
400

Yuzuncu Yil University
Journal of the Institute of Natural & Applied Sciences

https://dergipark.org.tr/en/pub/yyufbed

Research Article

Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line
Balancing Problem with Zoning Restrictions

Alper HAMZADAYI
Van Yuzuncu Yil University, Engineering Faculty, Department of Industrial Engineering, 65080, Van, Turkey

Alper HAMZADAYI, ORCID No: 0000-0003-4035-2775
Corresponding author e-mail: alperhamzadayi@yyu.edu.tr

Article Info

Received: 28.02.2022
Accepted: 14.06.2022
Online August 2022
DOI: 10.53433/yyufbed.1080238

Keywords
Assembly line balancing,
Benders decomposition,
Referenced local search,
Type-II,
Zoning restrictions

Abstract: This paper considers the type-II assembly line balancing problem
under zoning constraints, where a number of tasks must be assigned to a number
of workstations while respecting compatibility (or otherwise) between tasks and
stations, and by observing the precedence relationships between tasks. The
objective is to minimize the latest completion time at any station. The paper
proposes an exact algorithm that takes into account an exact formulation of the
problem as well as iteratively introduces a set of constraints in the spirit of
Benders decomposition. In addition to boundary constraints on the decision
variables, the algorithm makes use of combinatorial cuts and a referenced local
search in order to generate upper bounds. The algorithm is extensively evaluated
on benchmark instances, which indicates that it outperforms the state-of-the-art
approaches to the problem.

Tip-II Basit Montaj Hattı Dengeleme Probleminin Bölge Kısıtlamaları ile Çözümüne
Yönelik Benders Ayrıştırma Algoritması

Makale Bilgileri

Geliş: 28.02.2022
Kabul: 14.06.2022
Online Ağustos 2022
DOI: 10.53433/yyufbed.1080238

Anahtar Kelimeler
Benders ayrıştırması,
Bölge kısıtlamaları,
Montaj hattı dengeleme,
Referanslı yerel arama,
Tip-II

Öz: Bu makale, işler ve istasyonlar arasındaki uyumluluğu (veya başka türlü)
dikkate alarak ve istasyonlar arasındaki öncelik ilişkilerini gözlemleyerek belirli
bir iş istasyonu kümesine bir dizi iş atamaktan oluşan, bölgeleme kısıtlamaları
ile tip II montaj hattı dengeleme problemi ile ilgilidir. Amaç, herhangi bir
istasyondaki en son tamamlanma süresini en aza indirmektir. Bu makale,
Benders ayrıştırmasının yapısına uygun olarak bir dizi kısıtlamayı yinelemeli
olarak ortaya koyan bir problem formasyonuna dayanan kesin bir algoritmayı
açıklamaktadır. Algoritma, üst sınırlar oluşturmak için karar değişkenleri,
kombinatoryel kesimler ve referanslı bir yerel arama üzerinde bir dizi sınırlayıcı
kısıtlama içerir. Algoritmanın problem için en gelişmiş yaklaşımlardan daha
üstün olduğu kıyaslamalı örnekler üzerinde kapsamlı hesaplama deneyleri ile
gösterilmiştir.

1. Introduction

Assembly lines are part of production systems and consist of successive workstations that are
connected by a material handling system, and are used to perform a set of tasks on a product that flows
through them. Each workstation must complete the tasks within a fixed duration called the cycle time,
where each task has a particular execution time and precedence relationships with other tasks
(Hamzadayı, 2018). The simple assembly line balancing problem (SALBP) is concerned with the

Yuzuncu Yıl University Journal of the Institute of Natural & Applied Sciences Volume 27, Issue 2 (August), 400-415, 2022

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

401

allocation of tasks amongst the workstations while respecting the required ordering of the tasks. The
problem is said to be of type-I when the aim is to minimize the number of workstations in a predefined
cycle time, and of type-II (hereafter denoted SALBP-II) when the goal is to minimize the cycle time by
considering the given a predefined number of workstations. The SALBP is NP-Hard (Karp, 1972),
following which numerous solution algorithms have been proposed (see, e.g., Scholl & Becker, 2006;
Boysen et al., 2008). More relevant to the current paper are the mixed-integer linear programming
(MILP) formulations and exact methods. To our knowledge, the first mathematical formulation as a 0-
1 mathematical program is proposed by Bowman(1960), later modified by White (1961) by converting
some integer variables into binary, and further improved by Patterson and Albracht (1975) a decade later
where additional upper and lower bounds were described on the number of workstations to reduce the
number of variables. An alternative general integer programming formulation appears in Talbot and
Patterson (1984) solved using an adaptation of an algorithm by Balas (1965). It was shown earlier that
for this problem the effectiveness of a formulation depends on the technique with which it is solved
(Amen, 2006). A model with additional constraints on the indices of the workstations is presented by
Pastor and Ferrer (2009) to dynamically reduce the search space as a function of the incumbent solution,
which does not require an initial upper bound and uses the intermediary solutions to cut-off solutions
from the feasible set. A more recent work by Ritt and Costa (2018) presents a stronger formulation for
the problem including precedence constraints and limits on the number of workstations used, that
improves upon Patterson and Albracht (1975) and Bowman (1960), yielding optimal solutions for
instances not hitherto solved or identification of new best solution values. Other exact methods for the
problem include iterative algorithms (Baybars, 1986; Scholl & Becker, 2006), dynamic programming
(Held et al.,1963; Jackson, 1956; Schrage & Baker, 1978), and branch-and-bound (Scholl & Klein,
1997) that outperforms dynamic programming. The most prominent of the latter are FABLE (Johnson,
1988), EUREKA (Hoffmann, 1992), SALOME-1 (Scholl & Klein, 1997), task-oriented branch-and-
bound (TBB) (Klein & Scholl, 1996) and SALOME-2 (Klein & Scholl, 1996). Of the existing methods,
the formulation proposed by Ritt and Costa (2018) and SALOME-2 by Klein and Scholl (1996) seems
to be the state-of-the-art in solving the SALBP. The existing exact methods for the SALBP-II are
variants of those proposed for the type-I, namely FABLE, EUREKA, SALOME-1 and TBB, with
SALOME-2 (Klein & Scholl, 1996) being the currently best-performing exact method that outperforms
even the existing heuristic and metaheuristic algorithms for the same problem. One practical extension
of the SALBP-II is the case where some tasks are compatible, meaning that they have to be assigned to
the same workstation, or physically incompatible, indicating that they cannot be processed in the same
workstation. Previous work on assembly line balancing problems with zoning constraints is limited (see,
e.g., Klein, 1963; Gokcen & Erel, 1997; Vilarinho & Simaria, 2002; Baykasoglu & Dereli, 2008; Özcan
& Toklu, 2009; Akpınar & Bayhan, 2011; Özbakır & Tapkan, 2011), wherein mathematical models and
heuristic algorithms are proposed, but no exact techniques were described. The present paper describes,
to the best of the authors’ knowledge, the first exact algorithm for the SALBP-II with zoning restrictions.
The algorithm employs the principles of Benders decomposition, a technique that has seen a limited
number of applications to other variants of the assembly line balancing problems (Hazır & Dolgui, 2013
and 2015; Akpinar et al., 2017; Huang et al., 2021; Furugi, 2022). Operating on a formulation that
appears in Baybars (1986), the algorithm introduces a new set of constraints on the domain of the
decision variables at each iteration. We incorporate three different cut generation strategies and
combinatorial cuts within the algorithm. Finally, we describe a referenced local search-based algorithm
to obtain upper bounds for the problem. The paper reports the results of extensive computational
experimentation undertaken to test the performance of the algorithm, which yields superior results on
benchmark instances in comparison with the state-of-the-art on the problem.

The remainder of this paper is structured as follows. Section 2 formally defines the problem and
presents two integer programming models. The proposed algorithm is described in detail in Section 3,
and computational results are presented in Section 4, followed by conclusions in Section 5.

