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Abstract

The notion of third order semicanonical dynamic equations on time scales is introduced so that any third
order equation is either in canonical, noncanonical, or semicanonical form. Then a technique for transforming
each of the two types of semicanonical equations to an equation in canonical form is given. The end result is
that oscillation and other asymptotic results for canonical equations can then be applied to obtain analogous
results for semicanonical equations.
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1. Introduction

The study of qualitative properties of solutions of second order di�erential equations of the form

(r(t)x′)′ + q(t)xγ(t) = 0, t ≥ t0, (1)

with r, q : [t0,∞) → R+ and γ the ratio of odd positive integers, is often divided into two parts depending
on whether equation (1) is in canonical form, that is,∫ ∞

t0

1

r(s)
ds = ∞,

or is in nonconanical form ∫ ∞

t0

1

r(s)
ds < ∞.

Email address: John-Graef@utc.edu (John R. Graef)

Received :February 18, 2022; Accepted: June 21, 2022; Online: June 28, 2022



J.R. Graef, Results in Nonlinear Anal. 5 (2022), 273�278. 274

This is also the case for second order di�erence equations and dynamic equations on time scales. In the case
of third order equations,

(b(t)(a(t)x′)′)′ + q(t)xγ(t) = 0, (2)

with a, b : [t0,∞) → R+ and q and γ as above, the situation is more complicated due to the presence of two
coe�cients in the lead term.

Here we will consider the more general setting of the third order dynamic equation(
b(t)(a(t)x∆(t))∆

)∆
+ q(t)xγ(t) = 0, t ∈ [t0,∞) ∩ T, (E)

where T is a time scale with t0 ≥ 0, supT = ∞, [t0,∞)T := [t0,∞) ∩ T, and a, b, q ∈ Crd ((t0,∞)T, (0,∞)).
The basic notation and terminology for time scales can be found in the well-known monograph by Bohner
and Peterson [2] and will be used without further mention.

We will say that equation (E) is in canonical form if∫ ∞

t0

1

a(s)
∆s =

∫ ∞

t0

1

b(s)
∆s = ∞,

and it is in noncanonical form if∫ ∞

t0

1

a(s)
∆s < ∞ and

∫ ∞

t0

1

b(s)
∆s < ∞.

If either ∫ ∞

t0

1

a(s)
∆s < ∞ and

∫ ∞

t0

1

b(s)
∆s = ∞ (S1)

or ∫ ∞

t0

1

a(s)
∆s = ∞ and

∫ ∞

t0

1

b(s)
∆s < ∞, (S2)

then we will say that equation (E) is in semicanonical form.
In this paper we wish to show that under certain conditions, a semicanonical equation, i.e., equation (E)

with either (S1) or (S2) holding, can be written as an equivalent equation in canonical form. One advantage
of dealing with equations in canonical form is that we can apply the famous Kiguradze lemma to classify the
behavior of nonoscillatory solutions, and the number of possible types is less for canonical equations than it
is for noncanonical ones.

Interest in the relationship between canonical, noncanonical and semicanonical equations can be traced
back to the now classic 1974 paper of Trench [10]. This has attracted the attention of other authors as can be
seen, for example, from the recent papers [1, 3, 4, 5, 6, 7, 8]. The motivation for examining this classi�cation
scheme for dynamic equations on time scales stems partially from some recent results for di�erence equations
in [9].

2. Semicanonical Equations of Type (S1).

In this case, we let

A(t) =

∫ ∞

t

∆s

a(s)
.

Here is our theorem in this case.

Theorem 2.1. If ∫ ∞

t0

Aσ(s)

b(s)
∆s = ∞, (C1)
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then the operator Px(t) =
(
b(t)

(
a(t)x∆(t)

)∆)∆
can be written as the canonical operator

Px(t) =

 b(t)

Aσ(t)

(
a(t)A(t)Aσ(t)

(
x(t)

A(t)

)∆
)∆
∆

(3)

Proof. Recalling that σ(t) is the forward jump operator and di�erentiating, we obtain

b(t)

Aσ(t)

(
a(t)A(t)Aσ(t)

(
x(t)

A(t)

)∆
)∆

=
b(t)

Aσ(t)

{
a(t)A(t)Aσ(t)

[
x∆(t)A(t)− x(t)A∆(t)

A(t)Aσ(t)

]}∆

=
b(t)

Aσ(t)

