

International Journal of

Intelligent Systems and

Applications in Engineering

Advanced Technology and Science

ISSN:2147-67992147-6799 www.atscience.org/IJISAE Original Research Paper

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(3), 49–56 | 49

Using Word Embeddings for Ontology Enrichment

İzzet Pembeci1*

Accepted 11th July 2016 DOI: 10.18201/ijisae.58806

I: 10

Abstract: Word embeddings, distributed word representations in a reduced linear space, show a lot of promise for accomplishing Natural

Language Processing (NLP) tasks in an unsupervised manner. In this study, we investigate if the success of word2vec, a Neural Networks

based word embeddings algorithm, can be replicated in an agglutinative language like Turkish. Turkish is more challenging than languages

like English for complex NLP tasks because of her rich morphology. We picked ontology enrichment, again a relatively harder NLP task,

as our test application. Firstly, we show how ontological relations can be extracted automatically from Turkish Wikipedia to construct a

gold standard. Then by running experiments we show that the word vector representations produced by word2vec are useful to detect

ontological relations encoded in Wikipedia. We propose a simple but yet effective weakly supervised ontology enrichment algorithm where

for a given word a few know ontologically related concepts coupled with similarity scores computed via word2vec models can result in

discovery of other related concepts. We argue how our algorithm can be improved and augmented to make it a viable component of an

ontology learning and population framework.

Keywords: Neural Language Models, Word Embeddings, Ontology Enrichment, Ontology Population.

1. Introduction

Capability of collecting huge amounts of textual data from the Web

resulted in new Information Extraction and Machine Learning

algorithms for primary and secondary Natural Language

Processing (NLP) tasks. The attractiveness of these new

algorithms is that, in tandem with the nature of the data, they are

mostly unsupervised or weakly supervised, thus eliminating the

need of creating large labelled datasets for languages where NLP

studies are not as mature as languages like English.

In their NLP from scratch approach, Collobert et al. showed that

multilayer neural networks (NN) can be used for transforming

words to feature vectors which are called word embeddings or

word representations. Then, just with the help of these word

vectors, they demonstrate how to solve standard NLP tasks like

Part-of-Speech tagging, chunking (shallow parsing), Named Entity

Recognition (NER), and Semantic Role Labelling in a quite

effective manner [1]. Later, Mikolov et al. introduced new neural

network based models which can be trained efficiently with

billions of words and for vectors with much higher dimensions [2].

Distributed vector representations learned by their so called

word2vec models proved to capture precise syntactic and semantic

word relationships [3] in an impressive way.

The main goal of this study is to investigate the usefulness of

word2vec models for ontology enrichment under a

morphologically rich language like Turkish. Ontology population

can be described as automatic construction of an ontological

knowledge base for a specific domain in an unsupervised way,

rather than manually building one. Again, Web and other domain-

dependent digital corpora (i.e. hospital patient records) can be used

as data sources for such a task [4]. Ontology learning or enrichment

methodologies on the other hand are used for extending an existing

ontology with additional instances and relations. Since for Turkish

we do not have any benchmark, challenge or competition datasets

like in English to evaluate our word embeddings approach, we used

the Turkish Wikipedia (Vikipedi) to construct a golden standard.

Using Wikipedia’s rich semi-structured data in this manner

coupled with word2vec’s generality has the additional benefit of

contributing to ontology population and learning literature where

domain-independent, open, semi-automatic, and unsupervised or

weakly supervised methods are favoured over other approaches

[5], [6].

2. Word Embeddings Using word2vec

In statistical language modelling, word embeddings (or word

representations) are used to group similar words together by

representing each word as a k-dimensional vector in ℝk. A good

embedding should result in word vectors such that the closer the

vectors are (i.e. according to their cos distance) the more similar

their corresponding words should be. Such word embeddings can

be produced in two different but very similar ways using word2vec

NN models. In Continuous Bag-of-Words (CBOW) architecture,

the context, i.e. words surrounding the target word in a sentence,

predicts the current word and in Skip-gram model the current word

predicts the context words (Figure 1).

1 Muğla Sıtkı Koçman University. Department of Computer Engineering.

* Corresponding Author: pembeci@gmail.com

Figure 1. CBOW (left) and Skip-gram (right) models. w(t) is the

current word, w(t+i) and w(t‒i) are the context words.

50 | IJISAE, 2016, 4(3), 49–56 This journal is © Advanced Technology & Science 2013

The network should be trained from a big corpus where each word

in each sentence and its context is regarded as a training instance.

Once training is completed the learned weights from the input layer

to hidden layer (for Skip-gram) or from the hidden layer to output

layer (for CBOW) are regarded as the corresponding word vectors.

