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ABSTRACT 

 

Machine Learning has attracted researchers in the last decades and has been applied to different 

problems in many fields. Deep Learning methods which is a subfield of Machine Learning have 

started to be utilized to solve complex and hard problems with the improvement of computer 

technologies. Natural language processing is one of the challenging tasks that still needs to be 

improved for different applications such as code generation. Recently, general-purpose transformer 

based autoregressive language models achieved promising results on natural language generation 

tasks. Code generation from natural utterance using deep learning methods could be a promising 

development in terms of decreasing mental effort and time spent. In this study, a layered approach to 

generate Cascading Styles Sheets rules is proposed. The abstract data is obtained using a large-scale 

language model from natural utterances. Then the information is encoded into Abstract Syntax Tree. 

Finally, Abstract Syntax Tree structure is decoded in order to generate the Cascading Styles Sheets 

rules. In order to measure the performance of the proposed method an experimental procedure is 

constructed. Using pre-trained transformers and generated training data for Cascading Styles Sheets 

rules, different tests are applied to different datasets and the accuracies are obtained. Promising results 

for Cascading Styles Sheets code generation tasks using structural and natural prompt design are 

achieved. 46.98% and 66.07% overall accuracies are obtained for structural and natural prompt 

designs, respectively. 

 

Keywords: Natural Language Processing, Transformers, Abstract Syntax Tree, Code Generation, 

Deep Learning  

 

1. INTRODUCTION 

 

The styles of web pages are defined with Cascading Styles Sheets (CSS) rules which are groups of 

CSS properties. HTML elements can be customized with these CSS properties. Therefore, modifying 

the style of a web page needs to have a better understanding of the schema of CSS and familiarity 

with computer programming languages which requires a significant mental effort. Generating CSS 

rules with natural utterances might reduce this effort and increase the productivity of designers. 

However, converting natural utterances to logical forms such as CSS codes is a challenging task and 

requires semantic parsing practices with natural language processing.  
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Prior to the description of the transformer model architecture [1], it should be noted that RNN models 

are commonly utilized for code generation tasks where current state is determined by the past 

information [2-5]. The earlier models were based on the sequence-to-sequence methodology [5, 6]. 

However, such purely sequence oriented methods could cause loss of structural information [7]. 

Therefore, subsequent studies depend on a grammar tree structure that improves the generalization 

and reliability capabilities of code generation models [8-10]. In recent reports, it is presented that 

transformers can also compete with the state-of-the-art models for semantic parsing tasks, such as 

code generation [7, 11-13]. Hence, transformer-based code generation and completion models have 

been advanced by the industry and integrated into the commercial products including integrated 

development environments (IDEs) [10, 14].  

 

Recently, general purpose autoregressive language models have provided favorable results on natural 

language generation tasks [15]. The recent auto regressive transformer model of OpenAI, Generative 

Pre-trained Transformer-3 (GPT-3), scaled up the transformer based autoregressive models to 175 

billion parameters and presented impressive results on multiple tasks [15]. Despite the semantic 

parsing tasks does not naturally fit into the paradigm of these models, a recently reported work shows 

that auto-regressive language models achieve reasonable results with few examples [12]. Inspired 

from the low data demand and existing capabilities of GPT-3, we propose a three-layer approach for 

generating CSS rules with given natural utterances. 

 

First, a verbal expression is converted into text if the input is given in speech format. Then, the 

information needed for generating a CSS rule is extracted from natural utterance, after which the 

extracted information encoded into an Abstract Syntax Tree (AST). Lastly, the AST structure is 

decoded, and the corresponding CSS Rule is obtained for the given natural utterance.  

 

The flow of the context is as follows; a summary of Natural Language Processing (NLP) concepts that 

is relevant to this work is provided in the second section. Later, the details of three-level approach are 

described in order to utilize an autoregressive language model for code generation tasks. In results 

section, different prompts for GPT-3 are experimented and the results are compared. 

 
2. METHODS 

 

While developing a system that modifies web page styles dynamically, using a natural language 

interface, an input from the user should be construed clearly, and a compliant CSS rule should be 

generated. The operators should be able to decorate any web page by describing their request in 

natural language (e.g. "Enlarge the headings."). In the following subsections, the background needed 

to introduce this work is summarized. 

 

2.1. Transformers in Natural Language Processing  

Natural Language Processing is generating abstract data from a language either in speech or text. By it 

is nature NLP is a hard problem to solve since most of the tasks contain messy data. In 2017, the 

paper "Attention is all you need" introduced a novel model architecture called transformers for 

language models [1]. The transformers are quickly embraced by the industry and became state-of-the-

art architecture for seq2seq language models [11].  

