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ABSTRACT 
 
Biochemical reaction systems involve many different species interacting via many different reaction channels. When 
the number of species and the abundance of species are so high, pure modeling approaches based on differential 
equations suffer from curse of dimensionality. If a system involves conserved cycles, abundances of some species can 
be obtained via algebraic relations which in turn will reduce the dimension of differential equations representing the 
dynamics of the system. In the present paper, we propose a numerical algorithm that uses Gauss-Jordan method to 
obtain conserved cycles in biochemical systems. We give this algorithm in Direct Method (DM), First Reaction Method 
(FRM) and Next Reaction Method (NRM) which obtain exact realizations of the state vector in stochastic modeling 
approach. We apply these three algorithms with/without using conservation relations to biochemical systems in 
different sizes and compare the computational costs of two different versions of each exact algorithm. 
 
Keywords: conservation relations, gauss-jordan method, direct method, first reaction method, next reaction method 

 

 
Korunumlu döngülerin stokastik simülasyon algoritmalarında kullanımı 

 
ÖZ 
 
Biyokimyasal reaksiyon sistemleri farklı reaksiyonlar  aracılığıyla etkileşime giren birçok farklı  türü içerir. Sistem 
içerisinde yer alan türlerin sayıları ve miktarları çok yüksek olduğunda, diferansiyel denklemlere dayanan saf 
modelleme yaklaşımları çok boyutluluktan muzdarip olurlar. Eğer bir sistem korunumlu döngüler içerirse,  bazı türlerin 
miktarları cebirsel bağlantılar yoluyla elde edilebilir bu da sistemin dinamiklerini  temsil eden diferansiyel 
denklemlerin boyutunu düşürür. Bu çalışmada, biyokimyasal reaksiyon sistemlerinde yer alan korunumlu döngüleri 
elde etmek için Gauss-Jordan metodunu kullanan bir nümerik algoritma öneriyoruz. Algoritmayı stokastik modelleme 
yaklaşımında konum vektörünün tam realizasyonlarını elde eden Direk  Metod (DM), İlk Reaksiyon Metodu (FRM) 
ve Sonraki Reaksiyon Metodu (FRM) içerisinde verdik. Bu üç algoritmayı korunum bağıntılarını içerecek/içermecek 
şekilde farklı boyutlardaki biyokimyasal sistemlere uyguladık ve   her tam lagoritmanın farklı iki versiyonunun 
hesaplama miktarları kıyasladık. 
 
Anahtar Kelimeler: korunum bağıntıları, gauss-jordan metodu, direk metod, ilk reaksiyon metodu, sonraki reaksiyon 
metodu.  
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1.INTRODUCTION 

 

On microscopic level, biochemical networks may 
involve hundreds or thousands of species and also 
reaction channels. Many researchers from different 
disciplines have considered the problem of mathematical 
modeling of these systems [1]. The traditional approach 
based on the idea that the dynamics of biochemical 
reactions are continuous and deterministic uses Ordinary 
Differential Equations (ODEs) to model these systems. 
In cellular reactions, fluctuations in abundances of 
mRNA, DNA which are present in a very small copy 
numbers can lead to cell-to-cell variability. Since 
stochasticity and randomness in the nature of these 
processes can’t be captured by ODEs, stochastic 
approach which uses Continuous Time Markov Chains 
(CTMCs) to model dynamics of these processes is 
proposed as an alternative [2-4]. In this modeling 
approach, the state vector of the process satisfies the 
Random Time Change Model (RTCM) [5] and the time 
evolution of the probability distribution of the system is 
defined by the Chemical Master Equation (CME) [6]. In 
most applications, researchers focus on the CME. 
 

Differential equations used in both approaches suffer 
from the curse of dimensionality, because the dimension 
of corre-sponding ODEs and CMEs is proportional to the 
number of species and the copy numbers of species. 
Therefore, when the system of interest is large, it will be 
so difficult to obtain analytical solutions of these 
equations. As a result, dividing large systems into small 
subgroups to decrease the computational cost of 
analyzing the dynamics of original system is very popular 
among researchers. For example, in [7], authors used 
invariants and flow equivalent servers to transform 
complex biological models into simplified models which 
preserve the dynamics of the original model. In [8], two 
different approaches based on conservation relations and 
differences in the speed of reactions are proposed to 
simplify complex systems. 
 