The theoretical training objective of these models is maximizing a

softmax function over all the words in the vocabulary in each

training step. Since this objective is impractical, Mikolov et al.

proposed efficient approximations of hierarchical softmax and

negative sampling [3]. They also incorporated a heuristics for

subsampling of frequent words to reduce training time further. We

refer the interested reader to [7] for details of how these NNs can

be setup and trained.

word2vec impressed NLP researchers not only with its state-of-

the-art performance at detecting similar words like Italy or France

but semantic relations like capital-of-country or maleness-

femaleness seem to be captured by the vector space it produces as

well. For instance, the closest vector to the result of vector

calculation vec(“Madrid”) ‒ vec(“Spain”) + vec(“Turkey”) is found to

be vec(“Ankara”) or vec(“king”) ‒ vec(“man”) + vec(“woman”) is

closest to vec(“quenn”). Similarly vec(“Russia”) + vec(“river”) is

close to vec(“Volga River”) or vec(“Germany”) + vec(“capital”) is

close to vec(“Berlin”). Using vector arithmetics, non-trivial

syntactic similarities can be also detected: mouse-mice, ethical-

unethical, lucky-luckiest, or swimming-swam.

The success of word2vec on analogical reasoning tasks mentioned

above renewed research interest on word representations. GloVe

algorithm [8] combines global matrix factorization methods used

in latent semantic analysis with word2vec’s local context window

method to produce vectors and WordRank [9] uses a robust

ranking model to achieve the same. [10] Describes how word2vec

can be extended into the paragraph and document level from

sentence level and Item2Vec [11] introduces an item-based

collaborative filtering algorithm based on word2vec. By replacing

words with vertices of a random walk in a graph, word2vec

inspired algorithms can be even used to learn latent representations

in a graph and then solve multi-label network classification tasks

for social networks like Flicker and YouTube [12]. [13] Advocates

1 https://tr.wikipedia.org/wiki/Konya

and introduces a methodology for learning word representations in

the space of Gaussian distributions instead of vectors. To explain

and understand the reasons of word2vec and related algorithms’

good performance [14] provides some empirical and theoretical

insights and [15] shows that word2vec implicitly factorizes a word-

context matrix, whose cells are the pointwise mutual information

of the respective word and context pairs.

In this paper, we are looking at how much word2vec’s, and thus

word embeddings’, success in NLP tasks can be reproduced in an

agglutinative language like Turkish in which from the same root

many words can be formed via very productive inflectional and

derivational morphotactic. To explore this in the context of a non-

trivial and complex NLP task, we extracted ontological concepts

and relations from Vikipedi and compared word2vec word

similarity measures on these relations. In addition to testing

word2vec performance in a more challenging language, we

conjecture that the success of such comparisons would mean using

word2vec as a useful component of a domain-independent

ontology population and enrichment framework is a viable

approach.

3. Wikipedia as an Ontology Source

Researchers used crowdsourced content of Wikipedia as a resource

for ontology learning and population successfully in many

different ways [16][17][18][19]. Knowledge bases (or knowledge

graphs), which are in fact large-scale, multilingual, spatially and

temporally enhanced ontologies, like DBpedia [20] or YAGO2

[21], were also built by the help of Wikipedia.

What makes Wikipedia unique and very useful for these purposes

is not just that the articles in Wikipedia are high volume, high

quality, and comprehensive but also the community put a lot of

effort to enrichen the articles with components like infoboxes or

categories to increase site’s usability and navigation. In addition to

the internal links between articles, these components can be

exploited for extracting ontological instances and relations by

using lexico-syntactic patterns [22][23], or graph theoretical means

[24][25]. Consider the Vikipedi article for city of Konya1. It has an

a) Infoboxes b) Templates

c) Categories

Figure 2. Components of Vikipedi Konya article: a) A city infobox b)Templates c)Categories. The parts marked show the places
where ontological relations of Table 1 can be extracted from.

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(3), 49–56 | 51

infobox (Figure 2a) at the top of the article, templates (Figure 2b)

and categories (Figure 2c) at the end. The wiki mark-up (content)

of these components and also their existence can be used to infer

many ontological relations of Konya like the ones demonstrated in

Table 1.

Relation Extracted from

Konya is_a City existence of infobox

Konya located_in Turkey infobox content

Konya license_plate_number 42 infobox content

Selçuk Üniversitesi is_a University template header

Çatalhöyük located_in Konya template header & content

Akşehir is_a district template title & content

Akşehir district_of Konya template title & content

Konya is_a Ancient Greek City category

Konya is_a Holy City category

Ahmet Hilmi Nalçacı mayor_of Konya category page content2

4. Our methodology

To create our corpus for training the word2vec model, we scraped

265 thousand columns from 28 different Turkish newspapers and

1734 columnists. Some basic preprocessing like removing

symbols, html tags, numbers etc. left us with 107 million words

(tokens) in 5.8 million sentences and a vocabulary size of 2 million

word types. If we drop the less frequent words whose count is less

than 20 then we are left with 323 thousand unique word types (%16

of original) and 100 million words (%93 of original). We

intentionally did not perform any language specific preprocessing

like stop-word removal, stemming or POS tagging before training

to see word2vec’s performance in a raw setup.

