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Abstract: We present a GPU-accelerated method for large scale, coupled incompressible fluid flow and heat transfer 

problems. A high-order, nodal discontinuous Galerkin method is utilized to discretize governing equations on 

unstructured triangular meshes. A semi-implicit scheme with explicit treatment of the advective terms and implicit 

treatment of the split Stokes operators are used for time discretization. The pressure system is solved with a conjugate 

gradient method together with a fully GPU-accelerated multigrid preconditioner. The code is built on scalable 

libParanumal solver which is a library of high-performance kernels for high-order discretizations. Performance 

portability is achieved by using the open concurrent compute abstraction, OCCA.  A set of numerical experiments 

including free and mixed convection problems indicate that our approach experimentally reaches design order of 
accuracy.   
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ISI TAŞINIMI İÇİN YAPISAL OLMAYAN AĞLARDA BİR HIZLANDIRILMIŞ 

SÜREKSİZ GALERKİN METDU: FORMÜLASYONU VE DOĞRULANMASI 
 

Öz: Bu çalışmada, büyük ölçekli, birleştirilmiş sıkıştırılamaz akış ve ısı transferi problemleri için GPU ile hızlandırılmış 

bir yöntem sunulmuştur. Yapılandırılmamış üçgen ağlar üzerinde tanımlayıcı denklemlerini ayrıklaştırmak için yüksek 

dereceli, nodal süreksiz Galerkin yöntemi kullanılmıştır. Zaman ayrıklaştırması, taşınım terimlerinin açık bir şekilde 

ele alındığı, Stokes operatörlerinin ise örtük olarak çözüldüğü bir yarı-örtük şema kullanılarak elde edilmiştir. Basınç 

sistemi, tamamen GPU ile hızlandırılmış bir çoklu-ağ ön koşullandırıcının kullanıldığı, eşlenik gradyan yöntemiyle 

çözülmüştür. Kod, yüksek dereceli ayrıklaştırmalar için yüksek performanslı kerneller sağlayan, ölçeklenebilir 

kütüphane olan libParanumal üzerine yazılmıştır. Platformdan bağımsız performans taşınabilirliği OCCA (open 

concurrent compute abstraction) dili ile elde edilmiştir. Yapılan serbest ve karışık taşınım problemlerini içeren bir dizi 
sayısal test ile sunulan metodun deneysel olarak beklenen, spektral doğruluğa ulaştığını gösterilmiştir. 

Anahtar Kelimler: süreksiz Galerkin, GPU, paralel, sıkıştırılamaz akış, ısı transferi, yüksek seviyeli hesaplama. 

 

 

NOMANCLATURE 

 

Abbreviations 

𝐺𝑟 Grashof Number [= 𝑔𝛽(𝑇 − 𝑇𝑟)𝐿𝑟
3/𝜈2] 

𝑃𝑟 Prandtl Number [= 𝜈/𝛼] 
𝑅𝑎 Rayleigh Number [= 𝐺𝑟𝑃𝑟] 
𝑅𝑒 Reynolds Number [= 𝑈𝑟𝐿𝑟/ν] 
𝑅𝑖 Richardson Number [= 𝐺𝑟/𝑅𝑒2] 
𝑆𝑡 Strouhal Number [= 𝑓𝐿𝑟/𝑈𝑟] 
DG Discontinuous Galerkin 

DNS Direct Numerical Simulation 

GPU Graphical Processing Unit 
HPC High Performance Computing 

NS Navier-Stokes 

SIPDG Symmetric Interior Penalty DG 

Subscripts 

𝑢 Velocity Related Value 

θ Temperature Related Value 

𝐷 Dirichlet Boundary 

𝑁 Neumann Boundary 

𝑟 Reference Value 

Greek Symbols 

𝛼 Thermal Diffusivity [= 𝑚2/𝑠] 
𝛽 Expansion Coefficient [= 1/∘𝐶] 
∇ ⋅ Divergence Operator 

