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ABSTRACT  

Nonlinear regression models are widely used for modeling of stochastic phenomena and the estimating parameters 
problem plays a central role in the inference in nonlinear regression models. In this paper, this problem has been 

briefly discussed and an effective approach based on the Particle Swarm Optimization (PSO) algorithm is proposed 

in order to enhance the estimation accuracy. The PSO algorithm is tested on the well-known 28 nonlinear regression 
tasks of various level of difficulty. The results show that PSO approach which exhibits a rapid convergence to the 

minimum value of the sum of squared error function in less iterations, provides accurate estimates and is satisfactory 

for the parameter estimation of the nonlinear regression models. 

Keywords: Particle swarm optimization; nonlinear regression; parameter estimation. 

 

1. INTRODUCTION 

Regression analysis is a statistical procedure explaining 

the relationship between two or more variables. It 

describes the relationship between two kinds of 

measurements: the independent or predictor 

measurements, denoted 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘) and the 

dependent or response measurements, denoted  𝑦.        

The general form of a regression model is                   

 

𝑦 = 𝑓(𝑥, 𝛽) + 𝜀. The response 𝑦 is composed of two 

parts: the systematic part 𝑓(𝑥) depends on 𝑥, while the 

random part 𝜀 is independent from predictors.  

In a linear regression model the regression function is a 

linear function of the unknown parameters, whereas in a 

nonlinear regression model the regression function is 
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not a linear function of the unknown parameters. 

Nonlinear regression models are formally defined as 

models in which at least one of the model parameters 

occurs nonlinearly in the model expression. Nonlinear 

models are used to model complex interrelationships 

among variables and play an important role in various 

scientific disciplines and engineering. Common 

examples on nonlinear models include growth, yield 

density and dose-response models and various models 

that are used to describe physical, biological, industrial 

and econometric processes [1-3]. 

Whereas the statistical theory of parameter estimation in 

linear models is almost completely developed, many 

problems are unsolved in the nonlinear case. The basic 

idea of nonlinear regression is the same as that of linear 

regression, namely to relate a response 𝑦 to a vector of 

predictor variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘). Nonlinear 

regression is a useful statistical tool, relating observed 

data and a nonlinear function of unknown parameters. 

Nonlinear regression is characterized by the fact that the 

prediction equation depends nonlinearly on one or more 

unknown parameters. Whereas linear regression is often 

used for building a purely empirical model, nonlinear 

regression usually arises when there are physical 

reasons for believing that the relationship between the 

response and the predictors follows a particular 

functional form. For a pair of (𝑥𝑖 , 𝑦𝑖) including 𝑛 

observations, a nonlinear regression model has the form 

𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝜀; 𝑖 = 1, … , 𝑛. The 𝜀𝑖 are usually 

assumed to be uncorrelated with mean zero and 

constant variance. 

In the parameter estimation problem, the form of the 

nonlinear regression function is known but it contains 

unknown parameters 𝛽1, … , 𝛽𝑝. A popular method for 

estimating the unknown parameters in a nonlinear 

regression function is the method of ordinary least 

squares [3]. According to this method, the estimates of 

𝛽1, … , 𝛽𝑝 are obtained by minimizing the quantity 

𝑆(𝛽) = ∑ 𝑒𝑖
2 = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝛽))

2𝑛
𝑖=1

𝑛
𝑖=1 , the sum of 

squared of errors prediction. A nonlinear parameter 

estimation problem is an optimization whereby the 

objective function 𝑆(𝛽) is minimized. Since 𝑆(𝛽) is 

nonlinear, it has various local minimum and it might be 

a better alternative to classical (analytical) methods to 

use meta-heuristic methods.  

Parameter estimation procedures are very important in 

the many scientific fields for development of 

mathematical models, since all of the process depend on 

model parameter values obtained from experimental 

data. Nonlinearity model makes the estimation of 

parameter and the statistical analysis of parameter 

estimates more difficult and more challenging. 

Difficulties are arise due to the large number of 

parameters and multi modal nature the objective 

function. It is very difficult to minimize sum of squared 

of errors function (𝑆(𝛽)), using ordinary optimization 

techniques [4]. In order to overcome these difficulties, 

the use of a powerful meta-heuristic method such as 

Particle Swarm Optimization (PSO) algorithm may be 

considered. The PSO has many advantages including 

simplicity of implementation, is reliable, robust, and in 

general is considered an effective meta-heuristic 

optimization algorithm introduced by Kennedy and 

Eberhart [5] and Eberhart and Kennedy [6]. The PSO is 

inspired of the behaviors of social models like bird 

flocking or fish schooling and is based on individual 

improvement and social cooperation. In this study, the 

PSO was used for minimum sum of squared of errors 

function. 