 

In transformers, the input is not processed sequentially. However, sequence of the words or positions 

comprises valuable information of the semantic meanings of a text given in natural language [7]. 
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Therefore, in order to capture the positional relations, a positional embedding mechanism applied to 

each token [1]. Additional to the positional relations, the self-attention-mechanism estimates the 

relations between each token of the input [16]. With self-attention mechanism the model is able to 

capture the dependencies between tokens more reliably [7].  

 

Unlike RNN based models, transformers do not suffer from vanishing gradient problem as the input 

sequence gets longer. The transformers are also advantageous to RNN based models in training time 

since it allows to process input sequence in parallel. Therefore, training process is much faster than 

RNN based models [1]. 

 

2.2. GPT-3 

GPT-3 is the third generation natural language deep neural network model from OpenAI’s Generative 

Pretrained Transformer model family. Technically, GPT-3 is a seq2seq language model which 

generates a completion for a given token sequence by calculating the probabilities of the next tokens 

[17]. These tokens are the smallest units of a text data that the model can process. The tokens can 

represent sentences, words, or a small fraction of words. The architecture of GPT-3 consists of two 

main parts: encoder and decoder. The input words are encoded, and a vector representation is obtained 

which is used to predict the next words. Then the probabilities of possible words are decoded from the 

input and the generated vector by the encoder.  

 

GPT-3 remained as the biggest natural language model with 175 billion parameters until another 

transformer language model with 1 trillion parameters is announced in 2021 [18]. GPT-3 is trained 

with a very large corpus that contains different languages, domains, or grammar structures [1]. As the 

work proposed, language models yield to learn multiple tasks for different domains since the model is 

capable of capturing the information about different task domains. Therefore, GPT-3 shows strong 

performance on various tasks without fine tuning. In some cases, GPT-3 performs close or 

outperforms to the domain specific state-of-the-art fine-tuned models [1].  

 

GPT-3 is able to carry out various tasks by designing a prompt that provides a brief explanation of the 

task with few examples [1]. For any given prompt, GPT-3 generates a completion which maximizes 

the likelihood with the corpora that is given to the model while training [13]. Thus, the design of the 

prompt is crucial for the accuracy of the obtained results. 

 
3. PROPOSED APPROACH 

 

A three-level pipeline is designed, in a high-level view, as an Artificial Intelligent (AI) agent. The AI 

agent accepts user request in text or speech format and generates a CSS rule that satisfies the user 

request. Such an approach provides a good level of abstraction for the internal structure. Abstraction 

of internal details makes the agent more reliable and useful when it is used within a complex 

application. 

  

In a more detailed view, each input is processed in a pipeline of three components. These components, 

also called as layers, takes the input from previous component, and generates the output for the next 

component. The layered structure of the CSS code generation and connections are shown in Figure 1. 
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Figure 1. Layered Structure of CSS Code Generation. 

 

3.1. Pipeline Layers 

Each of the layers in the pipeline takes on different responsibilities in order to generate CSS code 

from user requests. When a request is received with a verbal expression: Speech to Text (STT) layer 

converts user speech to the text format. Then Natural Language Understanding (NLU) layer extracts 

the required information for generating a CSS rule by processing the user request. Finally, CSS Code 

Generation Layer parses the information extracted by NLU layer and generates a syntactically valid 

CSS rule that can be injected into the HTML code of the web site.  

 

Pipeline layers, abstracts their internal implementation from other layers. Layered approach makes the 

development of software easier, more reliable and makes possible to replace or improve a layer 

independently. For example, in STT layer any third-party software that converts voice data to text data 

can be used or STT engine can be implemented without concerning about other components. 

 

3.1.1. Speech to text layer  

Speech to text layer is responsible for converting user speech into the text. This layer gets user input 

in audio signals and transcribes user speech. Thus, the NLU layer can process the user request and 

extract the properties of CSS rule which is going to be generated. If the input is already given in text 

format, this layer is skipped, and the user request directly passed to the NLU layer. This layer is 

ignored when measuring the accuracy of our NLU implementation since the speech to text 

transformation process is not relevant to the success of our NLU implementation. 

 

3.1.2. Natural language understanding layer  

Natural Language Understanding layer processes the user request in text format and extracts the 

required features of the CSS rule that is compliant with the user request. The NLU layer utilizes the 

GPT-3 for processing and extracting features from the text. These extracted features are the CSS 

selector, CSS property, and the value of the property. NLU layer encodes these features in a data 

structure called Abstract Syntax Tree (AST) for further processing by CSS Code Generation layer.  
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The abstract syntax tree structure represents the syntactical structure and content related features of a 

CSS rule such as CSS selectors, CSS property, the value for the extracted property, keywords like 

important etc. 