4.1. Training the word2vec model

As in [3], before we started training we constructed phrases

(multiword expressions) from our corpus since most of the

concepts we will be dealing with during our Vikipedi tests will

consist of such collocations. We used a simple approach based on

unigram and bigram counts. Two subsequent words 𝑤𝑖 and 𝑤𝑗 are

assumed to form a phrase if their score as given below is greater

than a threshold parameter:

𝑠𝑐𝑜𝑟𝑒(𝑤𝑖, 𝑤𝑗) =
(𝑐𝑜𝑢𝑛𝑡(𝑤𝑖𝑤𝑗) − 𝛿) × 𝑁

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖) × 𝑐𝑜𝑢𝑛𝑡(𝑤𝑗)

Here, 𝛿 is used to eliminate infrequent collocations (we set it to 10)

and 𝑁 is the total vocabulary size. We set the scoring threshold as

20. We apply phrase construction in two passes to be able to

capture trigrams and four grams as well. For instance, in the first

pass new york, barack_obama, usa_president, or ahmet_hamdi will

be constructed and since these are considered as word units in the

second pass, now we can detect phrases like new_york_times, new

york_mets, ahmet_hamdi_tanpınar, or usa president barack obama.

Although optimizing the word2vec parameters was outside the

scope of this paper, we did some experiments similar to the ones

2 https://tr.wikipedia.org/wiki/Kategori:Konya_belediye_başkanları
3 https://dumps.wikimedia.org/trwiki/20160501/

explained in the next section to chose the most fundamental

parameters in a sensible manner and consistent with our dataset.

We observed that Skip-gram performs better than CBOW as

reported in other papers which involve NLP tasks more semantic

oriented like ours. We did not see much difference with negative

sampling or hierarchical softmax so we chose the former because

of less training time. We set context window size to 10 (in each

direction) to cover almost all of a sentence since in Turkish verbs

are at the end, negative sample numbers to 5, and subsampling

threshold frequency as 0.001. We trained the model with shuffled

documents in each iteration not to introduce any bias for some

words when the learning rate is high at the beginning of the

training. We trained for 100-dimension word vectors (higher

values like 500 actually produced worse initial similarity results

and training took much longer).

4.2. Obtaining ontology information from Vikipedi

In order to create a gold standard of concepts related to each other

based on Turkish Wikipedia, we used the dump file3 produced on

2016-05-01 consisting of 1.4 million pages. After filtering the meta

pages, specific namespaced pages (i.e. community portals)

media/file descriptions etc., we are left with 765 thousand article

and category pages. Next, going over these pages we created a

directed graph 𝑮 where nodes refer to articles, categories, or

templates and edges refer to the relations between them as encoded

in Vikipedi. As a result, 𝑮 consists of 6 different types of nodes

and 8 type of edges as described in Table 2. Only edges with target

nodes of type W has weight 1, others have weight 0. Weights will

be useful for our traversing algorithm.

The main node type in 𝑮 is actually W which corresponds to the

real article pages. The other ones are required to traverse 𝑮 to find

ontologically related words to a given word as will be explained

shortly. Redirection pages (WR) help Wikipedia users to search for

NODES

Label Purpose

W Word node. Title of an Article page.

WR Word node. Title of a redirection page.

WD Word node. Title of a disambiguation page.

WS Word node. Surface form of a link.

C Category node. Title of the page.

T Template node. Name of the template.

EDGES

Label weight Source (from) Target (to)

link 0/1 W { W, WR, WD }

redirect 0/1 WR { W, WR, WD }

disambiguate 0/1 WD { W, WR, WD }

surface 0/1 WS { W, WR, WD }

cat_word 0/1 C { W, WR, WD }

word_cat 0 W C

rel_cat 0 C C

cat_templ 0 C T

word_templ 0 W T

templ_word 1 T W

Table 1. Ontological relations that can be extracted from the components

of Vikipedi Konya article. See Figure 2 to get an idea about how these

relations can be extracted from article’s page.