There are numerous articles about the parameter 

estimation of nonlinear regression models. Křivý et al. 

[7] proposed the controlled random search algorithm for 

the estimating the parameters of nonlinear regression 

models. Li et al. [4] proposed a hybrid optimization 

strategy by incorporating the jumping property of 

simulated annealing (SA) into the PSO, namely 

PSOSA, for estimating parameters of non-linear 

systems, which is an important issue in control fields 

and essentially is a hard multi-dimensional numerical 

optimization problem. Kapanoğlu et al. [8] examined 

the genetic algorithms (GAs) for parameter estimation 

of nonlinear regression models over a large set of test 

problems with three difficulty levels. Tvrdík et al. [9] 

proposed two adaptive population-based search 

algorithms are proposed for parameter estimation 

problem of nonlinear regression models. Aşıkgil and 

Erar [10] examined the efficiency of nonlinear 

parameter estimation under the problem of 

autocorrelated errors. In this paper, the nonlinear 

parameter estimation problem has been briefly 

discussed and an effective approach based on the PSO 

algorithm is proposed in order to enhance the estimation 

accuracy. The PSO algorithm is tested on the well-

known 28 nonlinear regression models of various level 

of difficulty. The experimental results show that the 

PSO algorithm is significantly reliable for the parameter 

estimation problem in nonlinear regression model 

The remaining contents are organized as follows. In 

Section 2, some brief information about what the PSO 

algorithm is explained. In Section 3, how to use the 

PSO method in the parameter estimation of the 

nonlinear regression models is introduced. Numerical 

experiments on well-known 28 nonlinear regression 

benchmark tests are presented in Section 4. Finally, 

Section 5 concludes the study.  

2. OVERVIEW OF THE PARTICLE SWARM 

OPTIMIZATION 

The PSO is biologically inspired technique derived 

from the collective behavior of bird flocks, first 

introduced by Kennedy and Eberhart [5] and Eberhart 

and Kennedy [6]. The PSO, known as an optimizer, is a 

population-based, self-adaptive search optimization 

technique [11]. The PSO consists of a set of solutions 

(particles) called population. Each solution consists of a 

set of parameters and represents a point in 

multidimensional space. All the particles in the swarm 

act individually under the same governing principle: 

accelerate toward the best personal and best overall 

location while constantly checking the value of its 

current location. Each particle has a memory that helps 

it in keeping the track of its previous best position. The 

positions of the particles are distinguished as personal 
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best (pbest) and global best (gbest). Each particle 

remembers the location where it personally encountered 

the most flowers. This location with the highest fitness 

value personally discovered by a particle is known as 

the personal best or pbest. Each particle has its own 

pbest determined by the path that it has flown. At each 

point along its path the particle compares the fitness 

value of its current location to that of pbest. If the 

current location has a higher fitness value, pbest is 

replaced with its current location. Each particle also had 

some way of knowing the highest concentration of 

flowers discovered by the entire swarm. This location of 

highest fitness encountered is known as the global best 

or gbest. For the entire swarm there is one gbest to 

which each particle is attracted. At each point along 

their path every particle compares the fitness of their 

current location to that of gbest. If any particle is at a 

location of higher fitness, gbest is replaced by that 

particles’ current position [26-32]. 

In a n-dimensional search space, the position and 

velocity of individual (particle or solution) i are 

represented as the vectors 𝑋𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑛) denote a 

particle’s position (coordinate) and 𝑉𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑛) 

denote the particle’s flight velocity over a solution 

space in the PSO algorithm. Each individual x in the 

swarm is scored using a scoring function that obtains a 

score (fitness value) representing how good it solves the 

problem. Let 𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑥𝑖1
𝑝𝑏𝑒𝑠𝑡

, … , 𝑥𝑖𝑛
𝑝𝑏𝑒𝑠𝑡

) and 

𝑔𝑏𝑒𝑠𝑡 = (𝑥1
𝑔𝑏𝑒𝑠𝑡

, … , 𝑥𝑛
𝑔𝑏𝑒𝑠𝑡

) be the position of 

individual i and its neighbours’ best position so far, 

respectively. Each particle records its own personal best 

position (pbest), and knows the best positions found by 

all particles in the swarm (gbest). Then, all particles that 

fly over the n-dimensional solution space are subject to 

updated rules for new positions, until the global optimal 

position is found. The modified velocity and position of 

each individual can be calculated using the current 

velocity and the distance from 𝑝𝑏𝑒𝑠𝑡𝑖 to 𝑔𝑏𝑒𝑠𝑡 as 

follows [12]: 

