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Abstract − In this paper, we introduce Smarandache curves of an affine C∞-curve
in affine 3-space. Besides, we present the relationship between the Frenet frames of
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1. Introduction

In the theory of curves in differential geometry, one of the interesting problems studied by many
mathematicians is to characterize a regular curve and give information about its structure. Using
the curvatures κ and τ of a regular curve, its shape and size can be determined, so the curvatures
play an important role in the problem’s solution. The relationship between the corresponding Frenet
vectors of the two curves gives another approach to solving the problem. For example; involute-evolute
curve couple, Bertrand mate curves and Mannheim mate curves result from this relationship. Another
example is Smarandache curves, which are defined as regular curves with the location vector generated
by the Frenet vectors of the regular curve. Smarandache curves have been widely studied in different
ambient spaces ( [1–17]).

While Euclidean differential geometry is the study of differential invariants regarding the group of
rigid motions, affine differential geometry is the study of differential invariants regarding the group of
affine transformations x −→ Ax+ b, A ∈ GL (n,R), b ∈ Rn acting on x ∈ Rn, i.e., nonsingular linear
transformations together with translations, denoted by the Lie group A (n,R) = GL (n,R)× Rn with
a semi-direct product structure, (see [18,19]). Moreover, “affine geometry” is also called “equi-affine
geometry”, where we restrict to the subgroup SA (n,R) = SL (n,R)× Rn of volume-preserving linear
transformations together with translations.

In this paper, we introduce TN , TB, NB and TNB−Smarandache curves corresponding to a
regular C∞−curve in affine 3−space A3. We also establish the relationship between the Frenet frames
of the pair of curves and the Frenet apparatus of each curve.
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2. Basic Concepts

In this section, we give the information to understand the main subjects in this paper (see for
details [20–22]).

A set of points whose elements correspond to a vector of the vector space V over a field is called
the affine space associated with V . We refer to A3 as an affine 3-space associated with R3.

An arbitrary curve α : I ⊂ R→ A3 is called a regular affine curve if for all r ∈ I

det

(
dα

dr
(r) ,

d2α

dr2
(r) ,

d3α

dr3
(r)

)
6= 0

and the arc-length of α is defined as

s (r) :=

∫ r2

r1

∣∣∣∣det

(
dα

dr
(r) ,

d2α

dr2
(r) ,

d3α

dr3
(r)

)∣∣∣∣1/6 dr
Here, s is called the parameter of the affine arc-length if

det

(
dα

ds
(s) ,

d2α

ds2
(s) ,

d3α

ds3
(s)

)
= 1

Remark 2.1. In this paper, the prime denotes differentiation concerning the parameter s, i.e., α′ = dα
ds

etc., while a dot is reserved for differentiation concerning any arbitrary parameter r, i.e., α̇ = dα
dr etc..

For an affine C∞−curve α in A3 parameterized by the parameter of the affine arc-length s, κ and
τ are called the affine curvature and the affine torsion of α given by

κ(s) = det
[
α′(s), α′′′(s), α(iv)(s)

]
(1)

and
τ(s) = −det

[
α′′(s), α′′′(s), α(iv)(s)

]
(2)

From the definition of κ(s) and τ(s), we get

α(iv)(s) + κ(s)α′′(s) + τ(s)α′(s) = 0

that is

d

ds

 α′(s)
α′′(s)
α′′′(s)

 =

 0 1 0
0 0 1
−τ −κ 0

 α′(s)
α′′(s)
α′′′(s)

 (3)

Let us set
T = α′, N = α′′, B = α′′′

Then, we can write the relation (3) as T ′

N ′

B′

 =

 0 1 0
0 0 1
−τ −κ 0

 T
N
B

 (4)

Here, T , N and B are called the tangent vector, the normal vector, and the binormal vector of α,
respectively. Also, {T,N,B} is called an affine Frenet frame of α.