Table 2. Types of nodes and edges of 𝑮 which encodes the

relations found between different types of pages in Vikipedi

52 | IJISAE, 2016, 4(3), 49–56 This journal is © Advanced Technology & Science 2013

an alternative name of a concept and to be redirected automatically

to the page whose title considered to be more authoritative by the

editors. For instance, the page “ABD” (“USA”) will be redirected

to the page “Amerika Birleşik Devletleri“ (United States of

America). Disambiguation pages (WD) have a similar purpose but

this time the entry point cannot be mapped to another article

unequivocally (i.e. editors cannot be sure of the intent of the user)

so these pages list all the possibilities as links to articles. As an

example, “Menderes” disambiguation page contains 14

alternatives from divergent categories like geography (a river, a

national park), location (a district, a village, a neighbourhood),

people, universities or airports. WS nodes are extracted from link

texts. Sometimes in an article one cannot use the real title as a link

in a sentence (i.e. in “Dolphins are smart marine mammals.”, plural

“marine mammals” is a link to the singular title “Marine

mammal”) or it is more convenient, readable to refer to the article

in another way (i.e. “President Obama” is a link to the article

“Barack Obama”). We need to know these connections and have

corresponding edges since in our corpus, we will very possibly

encounter such alternative usages. Since Wikipedia is not perfect

and evolves in time, an old link, redirection page or disambiguation

item can refer the user to pages which are not actual article pages

but further redirection pages etc. that need to be followed through

to get to the desired article.

We extract the word_cat relations from the category links at the

bottom of the articles (Figure 2c). Category pages (C nodes) are

designed to help the user to find and discover related articles.

These pages can both contain links to normal articles (cat_word

edges) and to other related categories (rel_cat edges). We manually

filtered some of the categories which were too broad, and/or not

encoding a very meaningful or useful ontological relation (i.e.

“People born/died in year X” or “Turkish words borrowed from

French”).

Finally, we extracted the templates (T nodes) from the top and

bottom of the article markup. The topmost templates in an article

are generally used for category specific infoboxes (Figure 1a) and

the bottom ones as seen in Figure 2b and Table 1 also carry

ontological value. We found out that templates inside the articles

are generally more editorial (i.e. “this needs a citation”,

“newspaper source”) and would not help much for our purposes.

We did not include the links found in template pages since these

may be very irrelevant (i.e. “Zaman Dilimi” (timezone) link in

Konya’s city infobox) but templates are still useful since we can

deduce that their neighbours (i.e. articles sharing the same

template) are instances of the same ontological category.

templ_word edges are the counterparts of each word_templ edge

found (i.e. bidirectional links).

The idea behind constructing a graph like 𝑮 is starting from a word

node and traversing the graph from that node for the closest

neighbours will give us ontologically related words to the original

word. Most of the related words found will be in the same

ontological category as the original word (i.e. they share the same

hypernym Y’s as in “X is a kind of Y”) but we will encounter other

relations as well. After achieving such a list then we can run

experiments and measure how much words in this list are

considered to be similar (i.e. words’ vectors are closer) to the

source node word by the word2vec algorithm. Higher similarity

scores will indicate that word2vec is a feasible option as the basis

of an ontology enrichment algorithm.

The output of our traversal algorithm customized for 𝑮 will be

denoted in this paper as neighborsw,d which can be interpreted as

all neighbours of starting node word w whose distance to w is at

most d steps. neighborsw,d has the following properties:

 A word v is in neighborsw,d if and only if, type of v is W and

there is a path from w to v whose weight total is at most d.

Thus, we are not interested in category or template nodes in

our final results since these do not correspond to ontological

concepts.

 We follow rel_cat edges only if the ratio of the degree of the C

nodes in question are below a threshold.

 We follow link edges only if the link is bidirectional. That is

there should be also a link edge from v to w.

The first property means that we are using nodes of type WR, WD,

C, T as stepping stones only. We are not counting them while

checking the d-steps criteria or returning them as neighbours. WS

has only outgoing edges so they will not be part of any path and

will be only helpful during the experiments in case we need to

know alternative usages of a word. WR, WD nodes will be also

helpful for this. The last two conditions are added not to dive into

the regions of 𝑮 during traversal which may be only marginally

related to the original word.

5. Experiments and Results

In addition to using neighborsw,d to prepare the test data for our

experiments, we will refer to sim(w1,w2) as the similarity score

computed by our word2vec model which is the cosine distance

between the normalized vectors corresponding to w1 and w2.

Consequently, a similarity score closer to 1.0 will mean more

similar words. We will also use most_similar(w, topn) notation for

the topn words whose similarity score to w is the highest.

model_word(w) will map a word in 𝑮 to its counterpart in word2vec

Figure 3. The distribution of vectors of randomly chosen words similar (score ≥ 0.60) to seed words (listed at right) visualized in

2D, preserving their closeness in the original vector space.

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(3), 49–56 | 53

vocabulary. Most of the time this will be the same word but

sometimes we need to follow redirection and disambiguation links

in reverse. For instance, the title/node “Bitlis_(il)”

(“Bitlis_(province)”) will not be found in word2vec vocabulary but

it has an incoming edge from the “Bitlis” disambiguation node

which is of course how it is mentioned in our corpus.

