(v\ec“omc Joy,,

L
N
\‘O

INTERNATIONAL ELECTRONIC ]OURNAL OF GEOMETRY
VOLUME 15 NO. 2 PAGE 287-303 (2022)
DOI: HTTPS:/ /DOIL.ORG/10.36890/1E]G.1071782

\nterng, tio,)
%,

a
>
4;&99

\

On the Differential Geometry of Coframe
Bundle with Cheeger-Gromoll Metric

Habil Fattayev *

(Communicated by Arif Salimov)

ABSTRACT

In this paper we introduce the Cheeger-Gromoll type metric on the coframe bundle of a
Riemannian manifold and investigate the Levi-Civita connection, curvature tensor, sectional
curvature and geodesics of coframe bundle with this metric.
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1. Introduction

The special Riemannian metric on the tangent bundle, later called the Cheeger-Gromoll metric, was first
introduced by ]. Cheeger and D.Gromoll in [3] (see also [6], [10]). The curvatures of the Cheeger-Gromoll
metric of the tangent bundle were studied by M. Sekizawa [14]. The geodesics of the mentioned metric were
investigated in [13] by A. Salimov and S. Kazimova (see also [12]). The general Cheeger-Gromoll metrics on
the tangent bundle of a Riemannian manifold introduced and investigated by M.Munteanu [9] and Z.Hou and
L.Sun [7]. The Cheeger-Gromoll metric of the cotangent bundle was introduced by A. Salimov and F. Agca and
studied in [1]. In [2], a new class of g-natural metrics was introduced on the cotangent bundle, to which the
Cheeger-Gromoll metric belongs. A similar approach was implemented by K. Niedzialomski [11], applied to
the bundle of linear frames.

In this paper, we shall define and study the Cheeger-Gromoll metric on the bundle of linear coframes of a
Riemannian manifold. In 2 we briefly describe the definitions and results that are needed later, after which
the adapted frame on coframe bundle introduced in 3. The Cheeger-Gromoll metric ““g on coframe bundle
is determined in 4. In 5 we investigate the properties of Levi-Civita connection ““V of metric ““g. Christoffel
symbols (components) ““T of connection ““V are calculated in 6. In sections 7 and 8 we investigate the
curvature tensor field, sectional curvature and geodesics on coframe bundle with Cheeger-Gromoll metric,
respectively.

2. Preliminaries

In this section we shall summarize briefly the main definitions and results which be

used later. Let (M, g) be an n—dimensional Riemannian manifold. The linear coframe bundle F"* (M) over M
consists of all pairs (z,u*), where z is a point of M and u* is a basis (coframe) for the cotangent space 7); M of
M at z [5]. We denote by 7 the natural projection of F*(M) to M defined by 7(z,u*) = . If (U;2',22,...,2")
is a system of local coordinates in M, then a coframe u* = (X%) = (X!, X?,..., X") for T M can be expressed
uniquely in the form X = X?(dz"),. From mentioned above it follows that

(7T_1(U); ot x? L a" XY Xs, X
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is a system of local coordinates in F*(M) (see, [5]), that is F*(M) is a C°°— manifold of dimension
n+n? We note that indices i,j,k,...,a, 3,7,... have range in {1,2,...,n}, while indices 4, B,C,... have
range in {1,...n,n+1,..,n+n*}. We put i, = a-n+i. Obviously that indices i, js, ky,... have range in
{n+1,n+2,..,n+n?}. Summation over repeated indices is always implied. Let V be a symmetric linear
connection on M with components I‘fj. Then the tangent space T\, ,+)(F*(M)) of F*(M) at (z,u*) € F*(M)
splits into the horizontal and vertical subspaces with respect to V :

We denote by Q7% (M) the set of all differentiable tensor fields of type (r,s) on M. From (2.1) it follows
that for every X € S{(F*(M)) is obtained unique decomposing X = hX + vX, where hX € H(F*(M)), vX €
V(F*(M)). H(F*(M)) and V(F*(M)) the horizontal and vertical distributions for F*(M), respectively. Now
we define naturally n different vertical lifts of 1—form w € S(M). If Y be a vector field on M, i.e. Y € S} (M),
then i#Y are functions on F*(M) defined by (i*Y)(z,u*) = X*(Y) for all (z,u*) = (z, X', X2, ..., X") € F*(M),
where ;1 = 1,2, ...,n. The vertical lifts V»w of w to F*(M) are the n vector fields such that

Vw(i*Y) = w(Y)5) (2.2)

hold for all vector fields Y on M, where A\, u = 1,2, ...,n and 53 denote the Kronecker’s delta. The n vertical lifts
Vaw are always uniquely determined and they are linearly independent if w # 0. If V*w = V2 w*9), + V2 wh= 9,

then from (2.2), we obtain: ‘
VO XEOYT + Wk vE = wiYls),.

Since Y* and 9, Y7 can take any preassigned values at each point, we have from the above equality:
Yk o Yd =0, oke = w;gé/’).