Example 2.2. Let α be an affine C∞−curve in A3 with parametric equation

α(s) = (cos s, sin s, s)



Journal of New Theory 38 (2022) 61-69 / On Smarandache Curves in Affine 3-space 63

The affine Frenet frame of α reads

T (s) = (− sin s, cos s, 1)
N(s) = (− cos s,− sin s, 0)
B(s) = (sin s,− cos s, 0)

It follows that the curvatures of α have the form

κ(s) = det
[
α′(s), α′′′(s), α(iv)(s)

]
= 1

and
τ(s) = −det

[
α′′(s), α′′′(s), α(iv)(s)

]
= 0

Then, we can write  T ′

N ′

B′

 =

 0 1 0
0 0 1
0 −1 0

 T
N
B


3. Smarandache Curves in Affine 3−space

In this section, we consider an affine C∞−curve α and define its affine Smarandache curves in affine
3−space A3. Let α = α(s) be a regular affine C∞−curve with affine Frenet frame {T,N,B} in A3.
Denote by β = β(u) arbitrary affine C∞−curve, where u is the parameter of the affine arc-length of β.

Definition 3.1. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u (s)) =
1√
2

(T (s) +N(s)) (5)

is called the TN−affine Smarandache curve of α.

Definition 3.2. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u(s)) =
1√
2

(T (s) +B(s)) (6)

is called the TB−affine Smarandache curve of α.

Definition 3.3. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u(s)) =
1√
2

(N(s) +B(s)) (7)

is called the NB−affine Smarandache curve of α.

Definition 3.4. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u(s)) =
1√
3

(T (s) +N(s) +B(s)) (8)

is called the TNB−affine Smarandache curve of α.

Next, we obtain the affine Frenet frame {Tβ, Nβ, Bβ} , and the curvatures κβ and τβ of affine
Smarandache curves of α.
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3.1. TN−affine Smarandache curve

Taking the derivatives β(u (s)) concerning u, we obtain

dβ

du
=

dβ

ds

ds

du
(9)

d2β

du2
=

d2β

ds2

(
ds

du

)2

+
dβ

ds

d2s

du2
(10)

d3β

du3
=

d3β

ds3

(
ds

du

)3

+ 3
d2β

ds2
ds

du

d2s

du2
+
dβ

ds

d3s

du3
(11)

and since u is the parameter of the affine arc-length of β, i.e., det(dβdu ,
d2β
du2

, d
3β
du3

) = 1, we can easily
obtain (

du

ds

)6

= det

(
dβ

ds
,
d2β

ds2
,
d3β

ds3

)
(12)

Using the relations (4) and (5) we get

dβ

ds
=

1√
2

(N +B)

d2β

ds2
=

1√
2

(−τT − κN +B)

d3β

ds3
=

1√
2

[(
−τ ′ − τ

)
T +

(
−κ′ − τ − κ

)
N − κB

]
and so, from the relation (12)

du

ds
=

(
1

2
√

2

[(
τ ′ + τ

)
(κ+ 1)− τ

(
κ′ + τ

)])1/6

(13)

Without loss of generality, we assume that du = ds. Then the affine Frenet frame’s vectors are given by

Tβ =
1√
2
N +

1√
2
B (14)

Nβ = − τ√
2
T − κ√

2
N +

1√
2
B (15)

and

Bβ = −τ
′ + τ√

2
T − κ′ + τ + κ√

2
N − κ√

2
B (16)

Differentiating the equation (16) concerning s and using the relations (4) we obtain

B′β = −τ
′′ + τ ′ − κτ√

2
T − κ′′ + 2τ ′ + κ′ + τ + κ2√

2
N − 2κ′ + τ + κ√

2
B (17)

Since B′β = −τβTβ − κβNβ, from the relations (14)-(17) we have

κβ = −τ
′′ + τ ′ − κτ

τ

and

τβ = −τ
′′ − 2κ′τ − τ ′ + τ2 + 2κτ

τ
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Theorem 3.5. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is TN−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by Tβ

Nβ

Bβ

 =

 0 1√
2

1√
2

− τ√
2

− κ√
2

1√
2

− τ ′+τ√
2
−κ′+τ+κ√

2
− κ√

2


 T
N
B

 (18)

and the corresponding curvature κβ and τβ read

κβ = −τ
′′ + τ ′ − κτ

τ
, τβ = −τ

′′ − 2κ′τ − τ ′ + τ2 + 2κτ

τ
(19)

