cover most studies in the literature.

References

[1] A. G. Alamoush, Coefficient estimates for certain subclass of bi-bazilevic functions associated with chebyshev polynomials, Acta Univ. Apulensis, 60,
(2019), 53–59.

[2] A. G. Alamoush, On a subclass of bi-univalent functions associated to Horadam polynomials, Internat. J. Open Problems in Complex Analy., 12, (2020),
58–65.

[3] I. Aldawish, T. Al-Hawary and B. A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics, 8, (2020), 783.
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