{
a(t)x∆(t)A(t)− a(t)x(t)A∆(t)

}∆
=

b(t)

Aσ(t)

{
(a(t)x∆(t))∆Aσ(t) + a(t)x∆(t)

(
− 1

a(t)

)
+ x∆(t)

}
= b(t)(a(t)x∆(t))∆

since A∆(t) = − 1
a(t) . Now∫ ∞

t0

∆s

a(s)A(s)Aσ(s)
=

∫ ∞

t0

(
1

A(s)

)∆

∆s = lim
t→∞

1

A(t)
− 1

A(t0)
= ∞,

so this together with condition (C1) proves that the operator (3) is in canonical form.

3. Semicanonical Equations of Type (S2).

Now we let

B(t) =

∫ ∞

t

∆s

b(s)
.

Our result in this case is the following.

Theorem 3.1. If ∫ ∞

t0

B(s)

a(s)
∆s = ∞, (C2)

then the operator Qx(t) =
(
b(t)

(
a(t)x∆(t)

)∆)∆
can be written as the canonical operator

Qx(t) =
1

Bσ(t)

(
b(t)B(t)Bσ(t)

(
a(t)

B(t)
x∆(t)

)∆
)∆

. (4)
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Proof. Once again by a straightforward di�erentiation,(
b(t)B(t)Bσ(t)

(
a(t)

B(t)
x∆(t)

)∆
)∆

=

b(t)B(t)Bσ(t)

B(t)(a(t)x∆(t))∆ − a(t)x∆(t)
(
− 1

b(t)

)
B(t)Bσ(t)

∆

=
[
b(t)B(t)(a(t)x∆(t))∆ + a(t)x∆(t)

]∆
= (b(t)(a(t)x∆(t))∆)∆Bσ(t) + b(t)(a(t)x∆(t))∆

(
− 1

b(t)

)
+ (a(t)x∆(t))∆

= Bσ(t)(b(t)(a(t)x∆(t))∆)∆.

Since ∫ ∞

t0

∆s

b(s)B(s)Bσ(s)
=

∫ ∞

t0

(
1

B(s)

)∆

∆s = lim
t→∞

1

B(t)
− 1

B(t0)
= ∞,

this together with (C2) shows that the operator B
σ(t)Qx(t) is in canonical form.

4. Discussion

In order to develop some insight and intuition about the results obtained in Sections 2 and 3 above, let
us begin by considering a di�erential equation (T = R) in which the coe�cients are powers of t, namely,

(tβ(tαx′(t))′)′ + q(t)xγ(t) = 0, t ≥ 1. (E)

First note that equation (E) is in canonical form if∫ ∞

t0

ds

a(s)
=

∫ ∞

t0

ds

sα
= ∞

and ∫ ∞

t0

ds

b(s)
=

∫ ∞

t0

ds

sβ
= ∞.

That is, for equation (E) to be in canonical form, we must have α ≤ 1 and β ≤ 1. On the other hand, (E)
is in noncanonical form provided α > 1 and β > 1. Finally, for the semicanonical cases, (S1) holds provided
α > 1 and β ≤ 1, and for (S2) to hold, we need α ≤ 1 and β > 1.

By Theorem 2.1, if α+β ≤ 2, then equation (E) is semicanonical, but the equation involving the operator
P given in (3), namely,

(tα+β−1(t2−α(tα−1x(t))′)′)′,

where α > 1, β ≤ 1, and α+ β ≤ 2 (e.g., α = 3
2 , β = 1

2) is in canonical form.
By Theorem 3.1, if α + β ≤ 2, α ≤ 1, and β > 1, then equation (E) is semicanonical, but the operator

B(t)Qx(t) is in canonical form. This means that the equation becomes

(t2−β(tα+β−1x′(t))′)′)′ + t1−βq(t)xγ(t) = 0,

where α ≤ 1, β > 1, and α+ β ≤ 2 (e.g., α = 1
2 , β = 3

2) is in canonical form.
As a consequence of Theorem 2.1, we have the following result.