3.2. TB−affine Smarandache curve

Using the relations (4) and (6) we get

dβ

ds
=

1√
2

(−τT − (κ− 1)N)

d2β

ds2
=

1√
2

(
−τ ′T −

(
κ′ + τ

)
N − (κ− 1)B

)
d3β

ds3
=

1√
2

[
−
(
τ ′′ − κτ + τ

)
T −

(
κ′′ + 2τ ′ − κ2 + κ

)
N −

(
2κ′ + τ

)
B
]

and so, from the relation (12)

du

ds
=

(
1

2
√

2

(
− (κ− 1)2

(
τ ′′ + τ

)
+ (κ− 1)

(
τκ′′ + 3ττ ′ + 2κ′τ ′

)
−
(
2κ′ + τ

) (
κ′ + τ

)
τ
))1/6

(20)

Without loss of generality, we assume that du = ds. Then the affine Frenet frame’s vectors are given by

Tβ = − τ√
2
T − κ− 1√

2
N (21)

Nβ = − τ ′√
2
T − κ′ + τ√

2
N − κ− 1√

2
B (22)

and

Bβ = −τ
′′ − κτ + τ√

2
T − κ′′ + 2τ ′ − κ2 + κ√

2
N − 2κ′ + τ√

2
B (23)

Differentiating the equation (23) concerning s and using the relations (4) we obtain

B′β = −τ
′′′ − 3κ′τ − κτ ′ + τ ′ − τ2√

2
T− κ

′′′ + 3τ ′′ − 4κκ′ + κ′ − 2κτ + τ√
2

N− 3κ′′ + 3τ ′ − κ2 + κ√
2

B (24)

Since B′β = −τβTβ − κβNβ, from the relations (21)-(24) we have

κβ = −3κ′′ + 3τ ′ − κ2 + κ

κ− 1

and

τβ = 3κ′ + τ − τ ′′′ − 2κτ ′ + τ ′

τ
− 3κ′′τ ′ − 3(τ ′)2

κ− 1

where κ (s) 6= 1 for all s.
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Theorem 3.6. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is TB−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by Tβ

Nβ

Bβ

 =

 − τ√
2

−κ−1√
2

0

− τ ′√
2

−κ′+τ√
2

−κ−1√
2

− τ ′′−κτ+τ√
2

−κ′′+2τ ′−κ2+κ√
2

−2κ′+τ√
2


 T
N
B

 (25)

and the corresponding curvature κβ and τβ read

κβ = −3κ′′ + 3τ ′ − κ2 + κ

κ− 1
, τβ = 3κ′ + τ − τ ′′′ − 2κτ ′ + τ ′

τ
− 3κ′′τ ′ − 3(τ ′)2

κ− 1
(26)

everywhere κ (s) 6= 1.

3.3.NB−affine Smarandache curve

Using the relations (4) and (7) we get

dβ

ds
=

1√
2

(−τT − κN +B)

d2β

ds2
=

1√
2

(
−
(
τ ′ + τ

)
T −

(
κ′ + τ + κ

)
N − κB

)
d3β

ds3
=

1√
2

[
−
(
τ ′′ + τ ′ − κτ

)
T −

(
κ′′ + 2τ ′ + κ′ + τ − κ2

)
N −

(
2κ′ + τ + κ

)
B
]

and so, from the relation (12)

du
ds =

(
1

2
√
2
(−2(κ′)2τ − 3κ′τ2 − τ3 + κ′′κτ + 3κτ ′τ + 2τ ′κ′κ− κ2τ ′′ + κ3τ + 2(τ ′)2

+κ′′τ ′ − κ2τ ′ + κ′′τ + 2τ ′τ + κ′τ + τ2 − κ′τ ′′ + κ′κτ − τ ′′τ + κτ2 − κτ ′′ − κτ ′)

)1/6

(27)

Without loss of generality, we assume that du = ds. Then the affine Frenet frame’s vectors are given by