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑅𝑅𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖

𝑘)

+ 𝑐2𝑅𝑅𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑋𝑖
𝑘) 

(1) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (2) 

where, 

𝑉𝑖
𝑘 velocity of individual i at iteration k, 

𝜔 weigh parameter (inertia weight), 

𝑐1, 𝑐2 acceleration coefficients, 

𝑅𝑅𝑎𝑛𝑑1
, 𝑅𝑅𝑎𝑛𝑑2

  random numbers uniformly distributed 

between 0 and 1, 

𝑋𝑖
𝑘 position of individual i at iteration k, 

𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 best position of individual i until iteration k, 

𝑔𝑏𝑒𝑠𝑡𝑘 best position of the group until iteration k. 

Equation (1) indicates that the velocity of a particle is 

modified according to three components. The first 

component is its previous velocity, 𝑉𝑖
𝑘, scaled by an 

inertia, 𝜔. This component is often known as “habitual 

behavior.” The second component is a linear attraction 

toward its previous best position, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘, scaled by the 

product of an acceleration constant, 𝑐1, and a random 

number. Note that a different random number is 

assigned for each dimension. This component is often 

known as “memory” or “self-knowledge.” The third 

component is a linear attraction toward the global best 

position, 𝑔𝑏𝑒𝑠𝑡𝑘 scaled by the product of an 

acceleration constant, 𝑐2, and a random number. This 

component is often known as “team work” or “social 

knowledge.” 

Acceleration constants 𝑐1 and 𝑐2, personal and social 

learning factors, represent the weights of the stochastic 

acceleration terms that push a particle toward pbest and 

gbest, respectively. Small values allow a particle to 

roam far from target regions. Conversely, large values 

result in the abrupt movement of particles toward target 

regions. A usual choice for the accelaration coefficients 

𝑐1 and 𝑐2 is usually 𝑐1 equals to 𝑐2 and range between 0 

and 4. In this work, constants 𝑐1 and 𝑐2 are both set at 2, 

following the typical practice in Eberhart and Shi [13, 

14]. 

Suitable selection of inertia weight provides a balance 

between global and local exploration, thus requiring 

less iteration on average to find a sufficiently optimal 

solution. In general, the inertia weight 𝜔 has a linearly 

decreasing dynamic parameter framework descending 

from 𝜔𝑚𝑎𝑥 to 𝜔𝑚𝑖𝑛  as follows  

𝜔 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
. 𝐼𝑡𝑒𝑟 (3) 

where, 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are the initial and final inertia 

weights, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 is maximum iteration number and 

𝐼𝑡𝑒𝑟 is current iteration number [14-16]. 

The fundamental structure and pseudo-code of the PSO 

algorithm is given in Table.1
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Table 1: Pseudo code of the PSO algorithm 

for each particle 

generate an initial particle 

end 

do 

for each particle  

Calculate fitness value 

If the fitness value is better than the best fitness value (pbest) in history 

set current value as the new pbest 

end 

end 

Choose the particle with the best fitness value of all the particles as the gbest 

for each particle  

Calculate particle velocity according equation (1) 

Update particle position according equation (2) 

end 

while maximum iterations or minimum error criteria is not attained. 

 

3. IMPLEMENTATION OF THE PSO TO 

PARAMETER ESTIMATION OF NONLINEAR 

REGRESSION MODEL  

Since the sum of squared error function estimation is 

used in this study, in order to obtain a solution in the 

real parameter neighborhood, the sum of squared error 

function 𝑆(𝛽) should be minimized. Hence, the cost 

(fitness) function in the PSO search engine is selected 

as 𝑆(𝛽), specifically: 𝑆(𝛽) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝛽))
2𝑛

𝑖=1 . For 

instance, for Meyer1 model in the Table 3, 𝑆(𝛽) is 

∑ (𝑦𝑖 −
𝛽1𝛽3𝑥1𝑖

1+𝛽1𝑥1𝑖+𝛽2𝑥2𝑖
)

2
5
𝑖=1 . In the Meyer1 model, the 

observation number is 𝑛 = 5.

