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Abstract. In [14], Qi presents an open problem and many authors tried to solve this problem. They made efforts to show the
validity of solutions on what conditions [1], [10]-[15].

In this work, we generalized the Qi type inequalties which are derived from [11], [12] and [14].

Keywords: Integral inequalities

Genellestirilmis Qi integral Esitsizligi

Ozet. [14] deki makelede, Qi agik bir problem vermis ve birgok yazar bu problemi ¢dzmeye ugrasmistir. Yazarlar ¢éziimiin
varhiginin hangi kosullar altinda saglandigini1 géstermeye ¢alismustir. Bu ¢alismada, ¢esitli ¢aligmalardan elde edilen Qi tipli
esitsizlikler genellestirilmistir.

Anahtar Kelimeler: Integral esitsizlikleri

1. INTRODUCTION

Integral inequalities have been frequently employed in the theory of applied sciences, differential
equations, and functional analysis. In the last two decades, they have been the focus of attention in [1]-
[15]. Recently, especially Qi inequality, one of the integral inequalities, has been studied by many
authors.

The following Qi inequality (1.1) has been obtained in [14]: Suppose that f has continuous N —th
order derivative on [a,b], and f (i)(a)z Oand f (n)(X)Z nl; 0<i<n-1, then the following inequality

[fm2(x)ax > ( [t (x)o|xjn+1 (L.1)

holds for x [a,b].

This inequality (1.1) posed the following open problem in [14].

What are the conditions of validity of the inequality
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[ (x> ( [t (x)dx)tl (12)

fort>12?

On the basis of this integral inequality an open problem (1.2) has been established and the conditions
for its validity has been investigated in [12], [11]:

This open problem was studied by several authors and many valuable results have been established such
as [12], [11].

It has been shown that the (1.2) inequality was valid when feCl[a,b], f(a)>0,
f'(x)>(t-2)x—a) for x <[a,b], and t >3 in[12].

In[11], NgO et al. gave the following inequality which is one of the open problem’s solution.

Theorem 1 Let f eC[0,1] and f(x)>0 for every x <[0,1]. If

2
[[f(t)at= 1_2’( ,vx e 0] (1.3)
then, for every n € N
1 n+l 1 n
J'Of (x)dx > on f (x)dx (1.4)

holds.
In this paper, we will make a generalization benefiting from (1.1)-(1.4).

Now we prove the following auxiliary result which plays a key role in proving our main results.

Lemmal Let f and h be a continuous function on [0,1], and f(x)>h(x)=>0. Also let h(x) be

an increasing and positive monotone function on (0,1], having a continuous derivative h (X) on
(0,1). The function h on [0,1] is defined by [6]. If

. 2(1)_ h2
[N @t > M >0, vx e [0.1] (L5)
holds then we have following inequality for h(0) =0,

I: £2()h (x)ox > f:h(x)f () (x)ax. (1.6)

Proof. By using hypothesis, we have
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0 [0 nFR (ex = (170~ 2n0)1 ()2 (ko
= (12000 (x)x 20} (on' (1
[ Gon (o
= 1200 (c)ox—2[n(c) (o (o)
e

[F200n (x)x > 2[h(x)f (R’ (x)dx _%(1). wn
Let A= J' (j dt)h )dx . By using our assumption we have

A= jU j x)de = [ (On’ (). (18)

Also from (1.5) and (1.8), we obtain

(e
_h*@)
=
By using (1.7) and (1.9) we also get
j:f 2(x)h (x)dx > 2_[01h(x)f (x)h (x)dx_%(l)

h°@) h°Q@)
3 3

> [h(x)f (h (x)dx -+

thus
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which gives the conclusion.

Lemma 2 Under the hypothesis of Lemmal, the following inequality holds

F 00 (n’ (x> =),

forall n € N.

Proof. We have

Fhr 6o L1 On' @)de n (x)ox

In (1.10) , with partial integration we have

1

Fhe e [ @n @t o (o = ) o (et

n+1

1 '
— [ h"™*(x)f(x)h (x)d
# = P 0) (0 (x)ex

0

which yields

(n+1) j:hn(x)( [ton (t)dt)h' (e = [h(x)f (h (x)ex

By using (1.5),

[ () (0n (xax = (n +1)j:hn(x)( [fen (t)dtjh' (x)dx

and thus we get the result.

Remark 1 Taking h(x) = x for LemmaZl and Lemma 2, we get conclusions of [11].

15

(1.10)



YILDIRIM, AKKURT, YILDIRIM

2. MAIN RESULTS

In this section, we will make a generelazition to [11] and [12] which is one of answer Qi’s open
problem.