So, we have "»w* =0 at all points of F*(M). Concequently, the vertical lifts "»w of w to F*(M) have the

components
kak 0
V)\w = < kaku ) = < wk(s)‘ > (23)
I3

with respect to the induced coordinates (2, X2*) in F*(M) (see, [5]).
Let V € S§(M). The complete lift “V € S¢(F*(M)) of V to the linear coframe bundle F*(M) is defined by

CV(rY) =i (LyY) = XA (LyY)™

for all vector fields Y € 3{(M), where Ly be the Lie derivation with respect to V. The complete lift “Vhas the

components
Ccyk k
cy = < Cte ) — ( leYakvm ) (2.4)

with respect to the induced coordinates (z%, X&) in F*(M).
The horizontal lift 7V € S{(F*(M)) of V to the linear coframe bundle F*(M) is defined by

Hy (ity) = iM(VyY) = XE(VyY)™

for all vector fields Y € 3§ (M), where Vy be the covariant derivative with respect to V. The horizontal lift

HYyhas the components
Hys _ —

with respect to the induced coordinates (z¢, X%) in F*(M), where Ffj are the components of Levi-Civita
connection on M.
The bracket operation of vertical and horizontal vector fields is given by the formulas

[VBw, V0] = 0,
[HX, V0] =V~ (Vx0), (2.6)
FXHY]=H[X, Y]+ > "_ V(X7 0 R(X,Y))

for all X,Y € §}(M) and w,6 € SY(M), where R is the Riemannian curvature of g. If f is a differentiable
function on M, V f = f o = denotes its canonical vertical lift to the F*(M).
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3. Adapted frames on F* (M)
Suppose (U, %) be a local coordinate system in M.In U C M, we put
Xu =0/(02"), 09 =dz',i=1,2,..,n

Taking into account of (2.3) and (2.5), we see that

57
H
XpTr
V=9 = D, = < 5351' > (32)
B

with respect to the natural frame {9;,9;,}. It follows that this n + n? vector fields are linearly independent
and generate, respectively the horizontal distribution of linear connection V and the vertical distribution of
linear coframe bundle F*(M). The set {D;} = {D;, D;_} is called the frame adapted to linear connection V
on 7~ Y(U) C F*(M). From (2.3), (2.5), (3.1) and (3.2), we deduce that the horizontal lift 7V of V € 3} (M) and
vertical lift Vew of w € SY(M) for each a = 1,2, ..., n, have respectively, components:

. J
Hy _yip, - ( v ) (33)
0
Vo, — 5D :< . ) 34
w gw] B4 6,3'('0]' ( )

with respect to the adapted frame {D;}. The non-holonomic objects ;% of the adapted frame {D,}are
defined by

[Dr,Dr] = Q" Di
and have the following non-zero components:

ky ky vl
Qil{j ! _k_Qlﬁi T = _65Fik’ (35)
Q, 7 = XL R,

K2

where R,;,” local components of the Riemannian curvature R.

4. The Cheeger-Gromoll metric on the linear coframe bundle (M)

Definition 4.1. Let (M, g) be an n—dimensional Riemannian manifold. A Riemannian metric § on the linear
coframe bundle F* (M) is said to be natural with respect to g on M if

g X, 1Y) = g(X,Y),
G(1X,Vow) = 0
forall X, Y € $4(M) and w € S9(M).
For any = € M the scalar product on the cotangent space T M is defined by
9 (w,0) = g7wb;
forall w, 0 € S9(M).

The Cheeger-Gromoll metric ““g is a positive definite metric on linear coframe bundle F*(M) which is
described in terms of lifted vector fields as follows.
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Definition 4.2. Let g be a Riemannian metric on a manifold M. Then the Cheeger-Gromoll metric is a

Riemannian metric ““g on the linear coframe bundle F* (M) such that
CCg("X 1Y) = g(X.Y)),
“Cg("ow, 1Y) =0,
CCg(Vew,V20) =0, a#p,
ca

Vew, o) = 1 (g7 (w,6) + 97 (w, X*)g (6, X))

g( 1472

forall X,Y € S(M) and w,0 € IY(M), where r2 = |X|* = g~ (X, X ).

From (4.1) we determine that metric ““g has components

“Cgi; = “C9(Di, D;) =Y (9(0:,05)) = gs,

““ginj = ““9(Di,, Dj) =0,
CGgi(ngf (Dl(y7D]B)70 a#ﬂa
CGgiaja — (DZMD ) = ﬁ(gil(dx%dxj)

+g_1(d1‘i, X,o.‘)g_l(dafj, X:‘) = 1+r2 ( iJ + glr’gjsXQXa)
with respect to the adapted frame {D;} of linear coframe bundle F*(11).