 The main parameters of the PSO method are 𝜔, 𝑐1, 𝑐2  

and the swarm size. The settings of these parameters 

determine how it optimizes the search space. The role 

of the inertia weight 𝜔 is considered important for the 

PSO’s convergence behavior. The inertia weight is 

employed to control the impact of the previous history 

of velocities on the current velocity. Thus, the 

parameter 𝜔 regulates the trade-off between the global 

and the local exploration abilities of the swarm. A 

proper value for the inertia weight 𝜔 provides balance 

between the global and local exploration ability of the 

swarm and thus results in better solution. If the 𝜔 ≪ 1, 

only little momentum is preserved from the previous 

time-step; thus quick changes of direction are possible 

with the setting. High settings near 1 facilitate global 

search, and lower settings in the range [0.2, 0.5] 

facilitate rapid local search [11]. Eberhart and Shi [17] 

have studied 𝜔 in several papers and found that an 

inertia-weight of 0.8 is a good choice. Many researchers 

have also applied an annealing scheme for the 𝜔 setting 

of the PSO, where 𝜔 decreases linearly from 𝜔 = 0.9 to 

𝜔 = 0.4 over the whole run. In general, the inertia 

weight 𝜔 has a linearly decreasing dynamic parameter 

framework descending from 𝜔𝑚𝑎𝑥 to ωmin as shown in 

equation (3).  According to Das et al. [11], for inertia 

weight, 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are 0.9 and 0.4, respectively 

produces satisfactory results and also taking 𝜔𝑚𝑖𝑛 =
0.4 and 𝜔𝑚𝑎𝑥 = 0.9 are appropriate choices for these 

parameter.  

A usual choice for the accelaration coefficients 𝑐1 and 

𝑐2, personal and social learning factors, is usually 𝑐1 

equals to 𝑐2 and range between 0 and 4. Swarm size 

plays a very important role in the PSO, robustness and 

complexity of algorithm are also affected by it. Small 

population size may result in local convergence; large 

size will increase computational efforts and may make 

slow convergence. In this paper, swarm size is taken 20, 

50 or 100 according to structure of the nonlinear 

models, searching space and number of estimated 

parameters.  

Hence, the algorithm parameters 𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛, 𝑐1 and 𝑐2 

are selected as 0.9, 0.4, 2 and 2, respectively and for 

inertia weight, equation (3) is used. The termination 

criterion is selected as the iteration limit, specifically 

the algorithm is set to stop after 100 iterations and 50 

independent experiments are conducted in order to 

check the robustness of the estimation strategy. 

Additionally, all algorithm evaluations are performed 

on standard commercial processing unit of 2.50 GHz 

Intel (R) Core (TM) i5-2520 M type CPU with 4.00 GB 

of RAM. Moreover, the PSO implementation steps are 

given in Table 2.  
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Table 2: Pseudo code of the PSO implementation to parameter estimation of the nonlinear regression models 

Initialize the PSO parameters, 𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛, 𝑐1, 𝑐2 swarm size and define the iteration number 

Take the values predictor variable 𝑦 and the values of explanatory variable(s) 𝑥  

Calculate cost (fitness) of initial population, 𝑆(𝛽) 

do 

for each particle  

Calculate fitness value 

If the fitness value is better than the best fitness value (pbest) in history 

set current value as the new pbest 

end 

end 

Choose the particle with the best fitness value of all the particles as the gbest 

for each particle  

Calculate particle velocity according equation  

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑅𝑟𝑎𝑛𝑑1
(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑋𝑖
𝑘) + 𝑐2𝑅𝑟𝑎𝑛𝑑2

(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑋𝑖
𝑘) 

Update particle position according equation  

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 

end 

while (maximum iterations are not attained) 

 

4. NUMERICAL COMPUTATIONS 

In order to show the improvement in the nonlinear 

regression parameter estimation for the PSO algorithm, 

we have used well-known 28 nonlinear regression 

models whose list is given in Table 3. The data sets for 

the all models and the original data whose references 

are summarized in the supplementary data file. Data 

sets were taken Lanczos [18], Jennrich and Sampson 

[19], Meyer and Roth [20], Box et al. [21], Kowalik and 

Osborne [22], Daniel and Wood [23], Nelson [24], 

Ratkowsky [1], Kahaner et al. [25] and NIST data set 

collection. In the models, the number of parameters is 

ranging from 2 to 9 and the number of observations is 

ranging from 5 to 200. For instance, Chwirut1 model 

has the 3 parameters and for this model, 214 

observations are used.  