2. Integer Linear Programming Formulations

The SALBP-II can formally be described as the assignment of a set N of tasks, where each i ∈
N has a set Fi of followers (or a set Pi of predecessors) and an execution time (or duration) of ti units, to
a set S of workstations in order to minimize the cycle time c defined as the latest completion time at any

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

402

station. In any feasible assignment to the problem, all tasks j ∈ Pi should be assigned to a workstation
that appears before the workstation to which task i is assigned. We also denote by set N+ = {(i, j) | i ∈ N,
j ∈ N ∖{i}, i ∥ j} the pair of tasks that need to be assigned to the same workstation, and by set N− = {(i,
j) | i ∈ N, j ∈ N ∖{i}, i ∦ j} those pairs of tasks that cannot be assigned to the same workstation, where
the operators ∥ and ∦, denote compatibility and incompatibility, respectively, between distinct pairs of
tasks. In what follows, we present extensions of two known formulations for the problem relevant to our
work.

2.1. A natural formulation

The first formulation given below is an extension of that described by Baybars (1986), where
an index set S of m workstations is given as input. The model uses a binary variable xs,i which is set
equal to 1 if and only if task i ∈ N is assigned to workstation s ∈ S, and to 0 otherwise.

Objective function:

(BM) Minimize c (1)

Subject to:

∑ 𝑥𝑠,𝑖 = 1

𝑠 ∈ 𝑆

 𝑖 ∈ 𝑁 (2)

𝑥𝑡,𝑗 ≤ ∑ 𝑥𝑠,𝑖

𝑠 ∈ 𝑆 | 𝑠 ≤ 𝑡

 𝑖 ∈ 𝑁, 𝑗 ∈ 𝐹𝑖 , 𝑡 ∈ 𝑆 (3)

∑ 𝑡𝑖𝑥𝑠,𝑖

𝑖 ∈ 𝑁

≤ 𝑐 𝑠 ∈ 𝑆 (4)

𝑥𝑠,𝑖 − 𝑥𝑠,𝑗 = 0 (i, j) ∈ N+, 𝑠 ∈ 𝑆 (5)

𝑥𝑠,𝑖 + 𝑥𝑠,𝑗 ≤ 1 (i, j) ∈ N-, 𝑠 ∈ 𝑆 (6)

𝑥𝑠,𝑖 ∈ {0,1} i ∈ N, 𝑠 ∈ 𝑆 (7)

In this model, the objective function (1) minimizes the cycle time. Constraints (2) ensure that
each task i ∈ N is assigned to exactly one workstation s ∈ S. Constraints (3) ensure that tasks are assigned
in accordance with the precedence relationships between them. More specifically, a task j in the set Fi
of followers for task i ∈ N assigned to a workstation s ∈ S cannot be assigned to a workstation t ≥ s.
Constraints (4) collectively define the cycle time as the longest time spent at any workstation s ∈ S.
Zoning restrictions are formulated by (5) and (6) for compatible and incompatible pairs of tasks,
respectively. Finally, (7) impose integrity restrictions on the xs,i variables.

2.2. The formulation of Ritt and Costa (2018)

The following model denoted RC is an extension of the one proposed by Ritt & Costa (2018),
which was computationally shown to be the best-performing formulation to date for the type-II SALBP.
In particular, Ritt & Costa (2018) have tested this formulation on 302 standard benchmark instances of
the problem and conclude that it achieves the largest number of best solutions in a short time, which is
the reason why we adapt it to the problem at hand. The formulation uses the same variables as BM, and
is given below.

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

403

Objective function:

(BM) Minimize c (8)

Subject to:

∑ 𝑥𝑠,𝑖 = 1

𝑠 ∈ 𝑆

 𝑖 ∈ 𝑁

∑ 𝑥𝑠,𝑖

𝑠 ∈ 𝑆 | 𝑠 ≤ 𝑡

 ≥ ∑ 𝑥𝑠,𝑗

𝑠 ∈ 𝑆 | 𝑠 ≤ 𝑡

 𝑖 ∈ 𝑁, 𝑗 ∈ 𝐹𝑖, 𝑡 ∈ 𝑆 (9)

∑ 𝑡𝑖𝑥𝑠,𝑖

𝑖 ∈ 𝑁

≤ 𝑐 𝑠 ∈ 𝑆

𝑥𝑠,𝑖 − 𝑥𝑠,𝑗 = 0 (i, j) ∈ N+, 𝑠 ∈ 𝑆

𝑥𝑠,𝑖 + 𝑥𝑠,𝑗 ≤ 1 (i, j) ∈ N-, 𝑠 ∈ 𝑆

𝑥𝑠,𝑖 ∈ {0,1} i ∈ N, 𝐸𝑖(𝑈, 𝑚) ≤ 𝑠 ≤ 𝐿𝑖(𝑈, 𝑚) (10)

The constraints of this formulation play the same role as in the previous one. One difference is
in constraints (10), which limits the index of the workstations to which a task can be assigned. In
particular, for a given cycle time c and a given number of workstations m, let Ei (c,m) be the earliest and
Li (c,m) the latest admissible workstation for task i ∈ N. For the SALBP, these bounds can be set to
𝐸𝑖(𝑐, 𝑚) = ⌈∑ 𝑡𝑗𝑗|𝑗≤𝑖 /𝑐⌉ and 𝐿𝑖(𝑐, 𝑚) = 𝑚 + 1 − ⌈∑ 𝑡𝑗𝑗|𝑗≤𝑖 /𝑐⌉. Thus, task i can only be assigned to
one of the workstations in the workstation interval [Ei;Li]. In constraints (10), U is an upper bound for
the cycle time, calculated as U = 2L as a function of the lower bound 𝐿 = max{µ(𝑁), ⌈𝛿(𝑁)/𝑚⌉} with
µ(𝑁) = max

𝑖∈𝑁
{𝑡𝑖} and 𝛿(𝑁) = ∑ 𝑡𝑖𝑖∈𝑁 . Further details on this model are given by Ritt & Costa (2018).

3. The Proposed Exact Algorithm

The algorithm we propose in this paper uses a combination of Benders decomposition,
additional cuts, and a referenced local search that generates upper bounds. All three ingredients are
described in further detail below.

3.1. Application of Benders decomposition

The application of Benders decomposition (Benders, 1962) to the SALBP-II is as follows. Let
M(c, x) denote the formulation (1)–(7) where 𝑥 = {𝑥𝑠,𝑖|𝑖 ∈ 𝑁, 𝑠 ∈ 𝑆}. If the assignment variables are
fixed as 𝑥 = {�̂�|�̂� satisfies (2), (3), (7)}, then the remaining problem M (c, 𝑥) only entails finding the
value of the variable c, and is always feasible. If 𝛼 = {𝛼𝑠 ≥ 0|𝑠 ∈ 𝑆} is the vector of dual variables
corresponding to constraints (4), the dual (see constraints (11)) D (𝛼, 𝑥) of M (c, 𝑥) can be represented
as which can be solved by inspection with an optimal solution 𝛼∗ such that 𝛼𝑠′

∗ = 1 where 𝑠′ =

argmax
𝑠∈𝑆

∑ 𝑡𝑖𝑥𝑠,𝑖 𝑖 ∈ 𝑁 , and 𝛼𝑠
∗ = 0 for all 𝑠 ≠ 𝑠′.

Maximize ∑ 𝛼𝑠

𝑠 ∈ 𝑆

∑ 𝑡𝑖

i ∈ N

𝑥𝑠,𝑖 subject to ∑ 𝛼𝑠

𝑠 ∈ 𝑆

= 1 𝛼 ≥ 0 (11)

This gives rise to the following reformulation M(P) of BM, called the master problem (see constraints
(12) and (13)),

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

404

Objective function:

Minimize 𝜗 (12)

Subject to (2), (3), (5), (6), (7) and

𝜗 ≥ ∑ 𝛼𝑠 𝑡𝑖𝑥𝑠,𝑖 𝛼 ∈ 𝑃

𝑠 ∈ 𝑆,𝑖 ∈ 𝑁

(13)

where P is the set of extreme points of D (𝛼, 𝑥) and where (13) are referred to as the optimality
cuts. Note that the master problem is no different from the original formulation (8) – (10), with the
exception of constraint set (10) being replaced by the optimality cuts, and it may seem counter-intuitive
to transform a polynomial-size formulation with an exponential size one. However, our algorithm solves
the M(P) iteratively, which implies that there will only be a single optimality cut added at each iteration,
which is precisely the one that corresponds to station 𝑠′.

