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Abstract

In this paper, we prove a new integral identity. Basing on this identity, we establish some new dual Simpson-type inequalities for functions
whose absolute value of the first derivatives are preinvex. Applications are also given.
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1. Introduction

Definition 1.1. [/4] A function f : [ — R is said to be convex, if the inequality

flx+(1=1)y) <tf () +(1=1) f(¥)
holds for all x,y € I and all t € [0,1].

The concept of convexity plays an important and very central role in many areas, such as economics [23], finances [11], optimization [10],
and game theory [6].

Due to its diverse applications this concept has been extended and generalized in several directions. The significant one is that introduced by
Hanson [2], called invex functions.

Definition 1.2. [27] A set K C R" is said an invex with respect to the bifunction N : K x K — R", if for all x,y € K and t € [0,1], we have
x+1m (y,x) €K.
Weir and Mond [21], gave the concept of preinvex functions which is special case of invexity.

Definition 1.3. [2]] A function f: K — R is said to be preinvex with respect to 1, if the inequality

fla+m ) < (1=1) f(x)+2f(y)
holds for all x,y € K and all t € [0,1].

Pini [15], Noor [12, 13], Yang and Li [22] and Weir [21], have studied the basic properties of preinvex functions and their roles in optimization,
variational inequalities and equilibrium problems.

It is well known that the concept of convexity has a close relationship in the development of the theory of inequalities, which is an important
tool in the study of the error estimates of quadrature formulas. Indeed in several problems in applied mathematics as well as in engineering
sciences requires the evaluation of integrals by adapting some quadrature.

For some some papers related to inequalities and their applications to some special means and numerical quadrature rules, we refer readers to
[1,2,3,7,8,9, 16, 17, 18, 19, 20] and references therein.

The following inequality is known as the dual Simpson’s formula see [4], which can be stated as follows:

b

$r () = (222) 2 (252)) ~ o [ 1] < 2

a

.f(4>Hw7 (1.1)
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where f is four-times continuously differentiable function on (a,b), and H f “) H = sup ‘ f ’
° x€(ab)

In this paper, we prove a new integral identity as a partial result. Based on this identity, we first establish the error estimate of the so-called
dual Simpson-type inequality for functions whose absolute value of first derivatives are preinvex. Secondly, we discuss the case where the
absolute value of the first derivatives at certain power are preinvex by using the well-known Holder and power mean inequalities combined
with the discrete power mean inequality in order to find some simple estimates. We end the paper with some applications to special means.

2. Main results

In order to prove our results, we need the following lemma:

Lemma 2.1. Let f : [a,a+ 1 (b,a)] C R — R be a differentiable function on [a,a+1 (b,a)] with n (b,a) > 0, and f' € L' [a,a+1n (b,a)),
then the following equality holds:

a+1(b.a)

%(2 f<4a+711(b,a)>7 f<2a+g(b,a)) +2f(4a+3g<b,a))>fn(;ﬂ) / f(u)du

a

_n(.a)
- 16

1
/(l—t)f (a+ 0 (b.a) dl+/ "(a+ 1N (b,a))at
0

1
+/ f (a+En(b,a)) dt+/ (t—1)f (a+ 30 (b,a))dt
0

Proof. Let take

=~
Il

(1—=1)f (a+ 150 (b,a))dt,

3)f (a+ i (b,0) dr,

S
Il

) f (a+Ein (b,a))dr,

+

S
Il
O — - O~~~ oY~—0 ~
/N
~
|

o
=
o

(t—1)f (a+ 3 n(b,a))dt.

O\H

Integrating by parts I;

I =it (1= f (a+ S (b.0)|

:n<g7a)f (4a+1£(b.a)) _ ’7(2,‘1) /f (cH— %T] (b,a)) dt

4.
:n(g.a)f (4a+1(b,a)) - 16 / 7 (w)du. Q.1

n(b.a))’

Similarly, we have

b= iy (1=3) Fa+ 50 (0.0) flat 5in (b.a))dr

1
2a+n(b,a 4a+n(ba
= st/ (40) + i (0 »‘w?w/ﬂﬁ%n(bﬂ))d’
2a+n (b,a)

i (=42) s (202) e [ st -

4a+n (b,a)
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:3n%2,a)f <4a+32(b’a)> - 311(8b.a)f (zﬁgw’())) - n(i,a) /f (a+ 2% (b,a))dr