From (2.4) and (2.5), it follows that the complete lift “ X of X € 3{(M) is expressed by

OX —HX = - X2 S (8;X™ — TR X*)8;,

—X,O,‘LZViXmaia —0EXAV X0, = — 3 V(XA ViX™),

m m
a=1

ie.,
Cx =Hx Z Vo (X* 0 VX),
where
X*oVX = X2V, X™dx'.
Using (4.1) and (4.2), we have

CGy(CX,CY) = CC — 3 V(X2 o VX),HY — 3 Va(X% 0 VY))

a=1 a=1

3

="V(9(X,Y)) + 21 (g7 (X0 VX, X2 o VY)

+9 1 X0 VX, X¥)g (XY 0o VY, X)),
where
g HX¥o VX, X0 VY) = g (X2V, X™)(X2V,;Y*)

and
g HXYo VX, X =g"(X*oVX); X

(4.1)

(4.2)

(4.3)

Since the tensor field ““g € SY(F*(M)) is completely determined also by its action on vector fields ¢ X and
“Y, we have an alternative characterization of ““g on F*(M): ““g is completely determined by the condition

4.3).
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5. The Levi-Civita connection of ““¢

Before we calculate the Levi-Civita connection ““V of F*(M) with Cheeger-Gromoll metric ““g, we will need
some formulas concerning this metric.
Lemma 5.1. The following equalities hold:

1
HX<1+T§> =0, (5.1)
1 2 o
“o ()~ 0 62
X (“Cg("20,"5¢)) = ““g(* (Vx0),"78) + ““g("20, "2 (Vx¢)), (5.3)
“CGg("20,76) = g~ (0, X7) (5.4)

forall X € S{(M), 6,¢ € SY(M).

Proof. i) Direct calculations using (3.3) give

1 . 1 . 1
H — K3 . - — K3 . o r
X <1+r3> = (X'Dy) <1+r3> X0, + XIT5,0,,) <1+g_1(Xa7Xa))

7 1 T o 1
= X"0; (l—l—g—l(Xa,X“)) + 17, X" 'X° Op., <1+g—1(Xa,Xa)>

X0 ) (XO X (= (g (X%, X))
~ g @ xoy XN X, xo

Xi(_aiglleaXa) ( ap ( lleaXa ))
— +FT X Xo’ o m
(1+g71(X, X))? "1+ (X X))?

_ XL TR | (C9 00X — g X

(I+g71(X, X))? (1+g71(X, X))?

_ XIXPXTL g + XTTTgh Xp Xy,
(I4+g71(X*, X))
F;’leanaglm_FFr XngXlozglm
(14 g7 1(X*, X))

ii) Calculations like above using (3.4) give

Vﬁe <1+ ) = ZGZ(SED% (W) = 29155@0 (W)

=0.

= 050 (rrgrkaxay (—97° (6361 X 8 + 050LX 1))

= 55@@(_9“)(? - gTiX:”X) = 504 (1+r2 29189 Xa

_55 _1(97Xa)'

2
@229

iii) Using (3.3), (4.1) and (5.1), we obtain

HX(CG9(20,Y2)) = X (k7 [97(0.9) + 9710, X7)g7 &, X7)] )

= (XZ i(9"°0:&s) + XD [(97°0. X0) (9" & X17)])

= 1+1le3 (g_l(vX 975) +g_1(97vX£) +g_1(vX9aXﬁ)g_l(§7X5)

+f]il(ev)(ﬁ).gil(v Xga Xﬁ)) - CGQ (V[j (vXe)a Vﬁg) + CGQ (Vﬂga Ve (VXE)) .
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iv) Calculations using (2.6) and (4.1) give

Cog("10.70) = Cg("76. 3 V2 (X7 00)) = 3 “g(¥10,% X7)

>
o= o=1
= ("0, X7) = 75 (9’1(9 X) 49710, XP)g~H (X7, X7))
= (g7, XO)(1+ g1 (X7, X)) = g71(6, X9).
O
Theorem 5.1. Connection ¢V satisﬁes the following relations
i) OV Y = H(VxY) + 1 Z (X7 o R(X,Y)),
i) OOV V90 = V5 (Vx6) + 57 (X7 (g4 o R( , X)),
iii)
€6y MY = 2; H(X(g Lo R( ,Y) &), (5.5)
v) “9Vv. Y20 = 0 for o # B,
1
€Oy, V0 = —h—(CGg( 2w, 6 Vel + G g(V=0,70) > w)

1+ hy 1
+TCG9(V“w, Vo 0)ys — thGg(V“G,vé)CGg(V“w,75)75

for all X,Y € S§(M), w,0 € IYM), where © =g Low,R( ,X)0 € SHM), ho=1+7r2, R and ~5 denotes
respectively the Riemannii an curvature of g and the canonical vertical vector field on F*(M) with local expression
’7(5 = quDig .