The 1-3 columns of Table 3 show name of model, 

function of model, and the searching space, 

respectively. In the last four columns, optimal (true) and 

estimated parameter values are involved. �̂� values 

indicate the estimated parameter values for the real 𝛽 

parameters obtained by the PSO and 𝑆(�̂�) shows the 

estimated sum of squared error function value. 

The estimate of parameters of these nonlinear 

regression models is a difficult task for classical 

algorithms of optimization. The starting values of 

parameters were chosen at random from searching 

spaces, for each model 50 independent attempts were 

performed.  

In order to see how the PSO algorithm approaches to 

minimum of the sum of squared error function, and 

finally the estimations, their performances are 

illustrated on 28 test examples. From Table 3, for all the 

28 nonlinear regression model examples, it can be 

observed that the ‘‘best’’ results obtained by the PSO 

are reasonably very close to the true parameter values, 

which demonstrates the high searching quality of the 

PSO. 

In this study, comparing criteria are constructed on the 

principle of whether the technique provides a desired 

and suitable solution (a close estimation) or not. 

Additionally, since the convergence behaviors of the 

methods are observed that they are in a rapid 

convergence tendency, iteration number is limited to 

100 iterations. 
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Table 3: List of nonlinear regression models and the results of the PSO algorithm 

Name Regression Model 
Searching 

Space 

Parameters 

Optimal Estimated 

Meyer1 
𝛽1𝛽3𝑥1

1 + 𝛽1𝑥1 + 𝛽2𝑥2
 

0 - 100 𝛽1 3.131500 �̂�1 3.131500 

0 - 100 𝛽2 15.159000 �̂�2 15.159400 

0 - 100 𝛽3 0.780100 �̂�3 0.780063 

   �̂�(𝛽) 0.000043553 

Meyer4 𝛽3(exp(−𝛽1𝑥1) + exp(−𝛽2𝑥2)) 

0 - 100 𝛽1 13.241000 �̂�1 13.240900 

0 - 100 𝛽2 1.500700 �̂�2 1.500700 

0 - 100 𝛽3 20.10000 �̂�3 20.09900 

   �̂�(𝛽) 0.000074712 

Meyer5 𝛽3(exp(−𝛽1𝑥1) + exp(−𝛽2𝑥2)) 

0 - 2000 𝛽1 814.9700 �̂�1 906.7232 

0 - 100 𝛽2 1.5076 �̂�2 1.5076 

0 - 100 𝛽3 19.9200 �̂�3 19.9204 

   �̂�(𝛽) 1.2519 

Meyer7 𝛽1 + 𝛽2exp (𝛽3𝑥) 

0 - 1000 𝛽1 16.6730 �̂�1 16.0118 

0 - 2 𝛽2 0.9994 �̂�2 0.6999 

0 - 2 𝛽3 0.0222 �̂�3 0.0272 

   �̂�(𝛽) 0.010941 

Militky4 𝛽1 exp(𝛽3𝑥) + 𝛽2 exp(𝛽4𝑥) 

0 - 1000 𝛽1 1655.2 �̂�1 1408.5358292 

0 - 1000 𝛽2 3.4E+07 �̂�2 2.1423E+07 

-2 - 0 𝛽3 -0.6740 �̂�3 -0.6710 

-5 - 0 𝛽4 -1.8160 �̂�4 -1.7501 

   �̂�(𝛽) 129.2111 

Militky5 𝛽1𝑥𝛽2 + 𝛽3
𝛽2/𝑥

 

0 - 5 𝛽1 0.055890 �̂�1 0.055887 

0 - 5 𝛽2 3.548900 �̂�2 3.548900 

0 - 5 𝛽3 1.482200 �̂�3 1.482200 

   �̂�(𝛽) 0.0043753 

Gompertz 𝛽1 exp(−exp(𝛽2 − 𝛽3𝑥)) 

0 - 1000 𝛽1 722.7500000 �̂�1 723.1086000 

0 - 100 𝛽2 2.5030000 �̂�2 2.5001840 

0 - 100 𝛽3 0.4510000 �̂�3 0.4501031 

   �̂�(𝛽) 13606.1427 

Logistic 
𝛽1

1 + exp(𝛽2 − 𝛽3𝑥)
 