To understand the dynamical behavior of a system, the 
stiochiometric matrix which represents the net change in 
the copy numbers of species produced by reactions has a 
crucial importance. Therefore, analysis of stiochiometric 
matrices gains popularity among researchers [8-11]. 
Conserved cycles which can be extracted from the 
stiochiometric matrices can be used to simplify reaction 
systems. If the total amount of some species remains 
constant during the process, this means that there are 
conserved cycles in the system. For example, 
phosphorylation event in pathways is the result of Adenin 
Triphosphate (ATP) Adenosine Diphosphate (ADP) 
change, therefore, during such a phosphorylation 
process, the total amount of ATP and ADP equals to a 

constant value which can be obtained from their initial 
conditions [12]. Also, the number of genes in a gene 
expression never changes. As a result, if the number of 
ATP in the process is known at a specific time, then, the 
number of ADP at this specific time point can be obtained 
by subtracting the copy numbers of ATP from the total 
amount of ATP and ADP which is given initially or vice 
versa. Similarly, the number of passive genes at a specific 
time of the process can be obtained via the number of 
active genes at this time point or vice versa. There are 
different ways of obtaining conserved cycles in a process 
such as Haousholder based methods [13], Gauss-Jordan 
elimination methods [11], methods based on atomic 
transition networks of species [14]. We refer to [11] and 
the references therein for a review on the methods of 
obtaining conservation relations in a biochemical process 
of interest.  
 
Conservation relations in biochemical systems are 
defined by algebraic equations. The number of conserved 
cycles in a biochemical system can be obtained from its 
stoichiometric matrix [11], [15], [16]. If we use ODEs to 
model a system with conserved cycles [4], [10], [12], 
using conservation relations transforms ODEs into 
Differential Algebraic Equa-tions (DAEs). Similarly, in 
case of using SDEs to model such systems, involving 
conservation relations transform SDEs into Stochastic 
Differential Algebraic Equations (SDAE) [17], [18]. 
 
There are two goals of the present paper. The first aim is 
to propose a MATLAB algorithm which obtains 
conserved cycles of a biochemical reaction system. This 
algorithm can also be involved in stochastic simulation 
algorithms which give exact realizations of a stochastic 
process whose probability function satisfies the CME. 
We mainly deal with exact algorithms which are Direct 
Method (DM), First Reaction Method (FRM), and Next 
Reaction Method (NRM). The second aim of the paper is 
to propose improvements of DM, FRM, and NRM 
algorithms which uses conserved cycles and to compare 
the computational costs of those new algorithms with 
original versions of them.  
 
The organization of the paper is as follows: In Section II, 
we give a small summary on basics of stochastic 
modeling approach and DM, FRM, and NRM 
algorithms.  Details of these algorithms can be found in 
the Appendix. Section III which can be considered as the 
main part of the paper is devoted to explain how the 
stoichiometric matrix can be used to obtain conserved 
cycles in the system. The MATLAB algorithm that finds 
conservation relations and the definition of comparison 
criteria are also given in this section. In Section IV, we 
implement the system to different biochemical systems 
with different sizes. Finally, Section VI concludes the 
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paper with a discussion on algorithms and gives an idea 
on future works of the subject. 
 

2.BACKGROUND 
 
Suppose that we have a well stirred system involving 

� ∈ ℕ species NSSS ,,, 21   and M reaction channels

 MRRR ,,, 21  .Let   )(,),(),()( 21 tXtXtXtX N  ℕ N
0

be the state vector of the system at a time 0t where 

)(tX j is the number of molecules of jS . A single 

occurrence of the k th reaction channel kR changes the 

system state from )(tX  to 
ktX )( Here, 

 ),,,( 21 Nkkkk   ℤ
N

represents the 

stoichiometric vector whose j th component jk  

denotes the net effect of a single firing of kR  on the 

number of molecules of jS . Given xtX )( , the 

probability of an occurrence of reaction kR in the time 

interval  htt , is determined by hxk )(  for sufficiently 

small h . Here, )(xk  is the product of the reaction rate 

constant and the number of distinct combinations of 

reactants of kR  and called as the propensity function 

[19]. 
 