Theorem 4.1. Under conditions (S1) and (C1), the semicanonical equation (E) has a solution x(t) if and

only if the canonical equation

(c(t)(d(t)y(t))∆)∆)∆ +Aγ(t)q(t)yγ(t) = 0 (5)

has the solution y(t) = x(t)/A(t) where c(t) = b(t)/A(σ(t)) and d(t) = a(t)A(t)A(σ(t)).
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We thus see that if (S1) and (C1) hold, then equation (E) has an eventually positive solution if and only
if (5) has an eventually positive solution. One advantage here is that for equation (E), the positive solutions
are of one of the three types

(i) x∆(t) > 0 and (a(t)x∆(t))∆ > 0,

(ii) x∆(t) < 0 and (a(t)x∆(t))∆ > 0,

(iii) x∆(t) < 0 and (a(t)x∆(t))∆ < 0,

while for equation (5), positive solutions are of one of only the two types

(iv) y∆(t) < 0 and (d(t)y∆(t))∆ > 0,

(v) y∆(t) > 0 and (a(t)x∆(t))∆ > 0.

That is, there is one fewer class of solutions that needs to be eliminated when trying to prove an oscillation
result.

In view of Theorem 3.1, we can write equation (E) as the canonical equation(
b(t)B(t)Bσ(t)

(
a(t)

B(t)
x∆(t)

)∆
)∆

+Bσ(t)q(t)xγ(t) = 0. (6)

Similar to Theorem 4.1 we have the following result.

Theorem 4.2. Under conditions (S2) and (C2), x(t) is a solution of equation (E) if and only if it is a

solution of equation (6).

Remark 4.3. Clearly, the entire discussion above holds if in equation (E) the term xγ(t) involves a delay

such as xγ(g(t)) where g(t) ≤ t and g(t) → ∞ as t → ∞.

What the results in this paper allow us to us to do, and this is an important consequence, is to apply
known oscillation criteria for canonical equations to obtain an oscillation result for a semicanonical equation.

To illustrate the application of the results here to di�erence equations (T = N), consider

∆

(
1

n+ 1
∆(n(n+ 1)∆x(n))

)
+ q(n)xγ(n) = 0, n ≥ n0, (D1)

which we see is in semicanonical form ((S1) holds). Here A(n) = 1
n and condition (C1) becomes

∞∑
s=n0

A(s+ 1)

b(s)
=

∞∑
s=n0

1 = ∞.

The equation involving the operator P becomes

∆(∆(∆(nx(n))) + q(n)xγ(n) = 0, n ≥ n0, (7)

which is clearly in canonical form, and can be written as

∆(∆(∆y)) +
1

nγ
q(n)yγ(n) = 0. (8)

By Theorem 4.1, x(n) is a solution of (D1) if y(n) = nx(n) is a solution of (8).
The equation

∆

(
n(n+ 1)∆

(
1

n
∆x(n)

))
+ q(n)xγ(n) = 0, n ≥ n0, (D2)
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is also semicanonical ((S2) holds) and the transformed equation is

(n+ 1)∆(∆(∆x(n))) + q(n)xγ(n) = 0, n ≥ n0, (9)

which is a canonical equation. Here, in view of Theorem 4.2, x(n) is a solution of (D2) if and only if it is a
solution of (9).

In conclusion, to demonstrate how the results in this paper can be utilized, consider the simple case of
the semicanonical di�erential equation ((S2) holds)

(t2x′′(t))′ + q(t)xγ(t) = 0, t ≥ t0. (10)

Here, b(t) = t2 and a(t) = 1, so B(t) = 1
t and Qx(t) = (tx′(t))′′ which is in canonical form. Then any

conditions that ensure that a solution x(t) of the canonical equation

(tx′(t))′′ +
1

t
q(t)xγ(t) = 0, t ≥ t0, (11)

oscillates or possesses some other asymptotic property, implies that x(t) is a solution of (10) with that same
behavior. For example, by [1, Theorem 3.1], if

lim inf
t→∞

∫ t

τ(t)

q(s)

s
(τ(s)− ln(τ(s))− 1)ds >

1

e
,

then any positive nonoscillatory solution of (11) belongs to the class

{x > 0 : x′ < 0, (tx′)′ > 0}

and the same is true of any positive nonoscillatory solution of (10). Applications to di�erence equations can
be found in [9].

As a �nal remark, let us point out that in the case of the time scale being the real numbers so that we are
talking about di�erential equations, our result in Theorem 2.1 in which condition (S1) holds, agrees exactly
with what can be obtained from Trench [10, Lemma 1]. As pointed out in [6], the coe�cients obtained from
[10, Lemma 2] are too complicated to make easy comparisons to results such as our Theorem 3.1 above or
others.
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