Proof. The Levi-Civita connection ““V of F*(M) with Cheeger-Gromoll metric ““g is characterized by the
Koszul formula o ~ o ~ o ~ o
20Cg(“OVxY, Z) = X(“Cg(Y, 2)) + Y (““9(Z, X)) = Z(““9(X,Y))
(5.6)

forany X,Y,Z € S{(F*(M)).
Let X,Y,Z € 4 (M), w,0,¢ € SV(M). We calculate ““V using the Koszul formulas for g and ““y.
i) Direct calculations using (2.6), (4.1) and (5.6) give
2099(“OVux Y, M Z) = T X (9(Y, 2)) + Y (9(Z, X)) = " Z(9(X,Y))
CCg(I X HX Y] +yR(Y, 2)) + “Co(TY 72, X] + yR(Z, X))

+99("Z, " [X, Y] + 7R(X,Y)) = X(g(Y, Z)) + Y (9(Z, X))
—Z(9(X,Y)) = g(X, [V, Z]) + g(Y, 2, X]) + 9(Z, [X, Y])

=29(VxY,2)

and
290G g(COVnx Y, V2E) = T X (g(Y, Z)) — CCg(" X,V (VyE))

+CCg(Ty, =Y (Vx§)) + 9Cg9(V &, P [X, Y] +vR(X,Y))
=999V YR(X,Y)) = “Cg(E, 30 V(X7 0 R(X,Y))

from which it follows that

1
OOV Y = H(VyY) + 3 > V(X7 0 R(X,Y)).
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ii) Calculations similar to those in i) give

209g(“CVax "0, 2) = 20(9(2, X)) — ““g(" X, =V2(V 20))

£OCg(Vag, (7, X] + YR(Z, X)) + CCg(H 2, V4(V x0)) = “Cg(V20,H (7, X])
+00g(¥10, 3 V4 (X7 0 R(Z,X))) = “g(*#0," (X" o B(Z, X))

= (9710, X7 0 R(Z, X)) + g7} (6, X7)g~ (XP o R(Z, X), X7)),

where hg =1+ r3.
It is easily sean that
10, X7 0 R(Z, X)) = g"01(XP o R(Z, X)), = (¢ O.X] Ry ° 2° X7)

= (gmiXPR™,*Z'XI0%) = g(XP (g~ o R( ,X)0,Z)

= CC(H(XP(g~ o R( ,X)f), " 2)

and
“HXPoR(Z,X),XP) = (¢¥VXPR,,s2°X X))
= (XPg" RapaZ° X" XP') = (Rupar Z* X XPLXPY) = (Ryap 20 X P XL XPT)
= (—giaRy, ' 20X XPLXPY) = g(~R(XP, XP)X, Z) =0,
where

G = gk, XP = g XP.
Thus, we have

206 (OO u 09,7 7) = f;%@(xﬁ(g—l o R( ,X)d))). (57)

Also using (4.1), (5.3) and (5.6), we have

29Cg(“9VuxP0,VoE) = X (“Cg(VP0,V€)) — CCg(V20, Vo (V xE))

+CGg(V2¢, V5 (Vx0)) = “Fg(V2 (Vx0),"2€)) + (V20,2 (Vx£)) (5.8)

“Gg(V20,V5 (Vx€)) + “Cg(*2E, V2 (Vx0)) = 299 g(# (Vx0),"2¢)).
From (5.7) and (5.8) it follows that
OOV x50 = Vo (Vx0) + %H(Xﬁ(g_l oR( ,X)A)).
B
iii) Calculations using (2.6), (4.1), (5.3) and (5.6) give

20G (OO, MY, H ) “w, 32 V(X7 0 R(Y, 2)))

0':1
- Xi: (X7 o R(Z,Y))) = ““g(Vow, (X 0 R(Z,Y)))

“Cg("(X(g o R(,Y)w)), " Z)

and
CCg(CTVra Y, V1) = MY (COg(“r¢, Vow) — COg(Vouo, 1Y, Vg

+CG(E [ow, TY]) = “Fg(E, Y (Vyw)) + “Cg(M(VyE), Vow)

g(V2w, Y (Vy€)) = “Cg(V€,V*(Vyw)) = 0,
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which implies that

OOV Y = (X 0 R ,Y)2).

iv) If a # B. Using (2.6), (4.1) and (5.6), we get
920G g(CGVy, Vo0, H Z) = —CG g(Vaw, [V29, T Z]) + CCg(Ve0, [H Z, Vou])

= —CCg(V2w,V(V 20)) + Fg(¥10, Y (V) = 0

and
920G g(CGVy, Vol Vo) = Vaw(CCGg(Veh, V-€)) + Vag(CG g (Y€, Vaw))

~Vg(CCg (Ve 0)).
Let v = o # . Using (5.2) we have

CGg(CGTy, Y00, YaE) = Vo8(CCg(Vou, Vo)) = Vo8 (1L (971 (6.)
+g7 1 (6 XN (W, X)) = —005597 (0, X) g7 (6, w)
_55%971(97Xa)gil(vaa)gil(vaa)

+050:0;,, ((97°6-X5) (gPTwp X&) = 0.