Experiment 1: Our first experiment was about finding out if

word2vec can achieve good separation between words which

belong to different ontological categories. If it fails to do so there

was not much point to pursue this research further. To test this we

selected 11 seed words belonging to diverse categories. Then for

each seed word w, we get neighborsw,2 and selected 25 words

randomly from this set whose similarity score with the seed was

higher than 0.60. We used t-SNE [26] to visualize the closeness of

selected words’ vectors in 2D space. As it can be seen in Figure 3,

the results were pretty encouraging since words generated from the

same seed show strong clustering effects. Additionally, the clusters

of people (a scientist and a politician), the clusters of a vegetable

and an animal, and clusters of a district and a mountain in Turkey

were close to each other since the contexts of these pair of words

can be expected to be more similar than the others. Clusters of non-

Turkish proper name seeds “Porsche”, “Zeus”, “Belgium” and

“Albert Einstein” also span the same bottom left region.

Admittedly, not all categories produce such sharp clusters. Movie

names for instance tend to be underrepresented in our corpus.

word2vec as being an NN algorithm needs a lot of examples to

converge a word’s vector to a point in space, so vectors of less

frequent words are more distributed (i.e. more randomly placed) in

vector space. Additionally, some movie names (i.e. Independence)

are used mostly in non-movie contexts which eventually determine

their vector representation. The latter phenomenon can be also

observed with our seed word “karga” (“crow”) in Figure 3 since

animal and bird names can be used in literal ways as in idioms.

This produces many different and unrelated contexts for such

words and thus making the clustering effect weaker.

Experiment 2: Next, we wanted to look at how much the good

results of previous experiment can be generalized for the other

concepts in 𝑮. To do that, first for each node w in 𝑮 with label W

we get its test set (neighborsw,1 but if it contains less than 20 words

then neighborsw,2). Then, we mapped each word in the test set to

its counterpart u by model_word and apply sim(w,u) to get the

similarity scores. Finally we sort the words u according to their

scores. What we wonder is what will be the distribution of these

scores for 1st,10th,20th,50th, 100th and 200th ranked similar words.

Figure 4 shows these distributions as boxplots. As expected for the

most similar word (1st) word2vec returns quite high similarity

scores. What may be surprising is that there does not seem to be

much difference between the scores of the 20th and 100th words and

even for the 200th word there are quite a number of seed words

where the score is greater than 0.7. The rightmost boxplot in Figure

4 shows the distribution of similarity scores for randomly produced

5000 pair of words to show that scores returned are relevant to

detect relatedness. The good performance of the 200th words can

be explained by the fact that if a word in G has that much

ontological relations then we can expect that in the corpus there

also many example sentences for that word and similar words.

Many similar words and contexts means word2vec can do better

inferences between two words and more confidently return high

similarity scores. On the other hand if the test set size of a word w

is small (i.e. less related pages, categories etc. in Wikipedia) than

it is more likely that w does not belong to a strong ontological

category. It also helps that as an encyclopaedia, Wikipedia is rich

for named entities like people or place names which are much

easier to be categorized and these concepts are also mentioned in

our newspapers corpus frequently.

To test the relation of scores and test set size (i.e. how much

connected a node in G is which in turn implies how rich its set of

ontological relations) we also looked at the mean scores of the first

50 closest words for different groups of test set size. As it can be

seen in Figure 5, the words with test set size greater than 250 have

the best scores (mean of group 0.64, max 0.91), meanwhile when

the test set size is less than 50 we get relatively worse scores (mean

of group 0.44, max 0.78).

Experiment 3: Assuming we have concluded by the previous

experiments that word2vec similarity results, i.e. closeness of word

vectors, are capturing ontological relations between words, we

now present an algorithm that can be used for ontology enrichment.

Let’s assume that in an existing ontology for a concept 𝑤, we

already have η other related concepts. We will call this set

𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑤). We first find out new candidates that may be related

to 𝑤 using word2vec:

𝑉(𝑤) = 𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑤) ∪ {𝑤}

𝛼𝑣 = {
1 , 𝑖𝑓 𝑣 = 𝑤
𝛼 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (0 < 𝛼 < 1)

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑤) = ⋃ 𝑚𝑜𝑠𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑣, 𝑡𝑜𝑝𝑛 = 𝛼𝑣 ∗ 𝛿)𝑣 ∈ 𝑉(𝑤)

Then for each word 𝑢 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑤) we calculate a relatedness

score:

Figure 4. Distribution of similarity scores for the
ontologically related words of every word in G

according to their ranks.

Figure 5. Histograms of mean similarity scores of the first 50 most similar

words grouped by how many words (size of test set) are found to be related to

the seed word in 𝑮. For the words with more ontological relations (i.e. higher

size), the scores tend to be higher.