0 - 1000 𝛽1 702.9 �̂�1 702.8714 

0 - 100 𝛽2 4.443 �̂�2 4.4426 

0 - 100 𝛽3 0.689 �̂�3 0.6886 

   �̂�(𝛽) 8929.883 

Richards 
𝛽1

(1 + exp(𝛽2 − 𝛽3𝑥))1/𝛽4
 

0 - 1000 𝛽1 699.6 �̂�1 699.6484 

0 - 10 𝛽2 5.277 �̂�2 5.2765 

0 - 10 𝛽3 0.760 �̂�3 0.7596 

0 - 10 𝛽4 1.279 �̂�4 1.2790 

   �̂�(𝛽) 8786.4051 

Jennrich exp(𝛽1𝑥) + exp(𝛽2𝑥) 

0 - 100 𝛽1 0.2578 �̂�1 0.25783 

0 - 100 𝛽2 0.2578 �̂�2 0.25783 

   �̂�(𝛽) 124.3622 
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Table 3: List of nonlinear regression models and the results of the PSO algorithm (continue) 

Name Regression Model 
Searching 

Space 

Parameters 

Optimal Estimated 

Militkty2 exp(𝛽1𝑥) + exp(𝛽2𝑥) 

-50 - 50 𝛽1 0.2807 �̂�1 0.28067 

-50 - 50 𝛽2 0.4064 �̂�2 0.40638 

   �̂�(𝛽) 0.0088963 

Ratkowsky2 
𝛽1

1 + exp(𝛽2 − 𝛽3𝑥)
 

0 - 100 𝛽1 72.4622 �̂�1 72.4622 

0 - 10 𝛽2 2.6181 �̂�2 2.6181 

0 - 10 𝛽3 0.0674 �̂�3 0.0674 

   �̂�(𝛽) 8.0565 

Eckerle4 
𝛽1

𝛽2

exp (
−(𝑥 − 𝛽3)2

2𝛽2
2 ) 

0 - 1000 𝛽1 1.5544 �̂�1 1.5544 

0 - 1000 𝛽2 4.0888 �̂�2 4.0888 

0 - 1000 𝛽3 451.5412 �̂�3 451.5412 

   �̂�(𝛽) 0.0014636 

Ratkowsky3 
𝛽1

(1 + exp(𝛽2 − 𝛽3𝑥))1/𝛽4
 

0 - 1000 𝛽1 699.6415 �̂�1 699.3725 

0 - 10 𝛽2 5.2771 �̂�2 5.3408 

0 - 10 𝛽3 0.7596 �̂�3 0.7655 

0 - 10 𝛽4 1.2792 �̂�4 1.2999 

   �̂�(𝛽) 8787.1522 

BoxBOD 𝛽1(1 − exp(−𝛽2𝑥)) 

0 - 1000 𝛽1 213.8094 �̂�1 213.8094 

0 - 100 𝛽2 0.5472 �̂�2 0.5472 

   �̂�(𝛽) 1168.0089 

Thurber 
𝛽1 + 𝛽2𝑥 + 𝛽3𝑥2 + 𝛽4𝑥3

1 + 𝛽5𝑥 + 𝛽6𝑥2 + 𝛽7𝑥3
 

0 - 1500 𝛽1 1288.1397 �̂�1 1288.1098 

0 - 1500 𝛽2 1491.0793 �̂�2 1498.1622 

0 - 1000 𝛽3 583.2384 �̂�3 588.4335 

0 - 100 𝛽4 75.4166 �̂�4 76.4298 

0 - 1 𝛽5 0.9663 �̂�5 0.9717 

0 - 1 𝛽6 0.3980 �̂�6 0.4006 

0 - 1 𝛽7 0.0497 �̂�7 0.0508 

   �̂�(𝛽) 5652.0481 

MGH09 
𝛽1(𝑥2 + 𝑥𝛽2)

𝑥2 + 𝑥𝛽3 + 𝛽4

 

0 - 1 𝛽1 0.1928 �̂�1 0.19299 

0 - 1 𝛽2 0.1913 �̂�2 0.2147 

0 - 1 𝛽3 0.1231 �̂�3 0.13987 

0 - 1 𝛽4 0.1361 �̂�4 0.14535 

   �̂�(𝛽) 0.00030946 

ENSO 

𝛽1 + 𝛽2 cos
2𝜋𝑥

12
+ 𝛽3 sin

2𝜋𝑥

12
+ 𝛽5 cos

2𝜋𝑥

𝛽4

+ 𝛽6 sin
2𝜋𝑥

𝛽4

+ 𝛽8 cos
2𝜋𝑥

𝛽7

+ 𝛽9 sin
2𝜋𝑥

𝛽7

  