From above calculations it follows that
CCVva, V20 = 0 for a # B.
Now suppose that 8 = «. Calculations using (2.6), (5.3) and (5.6) give

QCGQ(CGVVQNVO‘H, Hz) _ —HZ(CGg(VO‘w, V"‘H) _ CGg(VO‘w, [Vae7 Hz])
+CGg(Va97 [HZa Vaw]) = _CGQ(V(XW’ Vo (VZG)) - CGg(Vag’ Ve (VZCL)))

+0Gg(Vow, Vo (V £6)) + OCg(¥26, Y (V ) = 0

and
206 g(CGVva,, Y0,V 7€) = Vew(9Cg(Y0,Y7€)) + V= 0(CCg(V7¢, Vo w))

Vg ©Cg(i, Vo))
If we put v # «a. Then by using (4.1) and (5.2) we get

200 4(CCT,,, Vo, Vo) = —V2£(CCg(Vouw, Va0) =~V (1L (g7 (w.0)
+g~Hw, XN g™ (0, X)) = 736297 (&, X g™ (w, )
+r 0097 € X M) g (w, X2)g™H (0, X) = 720297 (w, )97 (0, X )

+g7H(w, X*)g71(0,€)) = 0.
If we put v = «. Calculations like above give

206 g(CGT,ob, Vo) = Vo (o8, Vo)) 4 VoB(CCg Ve, Vo))
Vg (C9g(Vow, V) = Vow(i(g71(0,6) + 971 (0, X ) g7 (€, X))
V(5= (gH (& w) + 97 1€ XN)gHw, X)) = V€5 (g7 (w, 0)

+g7Hw, X710, X)) = — 529w, X*)g~1(0,)
(5.9)
S 2 0, X 6 w) + g € X )9 (w,0)

_%9_1(97)((1)9_1(67Xa)g_l(waXa) + %9_1(97(“))9_1(67)(&)'
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Taking into account (4.1) and (5.4) in (5.9), we get

h2CCg(“CV v, Y20,V ¢) = —g7H(w, X*)g71(0,8) — g1 (0, X*) g7 (¢, w)

+971(£7Xa>971(w79) _971(97)(0‘)971(57Xa)gil(wv)(o‘)
Fhag H(0,w)g M€, X¥) = —hag ! (w, X*)Cg(Ve0, V)

_hag—1<97xa)CGg(Va§7Va9) + hag—l(g’Xa)CGg<Va9)Vaw)

+h2g (& X )% (V0,Vow) — hag (&, X¥)g™H(0, X ) g (w, X*)

= —haYg(Y2w,70) (20, V&) — ha“Fg(V0,70) Cg(V=¢, Vow)

+ha(1+ ha)Cg(V 575) Gg(Vow,V>0)
—ho“Cg(Y2€,76)“g(V0,76) “g(Vow,~d)

= ““g(=ha“Cg(V2w,70)"*0 — ha“Cg(V0,76) w
+ho(l+ hoé)CGg(Vﬂw7 Va9)yo

~ho“Cg("0,70)“ g(V>w, v6)76, V=€),
From (5.9) and (5.10) implies that

COVvay "2l = =3 (O9g(Yow,76) 0 4 “Cg(V~6,76) Y w

+1ﬁh OG g(Vay, Vaf)ys — hl CGg(Ve), v6)CC g(Vow, v8)70.

Hence theorem is proved.

6. Components of connection ¢V

We write
CGVDI D F Dk

(5.10)

with respect to the adapted frame { D} of linear coframe bundle F* (M), where ““T'X; denote the components

(Christoffel symbols) of Levi-Civita connection ““V. Then by using Theorem 52 we immediately get

following

Theorem 6.1. Let (M, g) bea Riemannian manifold and © be the Levi-Civita connection of the linear coframe bundle
F*(M) equipped with the metric ““g. Then particular values of ““TX, for different indices by taking account of (5.5)

are then found to be

CGFk _ Fk CGF ;XmR

YR ijk >
CGrk B pk jm cG Y
Lijs = ﬁX E. Fm% = 05l
CGrk a pk zm ca CG1k —
k= ﬁ X2 RE i, =cerk <o, (6.1)
cG —
FZ s =0for a # j,
Corr, = —(Xeig3] + Xi630}) + Lebegii X
_’_h%XaiXan;’

where X' = gs X &
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Proof. Let X, Y € S§(M), w,6 € SY(M). Using formulas (3.3) and (5.5), we obtain

COVux Y =9CVxip (YID;) = X'9CVp,(Y'D;) = X{(YI9CVp,D;

(6.2)
+D;YID;) = X?YIOCTE Dy, + X'YICCT Dy + X'0,YID;
and .
AVxY)+3 3 V(X o R(X,Y)) = (VxY)'D;
o=1
+1 Z X2R,, " XPYIDy, = XI0;YD; + XIY*T% D; (6.3)
+3 Y 0IX5 R, XPY Dy, .
o=1
Equating the right-hand sides of equalities (6.2) and (6.3), we will have
CGpk I xele m
rk =1k, corly §X%Rijk .
Similarly, calculations using (3.3), (3.4) and (5.5) give
COVnx"20 = ““Vxip,(070;D;,) = X'““Vp,(670;D;,)
= 05X(Di0;D;, +0,°°Vp,D;,) = 60X'0;6;D;, + 65 X'0,°CTF, Dy, (6.4)
+08X70;,°CTL Dy,
and - ~ 4
Va(Vx) + 5= (XP(g " 0 R( , X)) = 63(X(9i6; — I726,,)D,
+an; (X0 R, "X g 0,) Dy = 0] X700, D;, — 6] X T30 Dj, (6.5)
+ops X R " X10,)Dy.
Comparing the right-hand sides of equalities (6.4) and (6.5), we arrive at the following
cGpk  _ 8 gk Jm CG 3
I, = ﬁX REJ,COT, = =0T,
By calculations similar to those above we yield
CvaawHY = CGVJ;‘qu‘,” (YJDJ) - 5gwiCGVD7;(, (YJDJ)
= 5§injCGVDi” Dj = 53injCGF,{§jDK = 5?injCGFZjDk
(6.6)
08w YT Dy
and H 1 ~ 1 ! j ok
g (XMgT o R(L,Y)W)) = g (X R, "Y g™ ws) Dy
(6.7)
= 5= X2 R, YDy,
From (6.6) and (6.7), we get
1
CGprk a pk 7.m cG
R R I, =0,
Now we assume that o # . Then by using of (3.3), (3.4) and (5.5), we have
“CVva, 20 = ““Vsgup,, (070;D;,) = 65w ““Vp, (670;D;,)
= 0qwid2 (““Vp, 0;)D;, + 05wid70;““Vp, D
= 60w;i020;°TY . Dy, + 65w;i020;°T7, Dy, = 0.
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The last relation shows that