 

CSS AST only includes the required syntactical properties of CSS in this study. In Figure 2, the 

structure of CSS AST is shown. According to the AST structure, a CSS document consists of many 

CSS rules, where each CSS rule consists of many selectors and declarations. The declarations consist 

of property, value and can also have an important keyword and so on. 

 

 

Figure 2. CSS AST Model. 

 

In Figure 3, the CSS rule body {background: black}, which indicates the background color of the 

body element is black, is shown in AST format. The AST structure provides a general and compact 

representation of CSS documents. Currently, in this work only one CSS rule is generated per request. 

Therefore, the AST approach might be simplified to the simple entity mappings by extracting the 

selectors, properties and the values. However, the entity mapping approach would not represent the 

complete syntactical structure of CSS and cannot be generalized enough to decouple CSS code 

generation layer with NLU layer.  

 

Using the generalization capability of the AST approach, the CSS code generation implementation 

does not need to be modified whenever NLU capabilities are decided to be extended. It is also not 

needed to be modified existing AST structure and AST decoding procedure of CSS code generation 

layer even though the AST can be generated in a better way and more accurate in the future, since the 

syntactical structure of CSS does not change. 

 

The AST approach also ensures the consistency of generated CSS rules by eliminating the invalid 

CSS statements that could be generated. If GPT-3 generates an invalid output, it is not possible to 

build a valid AST. Therefore, the inconsistent outputs can be detected and eliminated without 

effecting the style of the website. 
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Figure 3. AST Example for the CSS Rule: body {background: black}. 

 

3.1.3. CSS code generation layer 

CSS Code Generation layer decodes the AST that is generated by the NLU layer and generates the 

CSS code. Since the AST contains syntactical hierarchy and content related features of the CSS code, 

it is easy to convert AST data into a syntactically valid CSS code. Since the AST schema is decoded 

with a deterministic procedure, it is possible to guarantee that the output of the CSS code layer is 

always syntactically valid. However, the content related features such as CSS selector, property and 

values might be inconsistent. For example: the property can be extracted as "color" and the value 

might be extracted as "12px" which are not compliant with each other. This issue can be achieved by 

checking if the AST attributes are valid. However, this is not concerned because the most browser 

engines ignore attribute errors covered in this way. 

 

4. EXPERIMENTAL RESULTS 

 

Meaningful representation of CSS code highly depends on the utilization of GPT-3 to construe the 

requests and generation of the AST as mentioned before. Since GPT-3 captures the context of the 

problem within the prompt, prompt design is crucial for the accuracy [11]. To achieve better accuracy 

and discovering the nature of auto-regressive language models, the three-level approach in this study 

is tested with different prompt designs.  

 

4.1. Dataset 

For discovering the capabilities of our NLU approach, a dataset which contains hand annotated user 

request examples with their expected CSS equivalents is created.  

 

The natural utterances that NLU layer is going to handle, have differences in terms of how the features 

are explained and how much of the information is given. Therefore, it would be more beneficial to 

examine natural utterances in different categories. Hence, test data is grouped into three categories 

which are property update requests, relative update requests and decoration requests.  
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Property update requests contains clear and distinct information about the style rule. The utterance 

contains all features of AST: selector, property, and value. (e.g., “Make heading one color blue”).  

 

Relative update requests clearly describe the target and the property of the rule. However, the value is 

not clear and described with a comparison to its older value. (e.g., “Make headings bigger”). 

 

Decoration requests describes a new design feature that will modify the webpage. These examples do 

not clearly describe the property and value unlike the target which is clearly described. (e.g., “Add text 

shadows to the hyperlinks”). 

 

4.2. Experimental Procedure 

In order to measure the performance of the layered approach in this work, the tests are applied 

separately to all categories of the dataset to find out the capabilities of our NLU layer on different 

categories of requests which are property update requests, relative update requests and decoration 

requests. The accuracy is calculated by comparing the model output with the ground truth for each of 

the example in dataset. However, the nature of CSS allows different properties and values to behave 

effectively same. For example, the rules using background-color property and background property 

behaves identical when the value is a color. As a result, there exists more than one compliant CSS rule 

for a particular natural utterance. Therefore, counting only the exact matches lead incorrect 

measurements since the outputs that are compliant with the user request. In order to overcome this 

situation, the generated CSS rules that behaves compliant with the user requests are accepted as 

accurate outcomes. The equation for output accuracy is shown in Eqn. 1.  