0 - 100 𝛽1 10.5107 �̂�1 10.5107 

0 - 100 𝛽2 3.0762 �̂�2 3.0762 

0 - 100 𝛽3 0.5328 �̂�3 0.5328 

0 - 100 𝛽4 44.3111 �̂�4 44.3122 

-100 - 100 𝛽5 -1.6231 �̂�5 -1.6226 

0 - 100 𝛽6 0.5255 �̂�6 0.5261 

0 - 100 𝛽7 26.8876 �̂�7 26.8886 

0 - 100 𝛽8 0.2123 �̂�8 0.2129 

0 - 100 𝛽9 1.4967 �̂�9 1.4964 

   �̂�(𝛽) 788.5398 
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Table 3: List of nonlinear regression models and the results of the PSO algorithm (continue) 

Name Regression Model 
Searching 

Space 

Parameters 

Optimal Estimated 

Roszman1 
𝛽1 − 𝛽2𝑥 −

arctan
𝛽3

𝑥 − 𝛽4

𝜋
 

0 - 100 𝛽1 0.2020 �̂�1 0.20198 

-100 - 100 𝛽2 -6.195E-06 �̂�2 -6.197E-06 

0 - 105 𝛽3 1204.4556 �̂�3 1204.4145 

-104 - 104 𝛽4 -181.3427 �̂�4 -181.3132 

   �̂�(𝛽) 0.00049485 

Misra1d 
𝛽1𝛽2𝑥

1 + 𝛽2𝑥
 

0 - 1000 𝛽1 437.3737 �̂�1 437.3697 

-103 - 103 𝛽2 0.0003022732 �̂�2 0.000302273 

   �̂�(𝛽) 0.056419 

Misra1c 𝛽1 (1 −
1

√1 + 2𝛽2𝑥
) 

0 - 1000 𝛽1 636.4273 �̂�1 636.4273 

0 - 1000 𝛽2 0.000208136 �̂�2 0.000208136 

   �̂�(𝛽) 0.040967 

Lanczos2 𝛽1 exp(−𝛽2𝑥) + 𝛽3 exp(−𝛽4𝑥) + 𝛽5 exp(−𝛽6𝑥) 

0 - 10 𝛽1 0.09625103 �̂�1 0.89696 

0 - 10 𝛽2 1.00573329 �̂�2 4.98390 

0 - 10 𝛽3 0.86424690 �̂�3 0.98516 

0 - 10 𝛽4 3.00782839 �̂�4 2.57480 

0 - 10 𝛽5 1.55290169 �̂�5 0.63676 

0 - 10 𝛽6 5.00287981 �̂�6 5.76930 

   �̂�(𝛽) 0.00036413 

Nelson exp(𝛽1 − 𝛽2𝑥1 exp(−𝛽3𝑥2))  

0 - 10 𝛽1 2.5907 �̂�1 2.5907 

0 - 1 𝛽2 5.6178E-09 �̂�2 5.6178E-09 

-1 - 1 𝛽3 -0.0577 �̂�3 -0.0577 

   �̂�(𝛽) 3.7977 

Misra1b 𝛽1 (1 −
1

(1 +
𝛽2𝑥

2
)

2) 

0 - 1000 𝛽1 337.99746163 �̂�1 337.9975 

0 - 1000 𝛽2 0.0003903909 �̂�2 0.000390391 

   �̂�(𝛽) 0.075465 

DanWood 𝛽1𝑥𝛽2 

0 - 1000 𝛽1 0.76886226 �̂�1 0.76886 

0 - 1000 𝛽2 3.86040559 �̂�2 3.86040 

   �̂�(𝛽) 0.0043173 

Chwirut1 
exp( −𝛽1𝑥)

𝛽2 + 𝛽3𝑥
 

0 - 1000 𝛽1 0.19027 �̂�1 0.19028 

0 - 1000 𝛽2 0.0061314 �̂�2 0.0061314 

0 - 1000 𝛽3 0.010530 �̂�3 0.010531 

   �̂�(𝛽) 2384.4771 

Chwirut2 
exp( −𝛽1𝑥)