Theorem 2 Let f and h be a continuous function on [0,1], and (x)>h(x)>0. Also let h(x) be

an increasing and positive monotone function on (0,1], having a continuous derivative h (X) on (0,1).
Then the following inequality

[17260n (x> [ () (x)h (x)ax, n € N @)

holds for h(0)= 0.
Proof. From Cauchy inequality, we have

1 n+l n n+1 n
n_+lf (x)+n—+1h (x)> f(x)h"(x). (2.2)

Multiplying both sides of inequality (2.2) by h' (x) and integrating with respect to x from O to 1, we
have

[[£700n (e +n[h*(x)h (x)dx = (n+D)[ (" (x)h (x)x
Moreover, by using Lemma 2, we get

[L£700n (xx+ % h"2@) = (1) F(On" (0 (k)

=n[ f(x)h"(x)h (x)ax+ [ (" (x)h (x)x

> % h™*2(0)+ [ £ (x)h"(x)h (x)dx

that is

[L£7200n (= [ ()£ (0n (x)ebx,
which completes this proof.

Theorem 3 Under the hypothesis of Lemmal. Then

Ef n+1(x)h' (x)dx > J‘:f ”(x)h(x)h' (x)dx,

holds for every n € N.
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Proof. From Lemmal’s hypothesis, we can obtain f (x)>h(x)> 0, thus

(£"(x)=h"(x))(f (x)—h(x)) =0, vx €[0,1]

That is
f72(x)+h"*(x)> " (x)h(x)+ f(x)h"(x), vx €[0,1] (2.3)

Multiplying both sides of inequality (2.3) by h' (x) and integrating with respectto x from 0 to 1. With
some simple calculation, we conclude that

[ 00n (x)ax+ [h*(x)h (x)ax = [ £ (x)h(x)h (x)x+ [ (0" (x) (x)ax.
Once again, by Lemmaz2, we obtain

1 : 1
.I:n+l h d hn+2 hn+2 f
L7 00n (ke =20z )+ [

thus
I:f ”+1(x)hl (X)dX 2 Iolf ! (X)h(x)hl (x)dx

which gives the conclusion.

Remark 2 By taking h(x)= x for Theorem 2 and Theorem 3, we get conclusions of [11].

Theorem 4 Let f and h satisfy the hypothesis in Lemmal by taking [a,b] instead of interval [0,1].

If f eC'[(a,b)] and f(a)=0, f'(x)=(t—2)h(x)-h(a))*h (x) satisfy, then the following
inequality holds

t-1

[ 00n (x)ec ( [t0on (x)dx) (2.4)
for x €[a,b] and t>3. Only when a=b or f(x)=x—a and t =3 the equality holds.

Proof. Under conditions of Theorem4, f is increasing because f ' (x) >0 for xe(a, b], and
)= j (&)de < f(x j h (

for £ € [a, x], then we have
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F((n(x)-h(a)= ['F()n (£)ds (25)

forall x €[a,b]

Let us define a function

Then we obtain F(a)=0 and F (x)= f(x)h (x)G(x), where

)t [ 1o (ehe)

Taking the derivative of G(x) with respect to X
G(x) =(t-1)f"2(x)f (x)
~(t-2e-2)FOon (0 [ (@ () ) @9)

= -1(c) 100 (0020 (o [ 100 (e |
From (2.5 and hypotessreduce 0 thefllowing form:
P10 2 £ 2Anb-h(a)) 1 ()
= (-2 (K)- (@)l *n (1) @

> (-2 [ (60 (e )| h ()

Thus G'(x)>0, sowith G(a) = f'™*(a) >0 and clearly we can obtain G(x)>0.

Since F(a)=0 and F'(x)= f(x)h (x)G(x)> 0 it follows that F(x)=>0 for all xe[a,b].
For the case X = b, we obtain

t-1

Fo)= [T (e [1En (g =o.

18



Generalized Qi’s Integral Inequality

(2.4) equality holds only if F (x)=0 for all x<[a,b] which is equivalent to f(a)=0 and

G (x)=0. From (2.7), if t > 3, this holds only for f(a) =0, where f'*and f constanton [a, b].
For b= a, it is not certain for the last two conditions to hold. If f(a)=0 and t =3, then the other

possible condition of equility holds. In that case (2.7) implies that (x)=1on[a,b] so f(x)=x-a.

Remark 3 By taking h(x)= x for Theorem 4, we get conclusions of [12].
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