 

𝑂𝑢𝑡𝑝𝑢𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑆𝑇
× 100 (1) 

 

where OutputAccuracy represents the ratio of the accurate outputs that is generated. The term 

TrueOutputs is the number of the outputs that is compliant with the user request and behaves 

effectively same with the ground truth. The term NumberOfGeneratedAST is the number of 

successfully generated ASTs. Note that generation of a valid AST only guarantees that the generated 

output can be converted into a syntactically valid CSS rule. The generated AST may include wrong 

entities and not compliant with the true CSS rule.  

 

As mentioned before, in order to create an AST from a natural utterance, it is required to extract 

selector, property and value entities. Therefore, performance of detecting these entities is also 

essential for understanding the strengths and weaknesses of the method. Hence, accuracies of 

detecting each entity are also calculated.  

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑆𝑇
× 100 (2) 

  

 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑆𝑇
× 100 (3) 
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𝑉𝑎𝑙𝑢𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑉𝑎𝑙𝑢𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐴𝑆𝑇
× 100   (4) 

  

The accuracies of extracted entities are calculated with the equations given in Eqns. 2, 3 and 4. The 

terms: TrueSelector, TrueProperties and TrueValues represent the number of the entities that 

semantically match the ground truth.  

 

4.3. Prompt Design 

In NLU layer, the behavior of the GPT-3 with different prompt designs is investigated to find out how 

to create a promising prompt design. We proposed two different prompt designs that have structural 

and contextual differences. 

 

4.3.1. Structural representation  

First approach to the prompt design requires syntactical rules that GPT-3 requires to follow. In order 

to retrieve the information that GPT-3 produced; a meaningful representation of AST is proposed. 

Using this meaningful representation, it is possible to build an AST thereby, a syntactically valid CSS 

rule can be generated.  

 

The prompt contains a set of examples to encourage GPT-3 for generating outputs in form of our 

meaningful representation. Each line represents a single example, which consists of a natural utterance 

and its meaningful representation.  

 

Make body background black => [selector:"body", property:"background", value:"black"]; 

 

An example from the prompt is shown above. The example is separated into natural utterance and 

meaningful representation sections with the characters: ’=>’. The natural utterance section represents 

an example user request in natural language. The meaningful representation section represents the 

AST which is compliant with this natural utterance. The meaningful representation is given between 

the square brackets, and contains the entities required for a CSS rule: selector, property, and value. 

Finally, a semi-colon character ’;’ is used for limiting the output of the GPT-3. 

 

4.3.2. Natural representation  

The second approach for the prompt design aims to provide data in more convenient structure for 

GPT-3. Despite GPT-3 mostly focused on natural language, the corpora given to the model contains 

considerable amount of CSS code [15]. Therefore, the model is more familiar with the rules of CSS 

language than particular syntactic design in this work.  

 

Similar to the previous prompt design, each line in the prompt contains an example of user request 

and the meaningful representation of this request. However, in this approach, the meaningful 

representation follows the original CSS syntax, which is in the same format of HTML style attributes.  

 

Make body background black => body {background: black} 

 

The example of this representation is shown above. As shown in the example, the meaningful 

representation section fallows the original CSS syntax. Since the CSS rules are already structural, it is 

possible to create an AST for validating the output of GPT-3.  
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4.4. Test Results 

For discovering the capabilities of both prompt designs: structural representation and natural 

representation are tested on the request categories: property updates, relative updates and decorations. 

The prompts consist of 4 property update, 4 relative update and 3 decoration request examples that are 

randomly picked from the data set. 

 

4.4.1. Results with structural representation prompt design 

As mentioned before, the first approach to the meaningful representation was a custom syntactical 

representation proposed within this research. The results obtained with this representation is given in 

Table 1. 

 

Table  1. Results of Structural Representation Prompt Design. 

Data Set 
Selector 

Accuracy (%) 

Property 

Accuracy (%) 

Value 

Accuracy (%) 

Output 

Accuracy (%)
 

Property Updates 83.54 82.90 82.59 68.28 

Relative Updates 77.25 72.39 - 46.32 

Decorations 63.04 54.86 55.29 26.35 

Overall 74.61 70.05 68.94 46.98 

 

The test results show that the accuracy in property update requests, clearly outperforms other 

categories. Additionally, the output accuracy show that the model produces promising results on 

property update requests with a unique syntactical data format that the model is not familiar with. 