𝛽2 + 𝛽3𝑥
 

0 - 1000 𝛽1 0.16657 �̂�1 0.16658 

0 - 1000 𝛽2 0.0051653 �̂�2 0.0051653 

0 - 1000 𝛽3 0.012150 �̂�3 0.01215 

   �̂�(𝛽) 513.048 

Misra1a 𝛽1(1 − exp(−𝛽2𝑥)) 

0 - 1000 𝛽1 238.94212918 �̂�1 238.9421 

0 - 10 𝛽2 0.0005501564 �̂�2 0.000550156 

   �̂�(𝛽) 0.12455 
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As the PSO algorithm is random in nature, the 

convergence behavior and final estimated values can be 

of interest. For Meyer1 and Thurber nonlinear models, 

by way of example, Figure 1 and Figure 2 illustrate the 

error function behavior of the PSO approach which 

consists of the values that have been evaluated during 

the process of minimization, respectively. It is quite 

clear that the PSO algorithm converge after at most 20 

iterations (especially for Meyer4, Meyer5, Meyer7, 

Gompertz, Logistic, Richards, Militky2, Jennrich, 

Ratkowsky2, Ratkowsky3, BoxBoD, Rozsman1, ENSO, 

Lanczos2, and DanWood models, in fact the 

convergence is realized only about 10 iterations) to their 

minimum sum of squared error value at the estimates of 

the parameters. For all models, figures are summarized 

in the supplementary figure file. 

 

 

Figure 1: The sum of squared error function behavior of the PSO approach for Meyer1 model 

 

 

Figure 2: The sum of squared error function behavior of the PSO approach for Thurber model 

 

 

If the Figures 1 and 2 are examined closely, the 

superiority variation of the method without any obvious 

decisive factor is due from the instantaneous values of 

the random initial population and random based 

operators of the evolutionary techniques.  

As examples to estimation accuracy, for Meyer1 model; 

for real parameter values (3.1315, 15.159, 0.7801), the 

PSO estimated values are (3.1315, 15.1594, 0.780063) 

and estimated error value is 0.000043553, for Thurber 

model; for real parameter values (1288.1397, 

1491.0793, 583.2384, 75.4166, 0.9663, 0.3980, 0.0497), 

the PSO estimated values are (1288.1098, 1498.1622, 

588.43352, 76.429786, 0.9717212, 0.4006428, 

0.0507479) and estimated error value is 5652.0481. The 

obtained results are reasonably very close to the true 

parameter values. 

Since Jennrich and Militky2 models have the 2 

parameters, detailed examination of the sum of squared 

error function of these models is provided by the 

Figures 3 and 4. They exhibit behavior of the particles 

for the Jennrich and Militky2 model, respectively. From 

Figure 3, for Jennrich model, it is seen easily that the 

particles heavily intensify the (0.2578, 0.2578) point at 

the approximately 50th iteration. From Figure 4, for 

Militky2 model, the particles heavily intensify the (0.28, 

0.40) point at the approximately 50th iteration. For both 

models, it is easily seen that while particles are making 

several searches in the first iterations, they are taking 

the form of almost a single point in the last iterations 

and in the each iteration; the searches are diversified to 

reduce the impact of a local solution. It is noted that, the 

convergence is provided in the first few iterations for 

the Jennrich model, it is provided about 10 iterations 

for the Militky2 model. Moreover, according to Table 3 

and all Figures, it can be seen that the PSO estimates 

are very close to the real parameter values and it may be 

concluded that the PSO algorithm seems available and 

may be considered as an effective parameter estimation 

method for nonlinear regression models. 
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Figure 3: Scatter plot of particles in different iterations for Jennrich model 
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Figure 4: Scatter plot of particles in different iterations for Militky2 model  

 

 

5. CONCLUSIONS 

The main aim of this article is to develop a reliable 

alternative parameter estimation approach based on the 

PSO algorithm in nonlinear regression model. When the 

PSO method is used for estimation of nonlinear 

regression model parameters, the approach presented 

here does not require any additional calculations to be 

performed. It is only necessary to select the points 

evaluated by the PSO. Also, it must be noted that the 

PSO algorithm exhibit a rapid convergence tendency,  

 

specifically the algorithm converged after at most 20-25 

iterations for all the models which the number of 

parameters ranging from 2 to 9 and the number of 

observations ranging from 5 to 214. It can be concluded 

that all estimated values are in the neighborhood of the 

real parameter to be estimated. The numerical examples 

indicate that the PSO is the efficient method for 

handling the problems of parameter estimation of the 

nonlinear regression models.  
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