If X is a Continuous Time Markov Chain (CTMC), a 
goal of stochastic modeling approach is to obtain the 
following probability function 
 

),( xtp ℙ ))0()(( 0xXxtX   

 
which satisfies the set of differential equations called 
Chemical Master Equation (CME) in the following form 
 

 





 M

j
jjjj txpxtxpx

t

txp

1

)1(.),()(),()(
),(



The number of differential equations in this system is 
determined by the number of species and the number of 

molecules of species. If we have L number of molecules 
of each species, then, the number of differential equations 

in the corresponding CME is 
LN . Therefore, it is very 

hard to solve CME analytically, except for mono 
molecular reaction systems [20]. As a result, simulation-
based numerical methods that obtain exact realizations of 
the state vector of the system of interest are proposed. 
Stochastic Simulation Algorithms (SSAs) which are 
proposed by Gillespie can be considered as cornerstones 
of exact algorithms [21]. There are two different versions 
of SSAs, they are Direct Method (DM) and First Reaction 

Method (FRM). To improve the efficiency of FRM, 
Gibson and Bruck proposed the Next Reaction Method 
(NRM) [22]. DM and FRM differ from each other 
depending on the way of answering following two 
questions: 
 

 What is the firing time of the next reaction,
*t ? 

 What is the index of the firing reaction,  ? 

Given xtX )( , the DM considers 
*t as a random 

variable distributed according to an exponential 

distribution with mean 



M

j
j xx

1
0 )()(  and  is a vector  

distributed according to an integer density function

)(/)( 0 xx 
. Differently than DM, FRM produces 

different Mjt j ,,2,1,*  values for each reaction 

according to exponential distribution with mean )(xj . 

Chooses 
*t as the smallest of 

*
jt values and obtain  such 

that 
**
tt   . The NRM finds 

*t and  values by using 

the same strategy with FRM. To decrease the 
computational cost of the FRM, it constructs two data 
structures namely dependency graph  Ј   and indexed 
priority queue Q. Dependency graph shows that 
propensity functions are changed when a given reaction 
fired. Naturally, when a single reaction fired only 
updating propensities whose values are changed instead 
of updating all propensities decreases the computational 
cost of the algorithm. Indexed priority queue is an 
another data structure that saves the time increments of 
each reaction to reuse them in case of need. Algorithms 
of these methods can be seen in Appendix. 
 

 
3.CONSERVATION RELATIONS AND NEW 

ALGORITHMS 
 
In pure modeling approaches such as traditional 
deterministic approach based on ODEs or stochastic 
approach based on CME, the number of differential 
equations directly proportional to the number of species 
in the biochemical process under consideration. As a 
result, when the number of species in the system is so 
high, the number of differential equations in the 
corresponding ODE or CME is also high. If there exist 
conserved cycles in the system, abundance of some 
species can be found via algebraic relations which in turn 
will reduce the number of differential equations in the 
corresponding differential equation set. As mentioned 
before, the meaning of having conserved cycles in 
biochemical processes is that the total sum of abundance 
of some species doesn’t change during the time interval 
under consideration. If we consider a gene expression, 
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the number of gene doesn’t change or if we consider an 
enzyme-substrate system such as Michaelis Menten 
kinetics, the total amount of enzyme and enzyme-
substrate complex is constant during the time of process 
[4], [12].  
 
Existence of conserved cycles in a biochemical system 

can be understood from the stoichiometric matrix, S . For 

a reaction system with N species and M  reactions, 

S ℤ
MN

whose k th column is the stiochiometric 

vector of the reaction kR , .,,2,1, Mkk   If there are 

conserved cycles in the system, this means that S is not 

full rank, i.e.,   NSRankW  [11], [15], [16]. 

Although there are different ways of obtaining 

conservation relations from S , algorithm proposed in 
the present study is based on the Gauss-Jordan method. 
We refer to [11], for more details on Gauss Jordan 
method and also details of different methods for 

obtaining conserved cycles from S . Let S
~

ℕ
MW

 be 

the row reduced echelon form of S . S
~

can be obtained 

by multiplying S  with a matrix U  ℝ
NN

 which is the 

product of elementary matrices such that 









0

~
S

US . If we 

partition U into two different matrices U
~

ℕ
MW

, U

ℕ
MWN  )(

such that  

 

0,
~~

 SUSSU .  