—_ 20 4a+3n(b,a) 2a+11 (b,a) 16
—3n(b,a>f< z ) W,a)f( )’( @) / f(u)du @3)

and

:n<27a)f (4a+32(b’a)) - n<27a) /f (a+ %n (b,a))dt

=n(2,a)f(4a+32(b’a)) o 1t ) / f(u)du. 2.4)

( a)

we get the desired result. O

Theorem 2.2. Let f : [a,a+ N (b,a)] — R be a differentiable function on [a,a-+1 (b,a)] such that f' € L' [a,a+n (b,a)] with 1 (b,a) > 0.
If|f'| is preinvex, then we have:

a+n(b,a)

o (o) g (o) g (o)) [ gt

Proof. From Lemma 2.1, properties of modulus, and the preinvexity of |f’|, we have

"(@)]+[f®)])-

a+n(b.a)

%<2f<4a+z(b.a)> _f(2a+g(b7a)) +2f<4a+32(b,a))) _ n(é,a) / F(w)du

a

n(ba)
<T"

1

0

1
(/ (1=1)|f (a+1n (b)) \dz+/ \f (a+ Y0 (b.a))|dt

1 1
+ [+ Dlr (w%n(b,amdw/mr) 7 (aﬂ“n(b,a))\df)

(=)

1
Sn(lbéa) (/(1—t)(34+tf’(a)|+14”f/( dz-l—/ |+1+t|f |

1
[ +3) G 1A @+ 20+ / (10 (47| @] + 3 |f'<b>\>dz)
0
1 1
—1lba) (|f’(a)y (/(l—t)(T)dt+/ (%— )(3T dt—i—/ 1+3% (24’)dt+/(1—t)(14’)dt)
0
1 1 1
+|f (b (/1—1 T’dH—/(%—z)(%)dH—/(H—f %dﬂ—/l—t (3H)d. ))
0

0 0
=5 (| @]+ @)

where we have used the fact that
1
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and
1
/(14) (L) de =35 2.5)
0
The proof is completed. O

Corollary 1. In Theorem 2.2 taking M (b,a) = b — a, then we obtain:

$0r () —r (o) +2r (=) —*/f )

Theorem 2.3. Let f: [a,a+ 1 (b,a)] — R be a differentiable function on [a,a+ 1 (b,a)] such that f' € L' [a,a+n (b,a)] with 0 (b,a) > 0.
If|f |C is preinvex where { > 1 with L 5+ C =1, then we have:

< 2 (1 @]+ 7 ®)).-

% <2f (4(1“4]1(,]7“)) —f <2a+ﬂ(ba ) wy <4a+32(b,a)>> _ ﬂ(ll’:a) /’ f(u)du

n( a) 50+1_pdtl |f’<a>\€+|f'<b>\¢
st (1 (553)° ) ( )

Proof. From Lemma 2.1, properties of modulus, Holder’s inequality, and preinvexity | f’|c, we have

a+n(b,a)

%<2f<4a+z(b,a)>_f(za+g(b,a>)+2f<4a+3g(b,a)>>_ (;w / f(u)du

1 1

1 14 1 K 1 %
<nlba) (/ 1-1)° ) </|f 120 (b,a) |§dt) +(/ ) (/If’(a+h+’n(b7a))|§d’)
0 0 0

1

1 5 1 % 1 5 1 %
+ (/ (z+§)6dt> </|f’ (a+ ﬂ“n(b,a))ygdt> + (/(1t)5dz) (/\f’ (a+ 3fn(b,a))|§dt>
0 0 0

0

L 7 wa
(/ (3”|f’<“>lg+7’\f’<b>’§)d’> H(E) ( [ Clr@f +‘4+frf’<b>}c)df)
0 0
(1 4 1 T
+(55*;5:%“')5(/ (I @l + 3 | e) )+(/ I+ 1r6) ,)d,)
0

1
¢

1 1 ¢ 1 1 %
__na) NI T 1oy [ 1=t 59+1_p5+1 ¢ [3= 1oy [ 1
T 16(611)7 ({f (a)] / i +|f'(b)] / 7 d’) +( T ) ({f )| { St +|f(b)| { + dt)
1

. 1 1 4 1 1 z
+ (&) (}f’(a)ﬁ [Fairelf [ 24%) + (f’(@\é [Farlr ol [ 34+'dt)
0

0 0 0
1
" ¢ v N\ ¢
+<3\f(a)| §5|f<b)\) ) .26

_ e (m Mmﬁ) +(\f"(a)\;gﬂf"(b)lc) +(55+316+215+1> (5\f’(c¢)|5+3|f’( >\4)Z
16(5+1)3