54 | IJISAE, 2016, 4(3), 49–56 This journal is © Advanced Technology & Science 2013

𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑤) = {
𝜇 ∗ 𝑠𝑖𝑚(𝑢, 𝑤) , 𝑖𝑓 𝑢 ∈ 𝑚𝑜𝑠𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑤, 𝑡𝑜𝑝𝑛 = 𝛿)
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑐𝑜𝑟𝑒(𝑢) = 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑤) + ∑ 𝑠𝑖𝑚(𝑢, 𝑟)
𝑟 𝑖𝑛

𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑤)

𝑎𝑣𝑔𝑤 = 𝑚𝑒𝑎𝑛({ 𝑠𝑐𝑜𝑟𝑒(𝑢) ∀ 𝑢 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑤) })

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤 = { 𝑢 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑤) 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒(𝑢) > 𝑎𝑣𝑔𝑤 }

We select 𝑢’s as new concepts related to 𝑤, if 𝑠𝑐𝑜𝑟𝑒(𝑢) is higher

than 𝑎𝑣𝑔𝑠𝑐𝑜𝑟𝑒. The constant 𝛿 will control how many candidate

words will be evaluated. Higher values can be expected to increase

recall but decrease precision. 𝜇 and 𝛼 will control how much

similarities to the original word will have an effect on the score and

the initial candidates set. In a more complex algorithm, these

constants may depend on 𝑤 and selected by checking the graph

properties of 𝑤 and 𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑤).

To test our enrichment algorithm, first we selected 12K word nodes

from G and then for each node w, selected η=12 related concepts

randomly from neighborsw,1 and used the rest of neighborsw,1 as a

hold-out set. We set 𝛿 as 400 and 𝛼 as 0.2. We set 𝜇 as 2.5 to give

a chance to some words which are not detected as very similar to

𝑤 by word2vec but regarded to be similar to most of the words in

𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑤). Note that some of the words in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑤) will not

exist in 𝑮 and they will be eliminated right away. With this setup

and algorithm, we get the suggestions for each word w in our test

set. For some of the words we tested either model_word did not

return any results, or there were not η related concepts in 𝑮 to run

the algorithm, or 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑤) did not contain any words in 𝑮.

After these misses, we are left with results for 9K words to evaluate

our algorithm. For each 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤 set which contains newly

discovered ontologically related concepts by our word2vec based

population algorithm, we check how many of them are really in

hold-out set of neighborsw,1 and denote these successful guesses

as 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑤 and the ratio of |𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑤 |/ |𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤| as

success_ratew.

The total of newly discovered relations are 178K, where the mean

of |𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤| is 44.9 and mean of |𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑤| is 20.5 giving us a

mean success_ratew of 40.1%. Figure 6a shows how success_ratew is

distributed according to the first nth highest scored guesses (1-10,

1-25, 1-50, 1-75, and 1-100). The boxplots show the interquartile

range (25%-75%), the median, and the whiskers correspond to the

10% and 90% percentiles. As observed in Experiment 2, the more

guesses returned by our algorithm the higher success rate is. This

can be also observed in Figure 6b which this time shows the same

distribution not cumulatively but in various rank slices (1-10, 11-

20, 21-40, 41-60, 61-80, 81-100). For the words where

|𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑤| ≥ 80, we can see that the median success rate jumps to

around 80% even for the guesses ranked worse than 80. This

phenomenon shows that there are certain types of concepts (e.g.

country and politician names) which are found in our corpus both

frequently and in similar contexts and these concepts are also

highly connected and well covered in Wikipedia as it is being an

encyclopaedia. The good news is our algorithm was successful to

detect these concepts with only the help of word embeddings

without any built-in language or domain knowledge. Figure 6c

shows how the success rate is distributed against |𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤|. The

darker hexes correspond to higher values of (success_ratew ,

|𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤|) in our experiment’s results. As it can be seen in the

graph, there is a concentration of results where success_ratew > 0.8

or |𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤| > 75. Next, we checked if these results are really an

c) b) a)

Figure 7. Scatter plot, regression and kernel density estimations for comparing the distributions of |𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤|, success_ratew ,

|success_w| (x axis from left to right) vs. mean_scorew (y axis).

a) b)

c)

Figure 6. Distribution of success rate results for each word: a) how success rate changes for the first
1st- nth words with highest score, b) how it changes for slices of rank (suggested words whose score

puts them between nth-mth) c) how it changes according to how many words are suggested by the

algorithm. Darker cells mean more results.

This journal is © Advanced Technology & Science 2013 IJISAE, 2016, 4(3), 49–56 | 55

effect of the good similarity scores returned by word2vec for the

ontologically related concepts or not. To do that, we calculated

mean_scorew which is the mean score of the first 40 (in average

~50% percent of words in a test set) highest scored guesses in

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤 for each w in our test set. Different values of mean_scorew

for words w1 and w2 can be seen as a proxy of how much confident

word2vec was when declaring two words as similar to w1 or w2.