 

Here, U is called as the conservation matrix. The 

matrix, U , also partitions the state vector, X , into two 
different parts as follows 
 

CXXUXXU  ,
~~

 

 

where C  denotes the conservation constant vector. For 

the rest of the paper, X
~

, X will be referred as 
independent and dependent variables, respectively. By 
using conservation relations, we can separate the system 
into two parts. If we use differential equations to model 
the system, the time derivative of the independent 

variables, X
~

, are represented by differential equations 
while the abundances of some species are represented by 

the algebraic relations given in X . Each component of 

X  corresponds a conserved cycle in the system and the 

value of conservation vector can be found from the initial 

state vector, )0(X  by using the equation CXU )0( .   

 

Given the principled way of obtaining X
~

, X  values, we 

must obtain the original state vector X . To achieve this 

goal, we will use the properties ofU . It is trivial that U  

has an inverse 1U .  Then, if we partition 
1U  into two 

matrices which are 1~
U  ℝ

WN
, 1U  ℝ

)( WNN 
, 

then we can easily obtain 
 

.
~~ 11 CUXUX    

 
Now, based on Gauss Jordan method we can give the 
following two algorithms.  
 

Algorithm 1: Algorithm that obtains conserved 
cycles  
of a given biochemical reaction system  

Input : The stoichiometric matrix S , rank of matrix  

W  
Output: Independent and dependent variables 

1. )]([ NeyeST   (Obtain augmented 

matrix  ],[ IST ℤ
NM 2

where I ℕ

NN
 is the identity matrix)  

2. )(
~

TrrefT  (Obtain row reduced echelon 

form of T which is represented by T
~

) 

3. )2:1(:,
~

NMTU  (Obtain U from  T
~

 

by taking  last )12(  MN columns of  

T
~

) 

4. :),:1(
~

:),,:1( MWUUWUU   

(Construct U , U
~

) 

5. )(1 UinvU 
(Obtain inverse of  U

which is 1U ) 

6. ):1(:,),:1(:,
~ 11 NWUUWUU  

(Obtain inverse of  
1~U which is 

1U ) 

7. XUXXUX  ,
~~

(Obtain X
~

, X ) 

 
This main algorithm can be used in any simulation based 
numerical method which obtains realizations of 
biochemical reactions for stochastic modeling. The 
following algorithm  is  the  summary of any algorithm 
that uses Algorithm 1. 
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Algorithm 2: Summary of algorithms that uses 
Algorithm 1. 
 
Input : The stoichiometric vectors  

11 ,,,
~

,
~

,
~

,,,2,1,  UXUUXUMjj   

Output: The state of the system and the time of the 
process.  

1. Set 0t , 0xX  .  

2. Obtain 
*

t  depending on the algorithm 

under consideration.  
3. Define a new stiochiometric vector 

.,,2,1, MjU j

new

j    

4. Update ]:1[
~~

WXX new
j . 

5.  Obtain original state vector  

CUXUX 11 ~~   . 
6. Update t depending on the type of the 

algorithm under consideration.  
7. Compute the propensities of functions.  
8. Go to Step 2. 

 
In this study, we compare computational costs of three 
exact algorithms DM, FRM and NRM with/without 
using conservation relations. All algorithms are written 
in MATLAB programming language. This comparison 
will be based on three quantities which are CPU time 
refers to the time used by MATLAB for the algorithm 
from the time it was started and average search depth, 
average weighted degree. Average search depth and 
average weighted degree are defined in [23] as follows. 
 
Average Search Depth S : This term denotes the average 
number of operations needed to obtain the index of the 
next reaction. It is computed as follows  





M

j
j

M

j
j kjk

11

S , where M is the number of reactions  

in the system, jk is the total number of occurrence of 

reaction jR in the simulation time of interest. 

Average Weighted Degree  D   This quantity can be 
considered as a kind of measure of the dependency graph. 
It shows the average number of reactions whose 
propensities changed by an occurrence of a given 

reaction. It is computed by 



M

j
j

M

j
jj kkd

11

D where  

jd represents the total number of reactions whose 

propensities are changed by a single firing of reaction 

jR which can be obtained from dependency graph  Ј .   

 
 

4.APPLICATIONS 
 
In this section of the present study, we will apply the 
proposed algorithms into Gene-expression model, 
Michaelis- Menten kinetics and Phosphorelay system 
which involves one, two, three conserved cycles, 
respectively. 
 