cerk ; =0,9T7, =0 for a # B.

iajg

If o = . Calculations like above give

OOy, Y0 = 62w;620,°TF . Dy + 03w;020;9CT}. Dy,
o T77 toJr o T7] o]

:
k

= wiejccrfaja Dy, + WiejCGFi(:jaDky = —i(CGQ(VO‘W’ 75)\/@9

+0Gg(V0,78) Ve w) + 1= CGg(Vow, V0)yo

— = C99(V40,70) gV Ow,v0)v0 = — (9" wi X $020; D,

+97°0; X2 83wi Dy, ) + Hr= (g7 wiblj+
n n
+g Wi XG0 X0) Y XL Dy, — hl gm0 X g wiXE) Y SUX LDy,
pu=1 pu=1
1+ ha

= (glj +gsta ]mXa)X’y

1 is yosag] js Yo sosi is vy, jmya
= _hi (g Xs 6’\/6-11_'_9] Xs 676143) ngJ Xle;Y:| wiejDkw’

(03

na?

from which it follows that

lajo
COT,. = == (g X2006] + g7 X2096,) + Hhhe (g1 +
P XEP X)X — g XX X = e (X85
+X9658) + Ea g X + i XXX,

where X = ¢** X2, This completes the proof.

7. The Riemannian curvature tensor of *(M) with ““¢
Let ““R be a curvature tensor field of ““g. The curvature tensor field ““ R has components
COR, b = DyOCTYy — DTy + COTHCOTS, -
7.1)
COTGs T — Q5T

with respect to the adapted frame {D;}, where Q; ;% be a non-holonomic object.
Taking account (3.5), (5.5), (6.1) and (7.1), we find the components of curvature tensor field ““R.

CGRijk:l - Uk + Z 4f11 X XU( ‘st Rl-j ?ngik:sr)

_Z 1XUXUR le st

1 «@ s
CGRz(y]k h Xs Vle< k-
“CR,! = ﬁxv (ViR ;* — VR F*),
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1 T m m
CGRijkh = §Xm(viRjkl = V;R,™),

CGRijk b= §2Rjilk + ﬁXrTnXW(stszs - R "R, k)
- I—Zgw X1 XTR,f™ + iXyn(Sl( u;nX%‘Sk + R, vak) (7.2)

X’YSX’Y’“XTX'VR m

m*Yijs

CGRiajk-r — %53Rjklz + l (;Och Rjksm(Xaz(;s onsali)

+12-i;lga X%R]kzmx‘r 4 2}112 X%R]kTVLXGLXCEbXT_;'_

_KXT Xastgn 9 }4:1?”7

“OR; 0 = 4h hﬁ X2 XP(R', ™R, 7" — Rl I"R%, ™) fora # B,
CGR, , = i(Rz. iRl )
4h2 XeXe(R., ™R, 7T~ R IR, ™)
+%X%<X“j31.k m— XOiR T,

CcG l _
Riin, = o h

SXIR MR M for o # 7,

efe I 1 ki 1 vakpl im _ yvaipl km «a
R, il = g B Mg ghe (XORRL im — XOiR! ) bm)X

m

n
1 yvavyapl imps kr 1 o yapl sm,ik
Faig X KPR R = Y g X XS
o=

Z e h2 XUXaRl sm(gik +Xai)~(ak)’

1+ ho 1
ofe lr
Rl = 4 LAy 52 “B+ @C,
where L - , . - .
A= 62Tk (X067 + X6]) + T3, (X6% + Xks1)
+T (X Oo5) + XORsp),
B =Tk g X7 —T59"XT —T% g"* X,
C=-Tk XXX — T3 X XOkXT —T% X XokXT,
COR, ju7 = b (0261 (2hs = 1)(g™(1+ ha) + X0 K0K)
+3XPI g XT (ho +1) + 3 XXk XPIXT |
for a # 3,

CGR, . |lr = hazl aksa(ais) — Xaigh)

iajaka

~ . . ~ . . 2 . . ;
+5 R XT (X gh — Xight) 4 a2 52 (o746 — g o)),

ca I _ca Lo
Rla]ﬂk Riaj[ik - 07
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ca l. _CG
R, in, = Rza]a =0 for a # 1.