Figure7 compares distribution of mean_scorew vs. various other

variables in our experiment’s results. Each blue dot corresponds to

an experiment data point for a particular w, contour lines show the

kernel density estimations of the bi-variate distribution, and blue

line is the linear regression line between the two variables. First, in

Figure 7a at left, we looked at the correlation between mean_scorew

and |𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤|. We see that higher similarity scores mean more

concepts are detected from 𝑮. This can potentially cause more

failures (i.e. detected concept is in G but not in out hold-out set),

but on the contrary the success_ratew is also increasing with better

similarity results as shown in Figure7b. As a result of more guesses

which are also more correct |𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑤| is not surprisingly

correlated with mean_scorew too.

6. Conclusion

We show that word embeddings produced by the word2vec NN

models can be quite effective for detecting ontologically related

concepts and present an algorithm demonstrating how distance

between word vectors regarded as similarity scores can be

employed for ontology enrichment. Since this was an initial

investigation of whether this methodology would be viable for

ontology related NLP tasks, there are a lot of potential for

improvement.

Firstly, as demonstrated in Figure 7 and discussed above, better

similarity scores will result in more extracted relations which turn

out to be also more correct. Word2vec has a lot of parameters and

various running options that can be fine tuned to achieve better

separation of vectors, thus better similarity scores. Additionally,

preprocessing of the corpus can be also improved to give the model

the ability to distinguish words with multiple meanings. As it can

be seen in Figures 7b and 7c, we have a lot of cases where the

success rate is zero dragging down our overall performance results.

Manual inspection of these cases shows that some of these failures

are due to Wikipedia including a word in sense a, but our corpus

dominantly including the same word in sense b. Because of this

observation, we believe that any corpus preprocessing that may

help with word-sense disambiguation, e.g. applying

morphological analysis, POS tagging etc., will eliminate most of

these cases and improve performance.

Manual inspection also shows that most of the failures may be

avoidable with post-processing 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑤. Some failures are

because of common typos or different spellings of foreign names

(e.g. Syria’s president’s last name is written as Esad or Esed in

newspapers but the latter relatively new and possibly incorrect

usage is not present in Vikipedi). Some of them due to offering a

phrase that makes sense in our corpus (e.g. for “belgium”, phrase

“denmark_norway” is found as related) but have no place in an

encyclopaedia as a separate concept. We used Wikipedia as golden

standard to fully automate our methodology but of course

Wikipedia is neither perfect nor complete. Accordingly, we also

observed that our algorithm returns many concepts which could be

regarded as ontologically related to the original word but marked

as failure either because Vikipedi lacks the concept overall or the

concept was not properly categorized or redirected by the editors.

For instance, there is no redirection or disambiguation page

“Morales” so when it is returned in lieu of Bolivian President “Evo

Morales” by our algorithm, it is marked as a failure directly

without checking the relation. Similarly, Vikipedi looks like

missing many Turkish color names and colloquial medical terms.

We are planning a human panel study to evaluate the extent of such

failures which may be actually regarded as success.

Second source of improvements can come from using the full

power of the graph 𝑮 we constructed. Graph properties and

algorithms like degree centrality, betweenness centrality,

eigenvector centrality, random walks, clique detection etc. can be

used for:

 Better detection and avoidance of category and templates which

are too broad to represent meaningful ontological relations.

 Customizing the parameters of our enrichment algorithm for the

current w, instead of using global constants. For instance, 𝛼𝑣, 𝛿

can be set higher for more connected word nodes to detect more

relations.

Our current algorithm detects ontological relations but does not

specify which relation. This can be also solved by combining

word2vec’s similarity scores and current ontological knowledge in

Wikipedia. Even a naïve approach like assigning the relation by

comparing the discovered concept’s word2vec similarities to the

known related words in different categories may produce

acceptable results. We concentrated on ontology enrichment in this

study but with these kind of improvements and adding clustering

to the mix, word2vec also shows promise to be a core component

of a framework for ontology population from scratch.

Acknowledgements

We want to thank Bekir Taner Dinçer for setting up the high

performance machine on which we were able to perform this

study’s intensive time-consuming computations. We thank Fatma

Aşık for scraping the data set we used in a clean way. Finally, our

thanks goes to Radim Řehůřek for implementing and open-

sourcing a fast word2vec implementation in the python Gensim

topic detection library [27] and to Gordon Mohr for his very

helpful suggestions and explanations on Gensim’s API.

References

[1] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K,

Kuksa P. 2011. Natural language processing (almost) from

scratch. The Journal of Machine Learning Research.

12:2493-537.

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

2013. Efficient Estimation of Word Representations in

Vector Space. In Proceedings of Workshop at ICLR.

[3] Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013.

Distributed representations of words and phrases and their

compositionality. In Advances in Neural Information

Processing Systems (pp. 3111-3119).

[4] Petasis G, Karkaletsis V, Paliouras G, Krithara A, Zavitsanos

E. 2011. Ontology Population and Enrichment: State of the

Art. In Knowledge-Driven Multimedia Information

Extraction and Ontology Evolution (pp. 134-166). Springer-

Verlag.