4.1. Gene Expression 
 
Gene expression is a very well known process which 
begins with activation of genes to produce a specific 

protein. Active gene, onGene , forms mRNA by 

transcription step and mRNA produces protein via 

translation. Then, produced protein and mRNA are 
consumed. The state vector of the system is 

TProtein)mRNA,,Gene,(GeneX(t) offon . 

Reactions in the system, propensity functions and 
stoichiometric vectors can be seen in Table 1. Copy 

numbers of onGene , mRNA , Protein produced by 

the DM are shown in Figure 1. We have used   and  as 
follows 
 
Table 1. Reactions, propensity functions and 
stoichiometric vector   for gene expression model. 

Reaction Propensit
y 

Function 

Stoichiometr
ic vector 

 off
c

on1 GeneGene:R 1  
111 )( xcx 

 

T)0,0,1,1(1   

on 
c

off2 GeneGene:R 2  
222 )( xcx 

 

T)0,0,1,1(2   

mRNAGeneGene:R on 
c

on3
3 

 
133 )( xcx 

 

T)0,1,0,0(3   

ProteinmRNAmRNA:R 4c
4 

 
344 )( xcx 

 

T)1,0,0,0(4   

Ø mRNA:R 5c
5   

355 )( xcx   T)0,1,0,0(5   

Ø Protein:R 6c
6   

466 )( xcx 

 

T)1,0,0,0(6   

 





















































0011

1000

0100

0010

,

101000

010100

000011

000011

US
 

 

Since   3SRank , we have only one conserved cycle 

which is C offon GeneGene . Then, independent 

and dependent variables have the form 
 

offonon GeneGeneX,Protein)mRNA,,(Gene(t)X
~

 T . 
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In our application, we have ,20,80)(0,1,X(0) T which 

gives 1GeneGene offon  and

,1.0c,1.0c 1
2

1
1

  ss  ,2c,5.0c 1
4

1
3

  ss  

1
5 025.0c  s and.The system is simulated in time 

interval  st 150,0 . Comparison of algorithms with/ 

without using conserved cycles can be seen in Table 4. 
 

 
Fig 1. Copy numbers of 

onGene (A), mRNA (B), Protein 

(C) in gene expression model given in Table I. In our 
illustration, we use ,20,80)(0,1,X(0) T ,1.0c 1

1
 s

,5.0c,1.0c 1
3

1
2

  ss ,2c 1
4

 s 1
5 025.0c  s and 1

6 01.0c  s

and obtain realizations via DM. 
 

4.2. Michaelis-Menten Kinetics 
 

Michaleis-Menten kinetics is a fundamental enzymatic 
mechanism that is valid for reactions involving only a 

single substrate. The enzyme (E) binds to the substrate 

(S) to form a enzyme-substrate (ES) which in turn 

forms protein (P) . The state vector of the system in our 

model is 
TP),ESS,(E,X(t)  .  Reactions, propensity 

functions and also stoichiometric vectors of the system 
can be seen in the following Table 2.  
 
 

Table 2. Reactions, propensity functions and 
stoichiometric vectors for the  Michaelis-Menten 
Kinetics. 

Reaction Propensity 
Function 

Stoichiometri
c vector 

ESSE  1c
1 :R

 
2111 )( xxcx 

 

T)0,1,1,1(1 

 

SEES  2c
2 :R

 
322 )( xcx   T)0,1,1,1(2   

PEES  3c
3 :R

 

333 )( xcx   T)1,1,0,1(3   

 

The stiochiometric matrix S  and U  has the form 



















































1110

0101

1000

1100

,

100

111

011

111

US
 

 

The rank of S is 2. Then, we have two conserved cycles 
 

21 CPESS,ESE  C . 

 
Our new independent and dependent variables have the 
form 
 

.P)ESE,ES(EX,P)P,(ESX
~ TT   

 