It is known that the sectional curvature (see [8, p. 200]) on (F*(M),““g) for P(U,V) is given by

CGRkistkvin Vs

caG
K(P) =— ——
(P) (CCgx;CC gis — CG g1 CC g \URVIUIV S’

(7.3)

where P(U,V) denotes the plane spanned by (U, V). Let {X;} and {w'}, i=1,...,n, be
a local orthonormal frame and coframe on M, respectively. Then from (4.1) we see that
Xy, BX, V0l Vot Vi L Vi L Y ) is a local  orthonormal frame on  F*(M). Let
CECRMHEX,HY) CCR(HX,V50), CGK(V%J Va@) and CGK(Vaw V20) denote the sectional curvature of the plane
spanned by (9 X, 1Y), (HX,V50), (Vow,"=0) and (Yew,"?0) on F*(M), respectively. Then direct calculations
using (3.3), (3.4), (4.2) and (7.3) give
i)
CGRkijSHXkHYZ'HXjHYS
_(CngjCGgis_CGg CGg, ) HXkHYiHXiHYs

CG}((H)(7 Hy) _

CGRkileGgslHXkHYiHXjHYS CGRk A CGgel HxkHyiH xjHys
(CngjCGgis _ CGg CG )HXkHYZHXjHYs

kzg + Z 2h X° XﬂRklt Xo Xo‘ (Rl L FmRijtr

. j 4}L T

(gk]gzs - gksgu)XleXJYs

R R DXFYIXTY o
~ g = gregn) Xvixays |~ HEY)

T L gt/ (X7 o R(X,Y)) (X7 0 R(X,Y));

|
ﬂM:

9(X, X)g(Y,Y) — g(X,Y)g(Y, X)

5 g9 (X7 0 ROY.Y))(X7 o RIX, X)),
=

9(X, X)g(Y,Y) = g(X,Y)g(Y, X)

=K(X,Y)-)_

o=1

3

o 2
|7 e R Y )P,

ii)
CGRkiBjsﬂHXkVﬁangXjVBHSB
B v, v,
(CngjCGgi/jSﬁ _CngSﬁ glﬁj)HXk BQisH XiVsQss

“ORy, 1951 X 0: X0, + R 180Gy 1, X409, X790,

kigj

gus (7 (97" + g9 X Xg) ) XF0.X90,

1 1 v Bi 1 v Bt 5i
§Rkjl 2hg 57 Xn RkjlmXﬁz - %Xﬁszjthﬁ Ji

(@(ng‘g” + gkjgiGQSbeXf)> X*k0; X730,

h .
4hﬁX XPRy "R ”+ 12+h?BX'8RkﬂleB

+

(ﬁ(gkjgis + gkjyi“QSngXf)) Xk0, X0,
2h2 X Rk} mXﬂLXﬁT'Xﬁ

<ﬁ(gkjg + gkjgi“gsz;’fo)> X*0,X30,

1
+ ( (0% + g g X X)) X 0. X0 >
8
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4h2X XPR ™R "g* X*0, X706,
s (9(X, X)gm (6, 0) + g(X, X)gg~1(6, X7)g (6, X7))

_ﬁXﬂXﬁRkumRt. j .irgsaglengXinXjes
+
75 (9(X, X)g=1(0,0) + g(X, X)g=(0, XP)g~1 (0, X7))

gz g T XL X0 Ry "X Ry T X0y x50 R( X))
L+ (0 (X7,0)?) T Iy (T (0 (X7, 0)2)

iii)
CGK(V"w, Va 9)

CGRkaiajasa Vo (yka Vo gia Va yia Ve gsa
(“CGk5a € Ginsa = O Tkasa O Ginga )V whe Ve fia VawiaVa o

CGRk za;a caG

GsoloWrbiw;0s
L

~ Q] ~ ) ~ ~ L
_hznga] (}? 5lk _ Xakalz) _ hzg—QXla(Xazg]k _ Xakg]z)
N L

hothatl ijsk _ kigi
(9767 — g™ 1w sa b o o
< i (h(g P+ gt XX )wk9iwj95>

S (L4 (071 (X% w))? + (971X, 0)?) + a2
ar (L4 (971 (X w)? + (971X, 0))?)

L= ha o +2
2 ha (14 (971X > w))? + (g71(X,0))?)’

where
caG caG caG caG
= (" Gkaje Ginsa = Gkasa  Giaje)wWkbiw;ls

\ ~

(’”+gk“gﬂ’X§X“) (g + 9" g XPX P )wrbiw;0s

(g + "X XY) (g” + 9" g XX wibiw; 0,

b“»—‘ >

1
h2(

L+ (g7H(X " w))* + (9(X7,0))%),
iv) Calculations similar to those in iii) show that
COR(Vaw,V50) =0, for a # .
Therefore, the following theorem holds.