[5] Zouaq A, Gasevic D, Hatala M. 2011. Towards Open

56 | IJISAE, 2016, 4(3), 49–56 This journal is © Advanced Technology & Science 2013

Ontology Learning and Filtering. Information Systems.

36(7):1064-81.

[6] Tanev H, Magnini B. 2008. Weakly supervised approaches

for ontology population. In Proceeding of the 2008

conference on Ontology Learning and Population: Bridging

the Gap between Text and Knowledge (pp. 129-143).

[7] Rong X. 2014. word2vec parameter learning explained.

arXiv preprint arXiv:1411.2738.

[8] Pennington J, Socher R, Manning CD. 2014. Glove: Global

Vectors for Word Representation. In EMNLP 2014 (Vol. 14,

pp. 1532-1543).

[9] Ji S, Yun H, Yanardag P, Matsushima S, Vishwanathan SV.

2015. WordRank: Learning Word Embeddings via Robust

Ranking. arXiv preprint arXiv:1506.02761.

[10] Le QV, Mikolov T. 2014. Distributed representations of

sentences and documents. arXiv preprint arXiv:1405.4053.

[11] Barkan O, Koenigstein N. 2016. Item2Vec: Neural Item

Embedding for Collaborative Filtering. arXiv preprint

arXiv:1603.04259.

[12] Perozzi B, Al-Rfou R, Skiena S. 2014. Deepwalk: Online

learning of social representations. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 701-710). ACM.

[13] Vilnis L, McCallum A. 2015. Word representations via

gaussian embedding. In Proceedings of International

Conference on Learning Representations 2015.

[14] Arora S, Li Y, Liang Y, Ma T, Risteski A. 2015. Random

walks on context spaces: Towards an explanation of the

mysteries of semantic word embeddings. arXiv preprint

arXiv:1502.03520.

[15] Levy O, Goldberg Y. 2014. Neural word embedding as

implicit matrix factorization. In Advances in Neural

Information Processing Systems 2014 (pp. 2177-2185).

[16] Tamagawa S, Sakurai S, Tejima T, Morita T, Izumi N,

Yamaguchi T. 2010. Learning a large scale of ontology from

Japanese wikipedia. In Web Intelligence and Intelligent

Agent Technology (WI-IAT), IEEE/WIC/ACM

International Conference on 2010 Aug 31 (Vol. 1, pp. 279-

286). IEEE.

[17] Wu F, Weld DS. 2008. Automatically refining the wikipedia

infobox ontology. In Proceedings of the 17th international

conference on World Wide Web (pp. 635-644). ACM.

[18] Janik M, Kochut KJ. 2008. Wikipedia in action: Ontological

knowledge in text categorization. In Semantic Computing,

2008 IEEE International Conference (pp. 268-275). IEEE.

[19] Kim HJ, Hong KJ. 2015. Building Semantic Concept

Networks by Wikipedia-Based Formal Concept Analysis.

Advanced Science Letters. 21(3):435-8.

[20] Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D,

Mendes PN, Hellmann S, Morsey M, van Kleef P, Auer S,

Bizer C. 2015. DBpedia–a large-scale, multilingual

knowledge base extracted from Wikipedia. Semantic Web.

6(2):167-95.

[21] Hoffart J, Suchanek FM, Berberich K, Weikum G. 2013.

YAGO2: A spatially and temporally enhanced knowledge

base from Wikipedia. Artificial Intelligence. 194:28-61.

[22] Hearst MA. 1992. Automatic acquisition of hyponyms from

large text corpora. InProceedings of the 14th conference on

Computational linguistics-Volume 2 (pp. 539-545).

Association for Computational Linguistics.

[23] Maynard D, Funk A, Peters W. 2008. Using lexico-syntactic

ontology design patterns for ontology creation and

population. In Proc. of the Workshop on Ontology Patterns.

[24] Yeh E, Ramage D, Manning CD, Agirre E, Soroa A. 2009.

WikiWalk: random walks on Wikipedia for semantic

relatedness. InProceedings of the 2009 Workshop on Graph-

based Methods for Natural Language Processing (pp. 41-49).

Association for Computational Linguistics.

[25] Zesch T, Gurevych I. 2007. Analysis of the Wikipedia

category graph for NLP applications. InProceedings of the

TextGraphs-2 Workshop (NAACL-HLT 2007) (pp. 1-8).

[26] Van der Maaten L, Hinton G. 2008. Visualizing High-

Dimensional Data Using t-SNE. Journal of Machine

Learning Research. 9(2579-2605):85.

[27] Rehurek R., Sojka P. 2010. Software framework for topic

modelling with large corpora. In Proceedings of the LREC

2010 Workshop on New Challenges for NLP Frameworks.