Tβ = − τ√
2
T − κ√

2
N +

1√
2
B (28)

Nβ = −τ
′ + τ√

2
T − κ′ + τ + κ√

2
N − κ√

2
B (29)

and

Bβ = −τ
′′ + τ ′ − κτ√

2
T − κ′′ + 2τ ′ + κ′ + τ − κ2√

2
N − 2κ′ + τ + κ√

2
B (30)

Differentiating the equation (30) concerning s and using the relations (4) we obtain

B′β = −τ
′′′ + τ ′′ − 3κ′τ − κτ ′ − τ2 − κτ√

2
T − κ′′′ + κ′′ + 3τ ′′ + 2τ ′ − 4κ′κ− 2κτ − κ2√

2
N (31)

−3κ′′ + 2κ′ + 3τ ′ + τ − κ2√
2

B

Since B′β = −τβTβ − κβNβ, from the relations (27)-(31) we have

κβ = −τ
′′′ + τ ′′ − κ′τ − κτ ′ − κτ + 3κ′′τ + 3τ ′τ + κ2τ

τ ′ + τ + κτ

and

τβ = −κτ
′′′ + κτ ′′ − 3κ′′τ ′ − 3(τ ′)2 − 2κ′τ ′ − 3κ′′τ − 4τ ′τ − 2κ′τ − 3κ′κτ − κτ2 − τ2

τ ′ + τ + κτ
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Theorem 3.7. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is NB−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by

 Tβ
Nβ

Bβ

 =

 − τ√
2

− κ√
2

1√
2

− τ ′+τ√
2

−κ′+τ+κ√
2

− κ√
2

− τ ′′+τ ′−κτ√
2

−κ′′+2τ ′+κ′+τ−κ2√
2

−2κ′+τ+κ√
2


 T
N
B

 (32)

and the corresponding curvature κβ and τβ read

κβ = −
τ ′′′ + τ ′′ + 3κ′′τ + (3τ − κ) τ ′ − κ′τ +

(
κ2 − κ

)
τ

τ ′ + τ + κτ

τβ = −κτ
′′′ + κτ ′′ − 3 (τ ′ + τ)κ′′ − 3(τ ′)2 − 2κ′τ ′ − 4τ ′τ − (2τ + 3κτ)κ′ − (1 + κ) τ2

τ ′ + τ + κτ
(33)

3.4. TNB−affine Smarandache curve

The next theorem can be proved analogously as in the previous three cases.

Theorem 3.8. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is TNB−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by

 Tβ
Nβ

Bβ

 =

 − τ√
3

−κ−1√
3

1√
3

− τ ′+τ√
3

−κ′+τ+κ√
3

−κ−1√
3

− τ ′′+τ ′−(κ−1)τ√
3

−κ′′+2τ ′+κ′−κ2+τ+κ√
3

−2κ′+τ+κ√
3


 T
N
B

 (34)

and the corresponding curvature κβ and τβ read

κβ = −τ
′′′ + τ ′′ + 3κ′′τ + (3τ − κ+ 1) τ ′ − κ′τ − κ2τ

τ ′ + κτ

τβ = −(κ− 1)τ ′′′ + (κ− 1)τ ′′ − 3(τ ′ + τ)κ′′ − 3(τ ′)2 + (κ− 1)τ ′ − (3κ− 1)κ′τ − (4τ + 2κ′) τ ′ − κτ2

τ ′ + κτ

4. Conclusion

Recently, many studies have been done on the curve theory in affine 3-space (see [23–26]). However,
until now, Smarandache curves in affine 3-space have not been defined and their characteristics have
not been examined. Therefore, in this paper, TN , TB, NB and TNB-Smarandache curves whose
position vector are made by Frenet frame vectors on another regular affine C∞-curve α with the affine
Frenet frame {T,N,B} in affine 3-space A3 are introduced. The affine curvature κβ , the affine torsion
τβ, and the expression of the affine frame vectors {Tβ, Nβ, Bβ} of Smarandache curves are obtained.
Also, the relationship between the Frenet frames of the curve α and Smarandache curves is given.
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