 

For relative update requests, the accuracy of the model significantly decreases. Despite the selector 

accuracy and property accuracy are promising, the output accuracy is not as good as property update 

requests output accuracy. However, the model still produces reasonable results with very little amount 

of data. 

 

The model had difficulties on decoration requests, which is the most challenging kind of requests, and 

has the lowest accuracy as a result. Even though the model captures the selector correctly in general, 

since the property and value are not given clear in the natural utterance, model performance is not 

satisfying for property and value detection. 

 

In general, it is seen that the model has a higher accuracy on selector detection on all kinds of 

requests, followed by property and value detections respectively. 

 

4.4.2. Results with natural representation prompt design 

As mentioned before, the second approach to the prompt design was the standard CSS syntax, which 

is expected to GPT-3 is already familiar with. The results obtained with this representation is given in 

Table 2.  

 

Similar to the results of the structural representation prompt design, the accuracy on the property 

update requests is significantly higher than other categories. Additionally, it is seen that the model 

performs slightly better with the natural representation than the structural representation. 
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Using a natural representation also increases the accuracy on relative update requests. Even though the 

property detection accuracy is slightly decreased, the output accuracy on relative update requests is 

significantly higher when compared to the structural representation. 

 

Table  2. Results of Natural Representation Prompt Design. 

Data Set 
Selector 

Accuracy (%) 

Property 

Accuracy (%) 

Value 

Accuracy (%) 

Output 

Accuracy (%)
 

Property Updates 85.38 84.40 84.19 70.75 

Relative Updates 85.00 68.75 - 60.42 

Decorations 78.38 81.08 70.00 70.27 

Overall 84.71 77.13 82.37 66.07 

 

The results show the performance on the decoration requests dramatically increased with the natural 

representation prompt design. When compared to the previous output accuracy for decorations, which 

is 26.35%, using natural representation prompt design interestingly leads to a dramatic increase on 

output accuracy: 70.27%.  

 

For all categories of requests in the dataset, the natural representation prompt design clearly 

outperforms the structural representation that is originally defined within this research.  

 

Therefore, it is seen that prompt design is a major factor for the accuracy and using a meaningful 

representation that GPT-3 is already consumed before, significantly increases the performance of the 

model.  

 

In the literature, there are different research works reporting generating codes using pretrained 

language methods [19-21]. In [19], current methods are analyzed and compared, however there is no 

clear accuracy information that is provided, and these methods do not mention about the CSS codes. 

However, in [20], a code generation from natural language queries using pretrained models to 

generate SQL queries is proposed. It is mentioned that with the developed decoding method, the 

accuracy is improved from 49% to 72%. In [21], GPT-3 is fine tuned to generate python codes with 

several models. These models improved the percentage of solved problems to a best value of 72.5%. 

Hence, these accuracy results, although not generated for CSS codes, are comparable to our results. 

 

5. CONCLUSIONS and DISCUSSIONS 

 

In this study, a layered code generation structure is proposed using Natural Language Processing 

based on transformers. The model provides promising results for the internal structure. The reliability 

and the accuracy of the results depend on the details of the representations and the prompt design. The 

natural prompt design results with an overall accuracy of 66.07% are better than the structural prompt 

design which has an overall accuracy of 46.98%. 

 

The prompt design is crucial for the accuracy of auto-regressive language models such as GPT-3. 

Therefore, focusing on a better prompt design strategy is an opportunity for significant improvement 

of the accuracy. In the next paragraphs, some interesting future work ideas which are mostly about the 

prompt design, are summarized.  
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Dynamic example selection for prompts might be an opportunity for improving the accuracy. 

According to the structure and existing CSS classes of the target web page, a prompt could be 

generated by picking up the examples that is more appreciate with the content of the web page. Recent 

studies show such an approach can improve accuracy of the autoregressive language models for tasks 

of semantic parsing [12]. However, this approach strongly relies to the quality and the size of the 

example dataset. Therefore, extending the dataset could be a significant improvement.  

 

Generating prompt with in-context examples could also improve the accuracy. For each user request, a 

prompt could be generated by picking the examples that semantically similar to the user request. 

Additionally, fine tuning could reduce the cost by each request with smaller prompt sizes and improve 

the accuracy of generated ASTs.  

 

CSS document building with natural utterances might be a good practice for styling a webpage. The 

users could describe their style rules in a text document line by line. For each line, a CSS rule could 

be generated in AST structure. The generated ASTs could be combined into one general AST that can 

be decoded into a complete CSS document which comprises all generated rules.  
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