3.2. Additional inequalities

To help speed up the convergence of the algorithm, we add two different sets of cuts at each
iteration of the algorithm, described as follows. The first set of inequalities restricts the decision
variables given in constraints (7) for the workstation 𝑠′ identified through the solution of the dual
problem described above. This is done by first computing the earliest and the latest admissible
workstation for each task as described in Section 2.2, and then adding the constraints (14) at each
iteration for workstation 𝑠′.

𝑥𝑠′,𝑖 = 0 ∀𝑖 ∈ 𝑁 such that 𝐿𝑖(𝑈, 𝑚) < 𝑠′ or 𝑠′ < 𝐸𝑖(𝑈, 𝑚) (14)

The second set of inequalities are combinatorial cuts (Codato & Fischetti, 2006; Côté et al.,
2014). In our implementation, we use combinatorial cuts to eliminate feasible solutions from the set of
solutions to the problem. In particular, let ∆𝑠′⊆ 𝑁 be the set of all tasks that satisfy the condition
𝐸𝑖(𝑈, 𝑚) ≤ 𝑠′ ≤ 𝐿𝑖(𝑈, 𝑚) for workstation 𝑠′ . Let 𝐷𝑠′ ⊆ ∆𝑠′ be a subset of task indices that can be
assigned to workstation 𝑠′ satisfying the precedence relationships, i.e., those that ensure a feasible
assignment. We then employ a roulette wheel selection mechanism (Holland, 1975) in choosing a task
𝑖∗ ∈ 𝐷𝑠′ by using one of the three strategies Г ∈ {1,2,3} below:
1. The probability of choosing a task is inversely proportional to its duration (Г1),
2. The probability of choosing a task is proportional to its duration (Г2),
3. Each task has a uniform selection probability (Г3).

Task 𝑖∗ is added to the (initially empty) set 𝐶𝑠′ , is removed from ∆𝑠′ and set 𝐷𝑠′ is updated in
line with the precedence relationships. We repeat the procedure until there is a task 𝑖′ ∈ 𝑁\𝐶𝑠′ for
which 𝛿(𝐶𝑠′ ∪ {𝑖′}) > 𝑐, i.e., the addition of task 𝑖′ to set 𝐶𝑠′ results in a cycle time larger than c. In this
case, task 𝑖′ is added to set 𝐶𝑠′ , and the following inequalities are the combinatorial cuts (see constraints
(15)) we add to cut a solution off from the feasible set of solutions. We limit the number of cuts to be
added by a user-defined parameter Ҁ𝐶 at each iteration.

∑ 𝑥𝑠′,𝑖 ≤ |𝐶𝑠′| − 1

𝑖 ∈ 𝐶𝑠′

(15)

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

405

Algorithm 1. Combinatorial cut generation for one workstation

1: Input: Workstation 𝑠′, 𝐶𝑠′ ← ∅, cut generating strategy Г
2: ∆𝑠′= {𝑖 ∈ 𝑁|𝐿𝑖(𝑈, 𝑚) < 𝑠′ or 𝑠′ < 𝐸𝑖(𝑈, 𝑚)}
3: repeat
4: Generate 𝐷𝑠′ ⊆ ∆𝑠′ as the set of tasks that meet the precedence constraints
5: Choose 𝑖∗ ∈ 𝐷𝑠′ according to strategy Г
6: if 𝛿(𝐶𝑠′) + 𝑡𝑖∗ ≤ 𝑐 then
7: 𝐶𝑠′ ← 𝐶𝑠′ ∪ {𝑖∗}
8: 𝐷𝑠′ ← 𝐷𝑠′\{𝑖∗}
9: end if
10: until 𝛿(𝐶𝑠′) + 𝑡𝑖∗ > 𝑐
11: Output: Set 𝐶𝑠′ to construct a combinatorial cut (15)

3.3. An upper bounding procedure

This section describes a referenced local search (RLS) to generate good-quality upper bounds
for the problem and embedded within the exact algorithm. The reason behind the choice of the RLS, as
opposed to alternative heuristics, is the simplicity of its implementation and reliance on only a single
input parameter, which is generally equal to the number of tasks in the problem. The RLS has been
successfully implemented to solve the various flow shop problems (Deng & Gu, 2012; Pan & Ruiz,
2014), and is, to our knowledge, being described for solving an assembly line balancing problem for the
first time.

The RLS is a multi-start algorithm that first calculates a range [𝜗′, 𝜗′′] in which the cycle time
c is to lie, where 𝜗′ is set equal to the theoretical lower bound of the problem and 𝜗′′ = 𝜗′ + 𝜌, where
𝜌 is a step-size initially set equal to the average task execution time. The aim is first to find a cycle time
c that ensures a feasible assignment of all tasks to the m workstations prescribed in the problem instance,
calculated as in Algorithm 2.

Algorithm 2. Computing a feasible cycle time
1: Input: number m of workstations in the instance
2: Initialize: 𝜗′ = max{µ(𝑁), ⌈𝛿(𝑁)/𝑚⌉}, 𝜌 = ⌈𝛿(𝑁)/|𝑁|⌉, c = 𝜗′′
3: Set 𝜋 ← 𝜋𝑟𝑒𝑓 , 𝜋∗ ← 𝜋, i = 1, 𝑚∗ = 0
4: while 𝑚∗ < 𝑚 do
5: for each 𝑗 ∈ 𝑁 do
6: Let 𝜋′ be the sequence where task i is inserted into the position j in 𝜋
7: Calculate the number 𝑚′ of workstations and the total idle time 𝜑′ for 𝜋′
8: if the solution satisfies the zoning constraints, then
9: if 𝑚′ ≥ 𝑚 then
10: 𝑚∗ = 𝑚
11: else
12: if 𝑚∗ < 𝑚 then
13: 𝜋∗ ← 𝜋′, 𝑚∗ ← 𝑚′, 𝜑∗ ← 𝜑′
14: else if 𝑚∗ = 𝑚 then
15: if 𝜑∗ > 𝜑′ then
16: 𝜋∗ ← 𝜋′, 𝜑∗ ← 𝜑′
17: end if
18: end if
19: end if
20: end if
21: end for
22: if 𝑚∗ ≥ 𝑚 then
23: 𝑐∗ = 𝑐
24: end if
25: 𝑐 = 𝑐 + 𝜌
26: 𝜋 ← 𝜋∗
27: 𝑖 ← mod(i + 1, |N|)
28: end while
29: Output: A feasible cycle time 𝑐∗

If a given value of 𝜗′′ does not produce a feasible solution, then 𝜗′ is set equal to 𝜗′′, and 𝜗′′

itself is increased by the step-size 𝜌. Once a feasible cycle time is obtained, the algorithm then gradually

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

406

reduces the width of the interval [𝜗′, 𝜗′′] to try an obtain a better feasible cycle time that lies within this
interval. This is done by setting the cycle time as 𝑐 = (𝜗′, 𝜗′′)/2. If this value results in a feasible
solution, then c is set equal to 𝜗′′, otherwise it is set equal to 𝜗′. Note that the 𝜗′′ always represents a
cycle time value that provides a feasible solution. A pseudo-code of the RLS is given in Algorithm 3.

The RLS assumes an initial task sequence 𝜋𝑟𝑒𝑓as input, which is generated using the precedence
relationships in a given SALBP-II instance, such as the one shown in Figure 1. In the figure, each task
is represented with a circle within which lies the task number, and above which is the execution time of
that task. An arrow from task i to task j shows that task i has to be completed any time before the start
time of task j. On this instance, we first generate a random sequence of tasks, say {3, 1, 4, 2, 7, 6, 5}
that will be used to decide on the priority p(i) of each task, namely p(3) = 1, p(1) = 2, p(4) = 3, p(2) = 4,
and so on, where p(i) > p(j) indicates that i should appear earlier in a feasible sequence. The construction
of 𝜋𝑟𝑒𝑓 starts by considering the first position, for which task 1 is the only candidate. As for the second
position, the precedence graph in Figure 1 indicates that tasks 2 and 4 are the only candidates, of which
the former is chosen given that p(2) > p(4). Continuing in a similar manner result in 𝜋𝑟𝑒𝑓 = {1, 2, 5, 6,
4, 7, 3}.