In our application, we have 
T)65,695,5,0(X(0) 

which in turn will produce 
TC 70,700)( , reaction 

rate constants are 5.0c,1.0c,02.0c 321   and the 

system is simulated in  30,0t . Realizations of the 

system generated by DM with these values can be seen 
in the left panel of Figure 2. Computational costs of two 
different versions of each algorithm can be seen in the 
Table 4. 
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Fig. 2. (A) Copy numbers of species in Michaelis-Menten 
model which is obtained by using T)65,695,5,0(X(0) and 

reaction constants 5.0c,1.0c,02.0c 321  (B) Dynamics 

of species of Phosphorelay System with 
T7,40,60)15,85,13,8(X(0)   ,s004.0c -1

1  ,smolec005.0c -1-1
2 

,smolec001.0c -1-1
3 

-1
4 s02.0c   

 
4.3. Phosphorelay System 

 
Our third biochemical reaction system is phosphorelay 
system which keeps HOG signalling pathway inactive 
when external osmolarity of the system is normal [12]. 
The reaction system involves phosphorylation and 

dephosphorylation of three components Sln1, Ypd1 ,

Ssk1. PhosphorylatedSln1, pSln1 , binds Ypd1  to 

phosphorylate Ypd1 , pYpd1 , and  pYpd1 binds 

Ssk1to form PSsk1 . The state vector of the system is 

X(t) (Sln1,Sln1 ,Ypd1, Ypd1 ,Ssk1,Ssk1 )p p P
T

 . The change of 

the abundances of species can be seen in the right panel 
of Figure 2. Details of the model can be seen in Table 3. 
 
 

Table 3. Reactions, propensity functions and 
stoichiometric vectors for the  Phosphorelay System. 

Reaction Propensi
ty 

Function 

Stoichiomet
ric vector 

p
c

1 Sln1Sln1:R 1  2111 )( xxcx 

 
)0,0,0,0,1,1(1 

 
Sln1Ypd1Ypd1Sln1:R p

c
p2

2 

 
3222 )( xxcx 

 

T)0,0,1,1,1,1(2 

 
Ypd1Ssk1Ssk1Ypd1:R p

c
p3

3 

 
5433 )( xxcx 

 

T)1,1,1,1,0,0(3 

 

Ssk1Ssk1:R 4c
p4   644 )( xcx   T)1,1,0,0,0,0(4   

 

The stiochiometric matrix S  and U  has the form 





































































110000

001100

000011

100000

101000

101010

,

1100

1100

0110

0110

0011

0011

US

 
Then, we have 
 

.)Ssk1Ssk1,Ypd1Ypd1,Sln1Sln1(

) Ssk1,Ssk1Ypd1 ,Ssk1Ypd1Sln1(X
~

Ppp

PPpPpp

T

T

X 



 
In our application, we have T7,40,60)15,85,13,8(X(0)   

which gives the conservation constant vector as 
TC 0)100,100,10( and reaction constants 

,smolec001.0c,smolec005.0c,s004.0c -1-1
3

-1-1
2

-1
1 

-1
4 s02.0c  . We simulate the system in   .500,0 st  
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Table 4. Comparison of the CPU algorithms. For both versions of each 
algorithm, we have used the same random numbers. 

System Algorithm Conditions CPU 
Average 
Search 
Dept S 

Average 
Weighted 
Degree  D 

Gene 
Expression 

DM Original 0.9600 4.6537 1.0159 

 DM Conserved 0.9500 4.6506 1.0205 

 FRM Original 0.9800 4.6983 1.0200 

 FRM Conserved 1.1400 4.6586 1.0174 

 NRM Original 0.4200 4.7999 1.0072 

 NRM Conserved 0.3800 4.8319 1.0092 

Michaelis- 
Menten 
Kinetics 

DM Original 0.2100 1.9223 3 

 DM Conserved 0.2900 1.9210 3 

 FRM Original 0.2400 1.9210 3 

 FRM Conserved 0.2800 1.9111 3 

 NRM Original 0.1400 1.9360 3 

 NRM Conserved 0.1000 1.8827 3 

Phosphorelay 
Saytem 

DM Original 0.1700 2.7841 2.5161 

 DM Conserved 0.2000 2.7656 2.4587 

 FRM Original 0.2700 2.8054 2.5159 

 FRM Conserved 0.1800 2.7867 2.5200 

 NRM Original 0.1400 2.8556 2.4623 

 NRM Conserved 0.1700 2.8982 2.4587 

 
5. APPENDIX 

 
The steps of Direct Method, First Reaction Method and 
Next Reaction Method can be seen as follows.  
 

Algorithm 3:  Direct  Method. 