Theorem 7.1. Let (M, g) be a Riemannian manifold and F*(M) be its coframe bundle equipped with Cheeger-Gromoll
metric ©Cg. Then the sectional curvature ¢ K of (F*(M),“C g) satisfy the following:

i)
CCKRMXMY) = K(X, V)= 42 (X7 o R(X,Y))|?, (7.4)
o=1 o
i) »
car(ix, vig) = - XA X)) 75
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iii) y B
1—hg o+2 1
+

CC R (Vay, Vag) —
B ) = e T AT (X)) T (5 (X 0)))

(7.6)

iv)
COK(w,"0) =0, fora # 5,
where K is a sectional curvature of (M, g) and 0 = g~ 00 = (¢"0;;) € S§(M), R( ,X)0 € IH(M).
Theorem 7.2. Let (M, g) be a space of constant curvature x and “C K the sectional curvature of the coframe bundle
F*(M) with Cheeger-Gromoll metric ““g. Then ¢ K(H X, 1Y) is nonnegative if 0 < k < 4/3, ““K (1 X,V50) and
CCK (Vaw, V= 0) are nonnegative if k > 0.
Proof. Since M has constant sectional curvature «,using (7.4), we have

CCRMXMY)=k=)

o=1

3

mgij(XU o R(X,Y))i(X7 o R(X,Y));

=5 =D gy U KD+ (g X TP,
Let {E', E?, ..., E"} be an orthonormal basis for cotangent space T;; M such that E' = X, E? = Y. Then

(971 (X7, X)) + (971 (X7, Z X7, ) = X

which together with | X?|* = 72 < 1+ 12 = h, implies that K (7 X, Y’ is nonnegative if 0 < x < 4/3.
The assertion for ““ K (X, V=0) and ““K (Y>w, V=) is clear by (7.5) and (7.6). O

8. Geodesics of F*(M) with metric ““g

Various problems associated with geodesics in fiber bundles have been very well investigated (see, for
example, [4, p. 70-71, 97-100], [15, p. 57-61, 114-117]). Geodesics of tangent bundle with Cheeger-Cromoll metric
were considered by A. Salimov and S. Kazimova in [13], while the question of geodesics of the cotangent
bundle with a similar metric was touched upon by A. Salimov and F. Agca in [1]. In this section we will
investigate the geodesic curves of the linear coframe bundle F*(M) with the Cheeger-Gromoll metric ““g.

Let C' = C(t) be a curve on the coframe bundle F* (M), locally defined by equations =" = z"(t), 2" = X} (t)
with respect to the natural frame (2%, z%~) = (2%, X{*), where parameter ¢ is the arc length of the curve C. Then
curve C' = 7 o C' on a manifold M is called the projection of curve C. Note that a curve C is locally defined by
equations z" = 2" (t).

By definition, a curve C'is a geodesic of linear coframe bundle F** (M) with the Cheeger-Gromoll metric ““ gif
and only if this curve satisfies differential equations
d ("N  capr 770"
=2 | R 1
dt(dt>+ T ®.1)

with respect to the adapted frame {D;}, where {7’} is a conjugate coframe to the adapted frame {D;}, and

- n ~h B . ~ . .
% = dgg , % = 62([ with respect to a curve C. Using (6.1), equations (8.1) are reduced to

d [ n el dat 1 SX gk
JR— — F/L_ S 7Xa ij J — -2
g\ | g ar T el g g =0 (8.2)

d (X} 1vao mda? da® 1k da? 0XE
dt( dt) 3 X ngz S ar —Vjiar a

+ |- (RPIagat + XPog6]) + Hptgit Xy (83)

6X 6XP
’I‘

=0.

L XBJXB’“X;"}

301 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

On the Differential Geometry of Coframe Bundle with Cheeger-Gromoll Metric

We transform (8.2) as follows
a1 o OX X drk
—xc Rz Jjm J
g Tt T Tar

(8.4)

Now, using identity
1oy mda? da®

2 MmNk g dt
which is a consequence of relation R?;‘k) , =0, we transform (8.3):

52)(;1 v 57 Sa v agd 1+h j «
o [k (XPagat + XOkagel) + e git X,

(8.5)
5XJ] sxp

—
dt dr =0.

+ h%XﬁjXﬁka}
B
Thus we have the following theorem.

Theorem 8.1. Let C be a curve on F*(M) and locally expressed by equations z" = 2"(t), 2 = X f (t) with respect
to the induced coordinates (z*, ') C n="(U) C F*(M). The curve C is a geodesic in F* (M) with the Cheeger-Gromoll
metric ©C g if it satisfies equations (8.4) and (8.5).

If the curve C satisfies at all the points the relation

5xy _ dxy i dijx.ﬂ:o

dt dt The gy i ’ (86)

then the curve C is said to be a horizontal lift of the curve C in M.
As a consequence of equations (8.4), (8.5) and (8.6), we obtain the following.

Theorem 8.2. The horizontal lift of a geodesic in (M, g) is always geodesic in linear coframe bundle F* (M) with the
Cheeger-Gromoll metric ©“g.
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