Algorithm 3. The referenced local search (RLS) algorithm
1: Input: number m of machines in the instance and a feasible cycle time 𝑐∗
2: Initialize: 𝜗′ = max{µ(𝑁), ⌈𝛿(𝑁)/𝑚⌉} , 𝜗′′ = 𝑐∗, 𝜌 = ⌈(𝜗′′ − 𝜗′)/2⌉, 𝑐 = 𝜗′ + 𝜌
3: while 𝜌 > 1 do
4: Set 𝜋 ← 𝜋𝑟𝑒𝑓 , 𝜋∗ ← 𝜋, i = 1, k = 1, 𝑚∗ = 0, fsol = 0
5: while 𝑚∗ < 𝑚 or 𝑘 ≤ 𝑁 do
6: for each 𝑗 ∈ 𝑁 do
7: Let 𝜋′ be the sequence where task i is inserted into the position j in π
8: Calculate the number 𝑚′ of workstations and the total idle time 𝜑′ for 𝜋′
9: if the solution satisfies the zoning constraints, then
10: if 𝑚′ ≥ 𝑚 then
11: 𝑚∗ = 𝑚
12: fsol = 1
13: else
14: if fsol = 1 then
15: if 𝑚∗ > 𝑚 then
16: 𝜋∗ ← 𝜋′, 𝑚∗ ← 𝑚′, 𝜑∗ ← 𝜑′
17: else if 𝑚∗ = 𝑚 then
18: if 𝜑∗ > 𝜑′ then
19: 𝜋∗ ← 𝜋′, 𝜑∗ ← 𝜑′
20: end if
21: end if
22: else
23: if 𝑚∗ < 𝑚 then
24: 𝜋∗ ← 𝜋′, 𝑚∗ ← 𝑚′, 𝜑∗ ← 𝜑′
25: else if 𝑚∗ = 𝑚 then
26: if 𝜑∗ > 𝜑′ then
27: 𝜋∗ ← 𝜋′, 𝜑∗ ← 𝜑′
28: end if
29: end if
30: end if
31: end if
32: end if
33: end for
34: 𝜋 ← 𝜋∗
35: 𝑖 ← mod(i + 1, |N|)
36: k = k + 1
37: end while
38: if fsol = 1 then
39: 𝜗′′ = 𝑐
40: 𝜌 = ⌈(𝜗′′ − 𝜗′)/2⌉
41: 𝑐 = 𝜗′ + 𝜌
42: else
43: 𝜗′ = 𝑐
44: 𝜌 = ⌈(𝜗′′ − 𝜗′)/2⌉
45: 𝑐 = 𝜗′ + 𝜌
46: end if
47: end while
48: Output: Cycle time 𝜗′′

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

407

Following the construction of 𝜋𝑟𝑒𝑓, calculate the number 𝑚∗ workstations with respect to a
certain cycle time c by partitioning the sequence into groups, and assigning each group to a workstation
such that the total time spent at any workstation does not exceed the cycle time. If this is not possible,
then a new workstation is added to the solution and the procedure is repeated. Assume a cycle time c =
11 for the example in Figure 1. Using the initial sequence 𝜋𝑟𝑒𝑓 = {1, 2, 5, 6, 4, 7, 3}, it is possible to
group the tasks as (1, 2, 5), (6, 4) and (7, 3), and assign each group to a workstation. In this case, the
idle times of each workstation would be 0, 2 and 2, respectively, resulting in a total idle time 𝜑∗ = 4.
For each assignment, we check whether the zoning constraints (5) and (6) are satisfied. If they are not,
then the solution is discarded and the produce repeats until a feasible solution is obtained.

Figure 1. The precedence graph in the example.

Table 1. Zoning restrictions for the instances used in the computational testing

Instance Group |N| Zoning restrictions

Lutz2 89 N− = {(1, 5), (17, 20), (43, 45), (56, 57), (78, 79)}
N+ = {(8, 9), (27, 28), (40, 41), (42, 43}

Warnecke 58 N− = {(2, 10), (28, 35), (38, 51)}
N+ = {(7, 8), (10, 20), (49, 51}

Wee-Mag 75 N− = {(6, 7), (12, 21), (34, 41), (53, 61)}
N+ = {(8, 9), (9, 11), (27, 32), (66, 74)}

Mukherje 94 N− = {(11, 14), (26, 27), (31, 33), (54, 56), (76, 77)}
N + = {(12, 13), (23, 24), (33, 34), (68, 69), (77, 78)}

Arcus2 111 N− = {(5, 6), (17, 19), (30, 31), (53, 54), (63, 65), (90, 92)}
N+ = {(6, 7), (9, 10), (33, 35), (39, 40), (72, 73)}

Barthold 148 N− = {(1, 12), (16, 17), (37, 38), (47, 48), (74, 75), (9, 90), (118, 119), (133, 134)}
N+ = {(12, 13), (18, 19), (29, 30), (30, 31), (44, 45), (90, 91), (140, 141)}

3.4. Description of the algorithm

The overall algorithm starts by first producing an upper bound using the RLS, solving the master
problem M (P) with an empty set of optimality constraints which yields a solution 𝑥. The solution is
then used to solve a subproblem D (𝛼, 𝑥) that identify a workstation 𝑠′ for which an optimality cut is
constructed. The optimality cut along with constraints (14), and combinatorial cuts if active, are all
introduced to the M (P) which is resolved to obtain another solution 𝑥. The procedure repeats itself
optimality cuts for all workstations are introduced into the master problem.

4. Computational Results

This section presents a computational study to assess the performance of the proposed algorithm
and variants in comparison to the models presented earlier. The algorithms are coded in Visual C++,
using CPLEX 12.7.1 as the solver, and run on a computer with an Intel Core i5-2450M, a 2.5 GHz CPU
and 4GB of memory. The tests are conducted on the various groups of SALBP-II instances available at
http://assembly-line-balancing.de/ by including the additional zoning restrictions shown in Table 4, as
explained in each of the sections below. For comparison reasons, the solution time for each instance is
limited to 10 minutes (600 seconds).

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

408

4.1. Comparison of formulations and algorithm variants

As part of the first stage of this experiment, the two models presented previously, namely BM
and RC, are compared with the mixed-integer linear optimizer of CPLEX 12.7.1, with the Benders
decomposition algorithm of CPLEX 12.7.1 applied to the model RC (denoted ABD), with the exact
algorithm described in Section 3 without inequalities (14) and (15), and with the exact algorithm
including inequalities (14) (denoted BD+). Table 2 presents the comparison results on 20 instances from
the group Lutz2, with the number m of machines that appear next to the instance name ranging from 9
to 28. In the table, the column titled Gap indicates the final optimality gap, expressed in percent, upon
termination of the optimization, either upon identifying an optimal solution or upon reaching the time
limit, whichever occurs first. The column titled Time indicates the total time required for solving each
instance, and it also indicates the best solution identified, which is also the optimal value for instances
solved within 600 seconds. Cuts for ABD is an additional column which indicates the number of
Benders' optimality cuts applied during the optimization process. The last row in the table indicates the
average computation time for the 20 instances.