1. Set 0t , the initial state 
0xX  , set 

stoichiometric vector .,,2,1, Mjj   

2. Compute the propensity function )(Xj  and 

calculate 




M

j
j XX

1
0 )()( 

 

3. Draw two random numbers 21,rr  from U 

(0,1) which represents the set of uniformly 
distributed numbers on [0,1].     

4. Calculate the firing time of the next reaction  

).
1

log(
)(

1

10

*

rX
t


  

 
5. Calculate the firing time of the next reaction  

    such that 












1

02

1

1

)()()(
k

k
k

k XXrX  

6. Update  XXttt ,* . 

7. Go to Step 2. 
 
 
 

Algorithm 4:  First Reaction  Method. 

1. Set 0t , the initial state 0xX  , set 

stoichiometric vector .,,2,1, Mjj   

2. Compute the propensity function )(Xj  and 

calculate 



M

j
j XX

1
0 )()(   

3. Draw    M random numbers Mrrr ,,, 21   from  

U (0,1) . 

4. Compute  .,,2,1),
1

log(
)(

1* Mj
rX

t
jj

j 


 

5. Obtain 

*t the smallest of   **

2

*

1 ,,, Mttt  , 

 the index of the smallest of  

 **

2

*

1 ,,, Mttt  . 

Update
 XXttt ,* .  

6. Go to Step 2. 
 

Algorithm 5:  Next Reaction  Method. 

1. Set 0t , the initial state 
0xX  , set 

stoichiometric vector Mjj ,,2,1,  , generate 

dependency graph  Ј. 
2. Compute the propensity function )(Xj  and 

calculate 



M

j
j XX

1
0 )()(   

3. Draw    M random numbers Mrrr ,,, 21   from U 

(0,1) . 

4. Compute  .,,2,1),
1

log(
)(

1* Mj
rX

t
jj

j 


 

5. Store 
*
jt  values in the indexed priority queue Q. 

6. Obtain 
*t such that it is the smallest value stored 

in the indexed priority queue Q. 
7. Obtain the index of the next reaction   such that 

**
tt  . 

8. Update  XXttt ,*
. 

9. Based on the dependency graph  Ј,  for each 

reaction kR whose propensity is affected from the 

occurrence of  R  

 Update    kXX knewk ),()(,
. 

 



  ktt

X

X
tt k

newk

oldk ),)(
)(

)(
( *

,

,* . 

 If  
 

 r
rX

ttk ),
1

log(
)(

1
, *



 


 U (0,1)  
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 Replace the old *
kt values in Q  with the new 

values. 
10. Go to Step 2. 

 
6. DISCUSSION 

 
In the present paper, we give an algorithm to obtain 
conservation relations in a biochemical system by using 
Gauss- Jordan method given in [11]. The algorithm can 
be used to convert differential equations representing the 
dynamics of biochemical reaction networks into 
differential algebraic forms. In [18], the algorithm is used 
to convert SDEs to SDAEs and involved in computer 
based simulation algorithm of jump diffusion 
approximation. In this paper, we used proposed 
algorithm to improve DM, FRM, NRM such that these 
new versions of algorithms can obtain independent 
variables, conservation constants and original state 
vectors whose definitions can be found in Section III. 
Computational costs of those algorithms in case of 
involving/ not involving conservation relations are 
compared based on different criteria. All algorithms are 
written in MATLAB version R2014b and applied to three 
different reaction systems. For all algorithms initial 
random numbers are kept fixed, other random numbers 
are drawn during the simulation. It can be seen in Table 
IV, there is no appreciable change in CPU values, 
average search depth, average weighted degree for two 
different versions of DM, NRM, FRM. The CPU time 
differences between the algorithms are the result of time 
increments which are obtained by using random numbers 
generated during the process. It must be taken into 
account the fact that transforming the independent 
variables into original state vectors is an important factor 
which increases the computational cost of it. Fixing all 
random variables to see the net effect of this step in the 
computational cost will also be studied. Another open 
question of this study is how conservation cycles can be 
involved in original CME. In other words, conserved 
cycles reduces ODEs into DAEs, SDEs ito SDAEs. So, 
what is the correspondence of DAEs, SDAEs when CME 
is used to model the system. We hope this paper will be 
an initial step for researchers from different areas 
studying on systems involving conserved cycles.   
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