Using the discrete power mean inequality it follows

~—
=

7\f’(a)|§+\f’(b)l‘f‘% \f’(a)|§+7|f’(b)\§% AV IENT4 1 :
(Aot} (1 ety <ot (1 ol )

and

1
"(a)% AN (@)% ()% _1
(S‘f( )i ;3|f ()] ) + (3‘f( )l ;5|f ()] ) 1-¢ <’f ’ + ’fl (b)|C> ) (2.8)
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Substituting (2.7) and (2.8) in (2.6), we obtain

1

) ¢
5 S+1\ 35 ! ¢ ot ¢
(27 (e} - p(2enea)) oy (Sesipal)) - 1 / F(w)du| < 8(1;(3;3)% <1+<5 a= 1)6) <f (@l +r'®) > 7

which is the desired result. The proof is completed. O

Corollary 2. In Theorem 2.3 taking ) (b,a) = b — a, then we obtain:

$(2r (32) - (452) +2r (+42)) ***/f Jau| < g+J;(1+(92M?“)é)<”@”ffwg>

Theorem 2.4. Let f : [a,a+ N (b,a)] — R be a differentiable function on [a,a-+1 (b,a)] such that f' € L' [a,a+n (b,a)] with n (b,a) > 0.
If|f’|§ is preinvex where § > 1, then we have:

o=

a+n(b.a)

(o (o)) _p (Reinoad) Loy (dmiagea)) 1 / £ (u)du

1
< Sn(ba) (\f’(a)lgﬂf’(b)\g) ‘
! 2 :

Proof. From Lemma 2.1, properties of modulus, power mean inequality, and the preinvexity of | f/ \g, we have
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0 0
| 1 1 :
=ntba) fyioe (!f ‘C/ (1—t) (3)dt+|f (b |C/ (1—1) 4’)dz>
0

1 1 1 1
a T AY ()% 16\ € 1(a)|¢ 7p) 6\ € ()% 7p)[5\ €
—n(ba) <<5f( AEir e ) +(\f( =] ) 1 ((9|f( I dG] > +(5|f< IEIC] > )) 2.9)

where we have used (2.5).
Now from the discrete power mean inequality i.e. for any u,v > 0 and 0 < € < 1, we have uf +1v& < 217€ (y+v)¢

1 1
TNV I A NS T4 7,16\ € _1 :
(S\f(a)l 7 >4+(\f<a>| 517 ) <2 g<|f/(a),cﬂf/(b)|¢:)¢’ (2.10)

and

1 1 1
(9\f(a)|§;5|f(b>\§)§+(5\f(a)|§§9|f(b)\€)§ f(,f @+ B))* @.11)
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Substituting (2.10) and (2.11) in (2.9), we obtain

a+n(b,a) 1

O N R ) S O e

a

which is the desired result. The proof is achieved. O

Corollary 3. In Theorem 2.4 taking M (b,a) = b — a, then we obtain:

ol—

<2f <3047+b> 7f(#> 2 <#>> - bla7f(u)du < 50;2‘1) (\f’(a)lgz\f/(b)ﬁ > t .

3. Applications

For arbitrary real numbers a,ay,ay,...,a,,b we have:

The Arithmetic mean: A (ay,a, ...,a,) =

artar+...4ay
e—

The Geometric mean: G (a,b) = vab, a,b > 0.

The p-Logarithmic mean: L, (a,b) = (

1

Yo ) ab > 0.aband p € R\ {~1,0}.

Proposition 1. Let a,b € R with 0 < a < b, then we have

(2A3 (a,a,a,b) +243 (a,b,b,b) — A3 (a,b) — 313 (a,b)’ < 13¢—q) <a2 +b2) .

Proof. The assertion follows from Theorem 2.2 with 1] (b,a) = b — a, applied to the function f (x) = x3. O

Proposition 2. Lera,b € R with0 < a < b, and § > 1, then we have

)2A3

(a,a,a,a+¢a77> +243 (a,a+\/a7b,a+\/a7b,a+\/a7b> —A3 (a,aqt\/%) 73L§ (a,aJr \/CE)’

1
1 <
9vab 55+1725+1 5 a2§+b2§
= 8(5+1)% (1+< 3 > >< : .

Proof. The assertion follows from Theorem 2.3 with  (b,a) = G (a,b), applied to the function f (x) = x>. O
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