Table 2. Comparison of five solution methods

Instance(m) BM RC ABD BD BD+
𝑐∗ Gap Time 𝑐∗ Gap Time 𝑐∗ Time Cuts 𝑐∗ Time 𝑐∗ Time

Lutz2(9) 55 0 4.34 55 0 1.18 177 600.02 14 55 1.2 55 0.88
Lutz2(10) 52 0 24.14 52 0 13.72 177 600.01 13 52 1.9 52 1.54
Lutz2(11) 46 0 2.16 46 0 1.84 166 600.02 26 46 5.2 46 2.97
Lutz2(12) 42 0.79 600.02 42 0 264.45 177 600.02 15 42 4.4 42 2.67
Lutz2(13) 38 0 17.28 38 0 9.7 182 600.02 17 38 4.24 38 3.62
Lutz2(14) 35 0 29 35 0 10.66 178 600.02 22 35 4.18 35 2.5
Lutz2(15) 33 0 20.75 33 0 73.53 133 605.7 62 33 5.88 33 4.39
Lutz2(16) 31 0 220.73 31 0 35.31 127 602.83 119 31 8.19 31 4.82
Lutz2(17) 30 2.96 600.02 30 2.67 600.03 127 600.03 110 30 18.26 30 9.93
Lutz2(18) 28 0.45 600.01 28 0.45 600.03 116 600.01 159 28 20.99 28 11.01
Lutz2(19) 27 4.04 600.05 26 0 590.95 121 606.66 43 26 14.35 26 10.78
Lutz2(20) 25 0 456.41 25 0 273 117 600.01 61 25 12.47 25 8.49
Lutz2(21) 24 1.75 600.03 24 0 271.75 116 600.02 325 24 250.37 24 12.42
Lutz2(22) 24 7.29 601.45 23 3.38 600.05 105 600.02 484 56 600.03 23 12.63
Lutz2(23) 22 1.42 600.02 22 0 432.45 101 612.77 205 22 30.4 22 17.15
Lutz2(24) 21 1.36 600.06 21 0.95 600.05 148 600.02 177 21 354.76 21 80.68
Lutz2(25) 20 2 600.06 20 0 545.08 110 600.02 289 20 144.71 20 30.79
Lutz2(26) 20 5.24 600.03 20 5 600.02 82 600.02 586 20 575.12 20 210.65
Lutz2(27) 19 4.82 600.53 19 3.7 600.03 137 600.01 236 19 134.54 19 29.89
Lutz2(28) 19 8.19 600.77 18 2.38 600.02 82 600.59 148 18 294.37 18 13.7
Average 398.89 336.19 601.44 124.28 23.58

As is evident from Table 2, BD+ is consistently the fastest in solving all the 20 instances
optimally, followed by BD, which solves all instances optimally, except for Lutz2(22), for which the
optimality gap is 62.5%. As for the formulations, RC is able to identify optimal solutions to 13 of the
instances within the time limit, whereas BM optimally solves eight instances, and in larger
computational times except for one instance. On the other hand, the ABD is unable to solve any of the
instances to optimality within the 600-second time period, producing an optimality gap of 100% for all
the instances tested.

4.2. Incorporating the RLS into the BD+

In this section, we report our computational experience with the algorithm BD+ enhanced with
the use of the RLS, which we denote by BD++. The main difference here is that BD++ uses, as an upper
bound, the value of the best feasible solution obtained with the RLS heuristic. Table 3 shows the results
of this experiment on the same instances as in Table 2. For each instance shown in the first column, the

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

409

second and third columns show the value of the best solution obtained with a single replication of the
RLS and the required solution time, respectively. In this section, we also report the results obtained with
a variant of BD++ where the additional inequalities (14) are included in the model prior to the execution
of the algorithm, as opposed to being generated on the fly. We denote this variant with BD-, the aim of
which is to numerically test the effect of delayed constraint generation on the efficiency of the algorithm.
The results of Table 3 indicate that BD++ significantly improves over BD+ in terms of the time required
to solve the instances to optimality, yielding an average solution time equal to 4.64 seconds over the 20
instances, as opposed to that of the latter which averages to 23.58 seconds. It also indicates that the
savings in computational time by a delayed addition of constraints (14) is significant, which otherwise
results in an average computation time of 26.46 seconds, but can be significant at an instance level, e.g.,
in the case of Lutz2(26), which is solved in 250.65 and 13.13 seconds with BD- and BD++, respectively.
Finally, the table shows that the RLS is quick to identify good quality upper bounds for the instances,
with the upper bounds deviating by 3.78% from the optimal values on average. Further tests are
conducted with RLS, BD- and BD++ on other instances from groups Wee-Mag and Warnecke, which
are shown in Table 4, which yield similar findings as regards the comparison of BD- and BD++. In
particular, of the 50 instances tested in this table, BD++ optimally solves all but seven of them within
the time limit imposed. The RLS, once again, runs in an average of 1.77 seconds, with the upper bounds
identified deviating by an average of 3.68% from the optimal values.

Table 3. Comparisons between RLS, BD- and BD++

Instance(m) RLS BD- BD++
𝑐∗ Time 𝑐∗ Time 𝑐∗ Time

Lutz2(9) 55 1.71 55 1.25 55 0.88
Lutz2(10) 52 2.12 52 1.03 52 0.82
Lutz2(11) 46 2.23 46 1.1 46 0.66
Lutz2(12) 42 2.11 42 1.93 42 1.88
Lutz2(13) 39 1.97 38 2.04 38 1.34
Lutz2(14) 37 2.22 35 4.54 35 1.53
Lutz2(15) 35 2.14 33 3.48 33 2.48
Lutz2(16) 32 2.45 31 4.13 31 2.06
Lutz2(17) 31 2.13 30 2.61 30 2.43
Lutz2(18) 29 2.12 28 4.88 28 2.39
Lutz2(19) 27 2.71 26 4.03 26 3.97
Lutz2(20) 26 2.65 25 14.04 25 3.27
Lutz2(21) 25 2.32 24 20.48 24 5.96
Lutz2(22) 24 2.15 23 21.61 23 11.71
Lutz2(23) 24 1.87 22 33.03 22 11.2
Lutz2(24) 23 2.82 21 10.46 21 5.16
Lutz2(25) 21 2.98 20 12.68 20 9.61
Lutz2(26) 20 2.76 20 250.65 20 13.13
Lutz2(27) 19 3.14 19 44.58 19 5.53
Lutz2(28) 20 3.17 18 90.66 18 6.79
Average 2.39 26.46 4.64

4.3. Effectiveness of the combinatorial cut generation strategies

The third and last phase of the computational testing numerically evaluates the three cut
generation strategies along with effect of the number of additional combinatorial cuts added at each
iteration of the algorithm. The tests have been conducted with the BD++ using combinatorial cuts using
the cut generation strategies (Г = 1,2,3) and where the number Ҁ𝐶 of cuts generated is chosen within
{2, 5, 10, 25, 50}. Once again, these tests use the upper bounds obtained with the RLS. The tests are
conducted on the instances that proved difficult to solve in Table 4, namely Wee-Mag(18), Wee-
Mag(19), Wee-Mag(20), Warnecke(14), Warnecke(21), Warnecke(22) and Warnecke(25) which were
not optimally solved by BD++ within the time limit. The results of these experiments are shown in Table
5, which presents the cycle time for each setting of Ҁ𝐶 and the total computational time under column
Time that also includes the execution of the RLS. We refer to this algorithm as BD+CC(Ҁ𝐶). The results
suggest that the performance of the algorithm do not drastically change from one setting to another. On
the basis of having solved all the seven instances optimally, we suggest the use of the setting Ҁ𝐶 = 5

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

410

which uses strategy Г2. Contrasting these results with those presented in Table 4, it is evident that the
use of combinatorial cuts is an effective strategy, as it has allowed the solution of instances that
otherwise were not solved to optimality within the time limit. Using these settings, we present further
results on the performance of the algorithm on other instances in Table 6.

Table 4. Comparisons between RLS, BD- and BD++

Instance(m)
RLS BD- BD++

𝑐∗ Time 𝑐∗ Gap Time 𝑐∗ Gap Time

Warnecke(3) 519 1.65 517 0 0.3 517 0 0.28

Warnecke(4) 388 1.71 388 0 5.13 388 0 3.18

Warnecke(5) 311 1.75 311 0 0.4 311 0 0.16

Warnecke(6) 261 1.28 259 0 0.83 259 0 0.7

Warnecke(7) 224 1.68 222 0 0.91 222 0 0.8

Warnecke(8) 195 1.66 195 0 1.27 195 0 1.09

Warnecke(9) 177 1.16 175 0 1.86 175 0 0.89

Warnecke(10) 162 1.12 159 0 162.6 159 0 109.09

Warnecke(11) 147 1.5 144 0.69 600.18 144 0 32.35

Warnecke(12) 136 1.96 130 0 6.02 130 0 5.25

Warnecke(13) 123 1.34 120 0 9.6 120 0 4.37

Warnecke(14) 114 1.59 114 2.63 600.65 112 0.89 600.07

Warnecke(15) 111 1.22 111 6.31 600.05 106 0 81.57

Warnecke(16) 103 1.75 99 0 10.02 99 0 2.7

Warnecke(17) 101 1.26 101 8.91 600.1 97 0 4.96

Warnecke(18) 94 1.51 94 8.51 600.07 92 0 208.4

Warnecke(19) 89 1.7 89 7.87 600.11 87 0 7.57

Warnecke(20) 85 1.89 85 8.24 600.09 82 0 39.74

Warnecke(21) 81 1.96 81 4.94 600.61 78 1.28 600.1

Warnecke(22) 82 1.55 82 13.41 600.1 74 1.35 600.16

Warnecke(23) 72 1.14 72 4.17 600.06 69 0 72.07

Warnecke(24) 69 1.15 69 4.35 600.18 66 0 43.65

Warnecke(25) 72 1.26 72 9.72 600.13 66 1.51 600.08

Warnecke(26) 73 1.66 65 0 164.22 65 0 127.4

Warnecke(27) 68 1.54 65 0 5.21 65 0 3.81

Warnecke(28) 72 1.85 65 0 3.44 65 0 2.87

Warnecke(29) 68 1.93 65 0 3.15 65 0 2.89

Wee-Mag(3) 504 1.44 500 0 0.69 500 0 0.21

Wee-Mag(4) 380 1.68 375 0 0.21 375 0 0.15

Wee-Mag(5) 305 1.76 300 0 1.89 300 0 0.2

Wee-Mag(6) 261 1.74 250 0 0.55 250 0 0.25

Wee-Mag(7) 224 1.39 215 0 0.91 215 0 0.28

Wee-Mag(8) 195 1.66 188 0 0.89 188 0 0.35

Wee-Mag(9) 173 1.17 167 0 1.41 167 0 0.67

Wee-Mag(10) 152 1.71 150 0 3.07 150 0 1.18

Wee-Mag(11) 140 2.03 140 2.14 600.52 137 0 0.99

Wee-Mag(12) 127 1.28 127 1.57 600.81 125 0 1.81

Wee-Mag(13) 118 2.05 118 1.69 600.43 116 0 1.46

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

411

Table 4. Comparisons between RLS, BD- and BD++ (continued)

Instance(m)
RLS BD- BD++

𝑐∗ Time 𝑐∗ Gap Time 𝑐∗ Gap Time

Wee-Mag(14) 112 2.1 112 3.57 600.15 108 0 2.11

Wee-Mag(15) 104 2.82 104 3.85 600.83 100 0 54.21

Wee-Mag(16) 99 2.69 99 5.05 600.77 94 0 2.96

Wee-Mag(17) 93 2.32 93 4.3 600.33 89 0 3.77

Wee-Mag(18) 88 1.95 88 4.55 600.72 87 3.44 600.05

Wee-Mag(19) 90 2.03 90 12.22 600.41 85 7.05 600.54

Wee-Mag(20) 79 2.38 79 5.06 600.13 78 3.84 600.06

Wee-Mag(21) 75 2.77 75 4 600.82 72 0 7.02

Wee-Mag(22) 72 2.8 72 4.17 600.35 69 0 8.2

Wee-Mag(23) 70 2.19 70 4.29 600.79 67 0 568.27

Wee-Mag(24) 72 2.49 72 6.94 600.81 67 0 3.76

Wee-Mag(25) 73 2.45 73 8.22 600.98 67 0 2.17

Average 1.77 331.92 112.34

Table 5. Results obtained with algorithm BD+CC(Ҁ𝐶)

Cut
Generating

Strategy
Instance(m) Ҁ𝐶=2 Time Ҁ𝐶=5 Time Ҁ𝐶=10 Time Ҁ𝐶=25 Time Ҁ𝐶=50 Time

Г1

Wee-Mag(18) 87 54.61 87 46.67 87 60.65 87 65.66 87 72.15
Wee-Mag(19) 85 25.91 85 11.25 85 10.78 85 21.91 85 95.76
Wee-Mag(20) 78 110.76 78 86.15 78 83.81 78 89.45 78 97.15
Warnecke(14) 112 193.37 112 149.86 112 145.45 112 200.21 112 412.89
Warnecke(21) 78 578.18 78 600.00 78 600.00 78 600.00 78 600.00
Warnecke(22) 74 300.48 74 312.06 74 405.45 74 411.21 74 431.98
Warnecke(25) 66 600.00 66 600.00 66 600.00 66 600.00 66 600.00

Г2

Wee-Mag(18) 87 28.76 87 51.12 87 53.14 87 53.45 87 65.10
Wee-Mag(19) 85 42.22 85 12.45 85 40.13 85 76.45 85 87.54
Wee-Mag(20) 78 65.65 78 38.15 78 43.76 78 48.23 78 50.43
Warnecke(14) 112 172.65 112 123.12 112 114.51 112 212.21 112 215.21
Warnecke(21) 78 412.21 78 478.45 78 521.89 78 589.21 78 600.00
Warnecke(22) 74 267.17 74 215.45 74 413.54 74 452.45 74 327.12
Warnecke(25) 66 600.00 66 550.45 66 600.00 66 600.00 66 600.00

Г3

Wee-Mag(18) 87 71.87 87 75.09 87 90.13 87 89.99 87 70.21
Wee-Mag(19) 85 38.58 85 23.45 85 83.15 85 95.21 85 90.14
Wee-Mag(20) 78 62.01 78 93.12 78 61.34 78 83.32 78 73.76
Warnecke(14) 112 175.71 112 251.12 112 156.65 112 152.12 112 350.43
Warnecke(21) 78 600.00 78 600.00 78 600.00 78 600.00 78 600.00
Warnecke(22) 74 234.65 74 218.54 74 385.14 74 465.56 74 401.41
Warnecke(25) 66 600.00 66 600.00 66 600.00 66 600.00 66 600.00

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

412

Table 6. Further results obtained with algorithm BD+CC(5)

Instance(m) RLS BD+CC(5) Instance(m) RLS BD+CC(5)
𝑐∗ Time 𝑐∗ Time 𝑐∗ Time 𝑐∗ Time

Barthold(4) 1415 1.91 1409 0.23 Mukherje(20) 226 1.57 221 418.2
Barthold(5) 1130 1.87 1127 0.57 Mukherje(21) 216 1.57 208 4.48
Barthold(6) 944 2.17 939 0.67 Mukherje(22) 204 1.61 200 534.29
Barthold(7) 816 2.19 805 1.73 Mukherje(23) 194 1.84 189 598.81
Barthold(8) 717 2.17 705 1.19 Mukherje(24) 184 1.93 179 4.74
Barthold(9) 635 2.25 626 3.04 Mukherje(25) 179 1.82 172 48.44
Barthold(10) 571 2.16 564 1.41 Mukherje(26) 183 1.73 171 3.02
Barthold(11) 518 2.19 513 1.87 Arcus2(3) 50289 1.86 50136 0.19
Barthold(12) 479 2.15 470 3.45 Arcus2(4) 37616 1.74 37605 0.27
Barthold(13) 440 2.86 434 5.31 Arcus2(5) 30096 1.95 30084 0.44
Barthold(14) 407 2.56 403 10.82 Arcus2(6) 25103 1.76 25070 0.5
Barthold(15) 407 2.87 383 2.76 Arcus2(7) 21499 2.01 21489 0.74
Mukherje(4) 1111 1.49 1101 0.12 Arcus2(8) 18828 2.11 18802 6.47
Mukherje(5) 905 1.68 844 0.26 Arcus2(9) 16735 2.43 16713 77.43
Mukherje(6) 729 1.77 704 0.47 Arcus2(10) 15045 1.76 15042 183.94
Mukherje(7) 626 1.63 621 0.64 Arcus2(11) 13682 1.88 13676 93.15
Mukherje(8) 540 1.79 532 0.58 Arcus2(12) 12542 2.64 12536 116.23
Mukherje(9) 484 1.88 477 0.65 Arcus2(13) 11587 2.31 11578 521.69
Mukherje(10) 435 1.7 424 0.82 Arcus2(14) 10758 2.45 10747 562.17
Mukherje(11) 400 1.67 391 1.3 Arcus2(15) 10057 2.56 10031 93.18
Mukherje(12) 366 1.77 358 1.39 Arcus2(16) 9444 2.31 9432 513.91
Mukherje(13) 334 1.63 325 31.32 Arcus2(17) 8405 2.23 8374 510.72
Mukherje(14) 320 1.76 311 2.5 Arcus2(18) 8405 2.56 7939 218.44
Mukherje(15) 296 1.74 288 2.4 Arcus2(19) 7979 2.79 7528 310.01
Mukherje(16) 272 1.66 268 111.34 Arcus2(20) 7544 2.88 7195 544.34
Mukherje(17) 260 1.79 251 3.09 Arcus2(21) 7224 2.93 6863 595.58
Mukherje(18) 246 1.61 239 4.3 Arcus2(22) 6864 2.67 6594 166.86
Mukherje(19) 234 1.65 226 2.53 Arcus2(23) 6605 2.83 6468 5.91

4.4. Results on the simple assembly line balancing problem

As the problem studied in this paper extends SALBP-II, we present, in this section, some
preliminary results on the performance of the algorithm variants when applied to the latter. The SALBP-
II can be solved using highly efficient bespoke algorithms, such as the branch-and-bound algorithm
SALOME (Scholl & Klein, 1997), which can be accessed by visiting https://assembly-line-
balancing.de/salbp/salome/. While the purpose of the exact algorithm described in this paper is not to
solve the SALBP-II, we provide some comparisons with SALOME in order to provide an overview of
the capabilities that this new algorithm might provide. The experiments were conducted on the same set
of instances shown in Table 4, where SALOME was compared with BD+ and BD+CC(5). In Table 7,
the results are presented using the same format as the previous tables, except for the numbers in
parentheses, which represent the best lower bounds obtained in the event that the corresponding instance
was not optimally solved within the 600-second time limit. Due to the use of combinatorial cuts within
that algorithm, the lower bounds for BD+CC(5) are not reported. According to the comparisons
presented in Table 7, SALOME, as a tailored algorithm for solving the SALBP-II, produces optimal
solutions in a very short timeframe for all Warnecke instances. Additionally, BD+CC(5) is also capable
of identifying optimal solutions to the same instances, but the computation time is considerably longer.
It is to be expected, particularly since the latter algorithm involves an iterative solution, which is time
consuming. SALOME is, however, unable to guarantee optimality for the Wee-Mag group within the
time period in some instances. The Wee-Mag(10), Wee-Mag(14), Wee-Mag(16), Wee-Mag(21), Wee-
Mag(22), Wee-Mag(24), Wee-Mag(25) and Wee-Mag(27) instances can be optimally solved, either by
the BD+ or BD+CC(5), in much shorter computational times. However, despite the results confirming
the general superiority of SALOME as a bespoke solution tool for the SALBP-II, they also suggest that
the proposed algorithm and variants may be considered as an alternative solution method for cases that
proved difficult to resolve using SALOME.

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

413

Table 7. Comparisons between SALOME, BD+ and BD++ on SALBP-II

Instance(m) SALOME BD+ BD+CC(5)
𝑐∗ Time 𝑐∗ Time 𝑐∗ Time

Warnecke(3) 516 0.025 516 0.12 516 0.34
Warnecke(4) 387 0.004 387 1.39 387 0.7
Warnecke(5) 310 0.004 310 0.34 310 0.65
Warnecke(6) 258 0.004 258 1.15 258 2.49
Warnecke(7) 222 0.006 222 1.28 222 0.87
Warnecke(8) 194 0.006 194 1.26 194 3.39
Warnecke(9) 172 0.005 172 6.35 172 8.54
Warnecke(10) 155 0.007 155 3.34 155 10.74
Warnecke(11) 142 0.008 142 4.84 142 22.95
Warnecke(12) 130 0.01 130 6.19 130 21.47
Warnecke(13) 120 0.008 120 48.85 120 11.92
Warnecke(14) 111 0.008 111 227.7 111 17.83
Warnecke(15) 104 0.012 104 132.2 104 8.05
Warnecke(16) 98 0.039 98 13.04 98 18.13
Warnecke(17) 92 0.025 92 21.05 92 17.05
Warnecke(18) 87 0.788 87 213.5 87 200.42
Warnecke(19) 84 0.031 84 560.7 84 541.41
Warnecke(20) 79 0.079 79 226.5 79 32.03
Warnecke(21) 76 0.23 76 (75) 600.2 76 374.16
Warnecke(22) 73 2.511 73 (72) 600.3 73 37.08
Warnecke(23) 69 0.165 69 290.7 69 145.12
Warnecke(24) 66 1.334 66 152.6 66 18.94
Warnecke(25) 64 1.15 65 (64) 600.3 64 155.12
Warnecke(26) 64 2.551 64 55.91 64 13.21
Warnecke(27) 60 0.136 60 (59) 600.1 60 36.15
Warnecke(28) 59 0.112 59 (57) 600 59 272.78
Warnecke(29) 56 0.486 57 (55) 600.1 56 345.95
Wee-Mag(3) 500 0.037 500 0.14 500 0.16
Wee-Mag(4) 375 0.005 375 0.37 375 1.13
Wee-Mag(5) 300 0.007 300 0.4 300 0.98
Wee-Mag(6) 250 0.007 250 0.97 250 0.78
Wee-Mag(7) 215 0.019 215 0.37 215 0.41
Wee-Mag(8) 188 0.006 188 1.28 188 0.84
Wee-Mag(9) 167 0.055 167 1.91 167 1.13
Wee-Mag(10) 151 (150) 600.45 150 3.13 150 1.51
Wee-Mag(11) 137 0.013 137 1.78 137 1.09
Wee-Mag(12) 125 0.012 125 2.92 125 5.15
Wee-Mag(13) 116 0.011 116 2.4 116 1.51
Wee-Mag(14) 109 (108) 600.32 108 7.45 108 28.66
Wee-Mag(15) 100 321.09 100 45.2 100 112.45
Wee-Mag(16) 96 (94) 600.21 94 9 94 2.04
Wee-Mag(17) 89 0.01 89 33.5 89 37.36
Wee-Mag(18) 88 (84) 600.05 87 (85) 600.2 87 600.12
Wee-Mag(19) 90 (79) 600.03 85 (80) 600.3 85 600.05
Wee-Mag(20) 77 0.006 77 204 77 15.23
Wee-Mag(21) 73 (72) 600.31 72 13.6 72 16.5
Wee-Mag(22) 70 (69) 600.45 69 30.59 69 6.6
Wee-Mag(23) 69 (66) 600.06 67 (66) 600.1 67 600.07
Wee-Mag(24) 67 (66) 600.01 66 32.2 66 12.34
Wee-Mag(25) 66 (65) 600.12 65 127.5 65 55.12
Wee-Mag(26) 65 (64) 600.03 65 (63) 600.1 65 600.36
Wee-Mag(27) 67 (62) 600.05 65 120.8 65 98.12
Wee-Mag(28) 64 (63) 600.04 64 (58) 600 64 600.04
Wee-Mag(29) 63 0.007 63 194.4 63 25.41
Wee-Mag(30) 56 0.005 56 78.74 56 9.41

5. Discussion and Conclusions

This paper describes an algorithm for the type II simple assembly line balancing problem with
zoning constraints, which, to the best of the authors' knowledge, is the first exact algorithm to be
available to solve this problem. Essentially, the algorithm solves a formulation of the problem where
some of the constraints are initially relaxed and added subsequently on the fly iteratively, in the spirit of
Benders decomposition. The algorithm has demonstrated a promising computational performance by

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

414

incorporating additional features such as a local search heuristic to provide good quality upper bounds
and combinatorial cuts to discard feasible solutions. Particularly, all the instances tested here have been
optimally resolved within a time limit of 10 minutes. Additionally, the algorithm and its variants are
capable of solving the type-II simple assembly line balancing problem and have shown promising results
in some instances that are difficult to solve with conventional methods.

References

Akpınar, S., & Bayhan, G. M. (2011). A hybrid genetic algorithm for mixed model assembly line
balancing problem with parallel workstations and zoning constraints. Engineering Applications

of Artificial Intelligence, 24(3), 449-457. doi: 10.1016/j.engappai.2010.08.006
Akpinar, S., Elmi, A., & Bektaş, T. (2017). Combinatorial Benders cuts for assembly line balancing

problems with setups. European Journal of Operational Research, 259(2), 527-537. doi:
10.1016/j.ejor.2016.11.001

Amen, M. (2006). Cost-oriented assembly line balancing: Model formulations, solution difficulty, upper
and lower bounds. European Journal of Operational Research, 168(3), 747-770. doi:
10.1016/j.ejor.2004.07.026

Balas, E. (1965). An additive algorithm for solving linear programs with zero-one variables. Operations

Research, 13(4), 517-546. doi: 10.1287/opre.13.4.517
Baybars, İ. (1986). A survey of exact algorithms for the simple assembly line balancing problem.

Management Science, 32(8), 909-932. doi: 10.1287/mnsc.32.8.909
Baykasoglu, A., & Dereli, T. (2008). Two-sided assembly line balancing using an ant-colony based

heuristic. The International Journal of Advanced Manufacturing Technology, 36(5-6), 582-588.
doi: 10.1007/s00170-006-0861-3

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4(1), 238-252.

Bowman, E. H. (1960). Assembly-line balancing by linear programming. Operations Research, 8(3),
385-389. doi: 10.1287/opre.8.3.385

Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which model to use when?
International Journal of Production Economics, 111(2), 509-528. doi:
10.1016/j.ijpe.2007.02.026

Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ cuts for mixed-integer linear programming.
Operations Research, 54(4), 756-766. doi: 10.1287/opre.1060.0286

Côté, J.-F., Dell’Amico, M., & Iori, M. (2014). Combinatorial Benders’ cuts for the strip packing
problem. Operations Research, 62(3), 643-661. doi: 10.1287/opre.2013.1248

Deng, G., & Gu, X. (2012). A hybrid discrete differential evolution algorithm for the no-idle permutation
flow shop scheduling problem with makespan criterion. Computers & Operations Research,

39(9), 2152-2160. doi: 10.1016/j.cor.2011.10.024
Furugi, A. (2022). Sequence-dependent time- and cost-oriented assembly line balancing problems: a

combinatorial Benders’ decomposition approach. Engineering Optimization, 54(1), 170-184.
doi: 10.1080/0305215X.2021.1953003

Gokcen, H., & Erel, E. (1997). A goal programming approach to mixed-model assembly line balancing
problem. International Journal of Production Economics, 48(2), 177-185. doi: 10.1016/S0925-
5273(96)00069-2

Hamzadayı, A. (2018). Balancing of mixed-model two-sided assembly lines using teaching-learning
based optimization algorithm. Pamukkale University Journal of Engineering Sciences, 24(4),
682-691. doi: 10.5505/pajes.2017.14227

Hazır, Ö., & Dolgui, A. (2013). Assembly line balancing under uncertainty: Robust optimization models
and exact solution method. Computers & Industrial Engineering, 65(2), 261-267. doi:
10.1016/j.cie.2013.03.004

Hazır, Ö., & Dolgui, A. (2015). A decomposition based solution algorithm for u-type assembly line
balancing with interval data. Computers & Operations Research, 59, 126-131. doi:
10.1016/j.cor.2015.01.010

Held, M., Karp, R. M., & Shareshian, R. (1963). Assembly-line balancing - dynamic programming with
precedence constraints. Operations Research, 11(3), 442-459. doi: 10.1287/opre.11.3.442

YYU J INAS 27 (2): 400-415
Hamzadayı / Benders Decomposition Algorithm for Solving the Type-II Simple Assembly Line Balancing Problem with Zoning Restrictions

415

Hoffmann, T. R. (1992). Eureka: A hybrid system for assembly line balancing. Management Science,

38(1), 39-47. doi: 10.1287/mnsc.38.1.39
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligence. University of Michigan Press, Ann
Arbor, MI.

Huang, D., Mao, Z., Fang, K. & Yuan, B. (2021). Combinatorial Benders decomposition for mixed-
model two-sided assembly line balancing problem. International Journal of Production

Research, 60(8), 2598-2624. doi: 10.1080/00207543.2021.1901152
Jackson, J. R. (1956). A computing procedure for a line balancing problem. Management Science, 2(3),

261-271. doi: 10.1287/mnsc.2.3.261
Johnson, R. V. (1988). Optimally balancing large assembly lines with FABLE. Management Science,

34(2), 240-253. doi: 10.1287/mnsc.34.2.240
Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer

Computations, 85-103. Springer.
Klein, M. (1963). On assembly line balancing. Operations Research, 11(2), 274-281. doi:

10.1287/opre.11.2.274
Klein, R., & Scholl, A. (1996). Maximizing the production rate in simple assembly line balancing–a

branch and bound procedure. European Journal of Operational Research, 91(2), 367-385. doi:
10.1016/0377-2217(95)00047-X

Özbakır, L., & Tapkan, P. (2011). Bee colony intelligence in zone constrained two-sided assembly line
balancing problem. Expert Systems with Applications, 38(9), 11947-11957. doi:
10.1016/j.eswa.2011.03.089

Özcan, U., & Toklu, B. (2009). Multiple-criteria decision-making in two-sided assembly line balancing:
A goal programming and a fuzzy goal programming models. Computers & Operations

Research, 36(6), 1955-1965. doi: 10.1016/j.cor.2008.06.009
Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation

flowshop scheduling problem. Omega, 44, 41-50. doi: 10.1016/j.omega.2013.10.002
Pastor, R., & Ferrer, L. (2009). An improved mathematical program to solve the simple assembly line

balancing problem. International Journal of Production Research, 47(11), 2943-2959. doi:
10.1080/00207540701713832

Patterson, J. H., & Albracht, J. J. (1975). Assembly-line balancing: zero-one programming with
fibonacci search. Operations Research, 23(1), 166-172. doi: 10.1287/opre.23.1.166

Ritt, M., & Costa, A. M. (2018). Improved integer programming models for simple assembly line
balancing and related problems. International Transactions in Operational Research, 25(4),
1345-1359. doi: 10.1111/itor.12206

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple
assembly line balancing. European Journal of Operational Research, 168(3), 666-693. doi:
10.1016/j.ejor.2004.07.022

Scholl, A., & Klein, R. (1997). SALOME: A bidirectional branch-and-bound procedure for assembly
line balancing. INFORMS Journal on Computing, 9(4), 319-334. doi: 10.1287/ijoc.9.4.319

Schrage, L., & Baker, K. R. (1978). Dynamic programming solution of sequencing problems with
precedence constraints. Operations Research, 26(3), 444-449. doi: 10.1287/opre.26.3.444

Talbot, F. B., & Patterson, J. H. (1984). An integer programming algorithm with network cuts for solving
the assembly line balancing problem. Management Science, 30(1), 85-99. doi:
10.1287/mnsc.30.1.85

Vilarinho, P. M., & Simaria, A. S. (2002). A two-stage heuristic method for balancing mixed model
assembly lines with parallel workstations. International Journal of Production Research, 40(6),
1405-1420. doi: 10.1080/00207540110116273

White, W. W. (1961). Letter to the editor – comments on a paper by Bowman. Operations Research,

9(2), 274–276. doi: 10.1287/opre.9.2.274