∇ Gradient Operator 

Δ Laplace Operator 

𝜈 Kinematic Viscosity [= 𝑚2/𝑠] 
𝜏 Stabilization Parameter 

𝜃 Non-dimensional Temperature 

Superscripts 

𝑒 Element Id 
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𝑒𝑥 Exact Solution 

𝑓 Face Id 

𝑛 + 1 Next Time Level 

𝑛 Current Time Level 

Symbols 

𝑠𝑢  Source Term of Momentum Equation 

𝑢 Velocity Vector 

𝑔𝐷 Dirichlet Boundary Condition 

𝑔𝑁 Neumann Boundary Condition 

ℎ Characteristics Mesh Size 

𝐾 Number of Elements 

𝐿2 𝐿2 Vector Norm of Error 

𝑁 Approximation Order 

𝑁𝑝 Number of Interpolation Nodes 

𝑝 Non-dimensional Pressure 

𝑠𝜃 Source Term of Energy Equation 

𝑡 Non-dimensional Time 

 

INTRODUCTION 

 

One of the primary challenges in fluid mechanics and 

heat transfer is to reflect physical interactions that 

occurred in a large range of spatial and temporal scales. 

This type of analysis for real-life applications might 

require extreme degrees of freedom and high-order 

discretizations to minimize numerical dissipation. 

Simulation tools developed for these problems can 

require large compute times which cannot be provided 

even by the fastest supercomputers. The principal 

objective of high-performance computing (HPC) is to 

bring the extreme runtimes to reasonable levels. 

Recently, HPC systems use accelerator based on-node 

parallelism using Graphical Processing Units (GPUs). 

On the other hand, developing a high-order finite element 

based flow and heat transfer analysis suit that benefits 

modern accelerators is complicated due to the need of 

achieving multi-threaded parallelism with effectively 

exploiting nonuniform memory hierarchies (Karakus et 

al., 2019b). 

 

Discontinuous Galerkin (DG) method (we refer 

Hesthaven and Warburton (2008) and the references 

therein) is a class of high-order finite element methods. 

DG method uses completely discontinuous, piecewise 

polynomial approximations for spatial discretization that 

leads to weak elemental connectivity and local stencil. 

These properties of the DG method together with high-

order approximations yields highly parallel operators 

with high arithmetic intensity that makes the method 

well-suited for GPUs. Because of its attractive properties, 

DG method has been used to analyze various physical 

problems (Gandham et al., 2015; Modave et al., 2016; 

Chan et al., 2016; Karakus et al., 2016a,b, 2019a). The 

implementation of DG methods on GPUs is well 

documented for first-order hyperbolic systems with 

explicit time integrators, but only a few of papers report 

GPU-optimized DG discretizations for incompressible 

flows (Roca et al., 2011) or the operators required for 

incompressible flows (Swirydowicz et al., 2019). In 

Karakus et al. (2019b), we recently proposed a GPU-

optimized nodal DG method for incompressible flows on 

unstructured meshes. We extend this efficient approach 

to thermal convection problems in the present study.  

 

There have been only a couple of studies dealing with 

incompressible thermal convection using discontinuous 

or continuous high-order finite element methods. 

Hossain et al. (Hossain et al., 2021) developed a 

spectral/hp element method for the Direct Numerical 

Simulation (DNS) of incompressible thermal convective 

flows by considering Boussinesq type thermal body-

forcing with periodic boundary conditions and enforcing 

a constant volumetric flow rate. In Kumar and Pothérat 

(2020), the authors studied the convective patterns that 

arise in a nearly semi-cylindrical cavity placed in a fluid 

heated at the upper boundary and bounded by a cold and 

porous semicircular boundary. They used spectral 

element method to obtain results and performed a linear 

stability analysis of the fluid flow. In Saha et al. (2015), 

a high-order spectral element model is developed for 

forced thermal convection problems considering 

incompressible flows and avoiding thermal body-forcing 

effects. 

 

In this work, we focus on a GPU accelerated, high-order 

discontinuous Galerkin (DG) based approach for coupled 

fluid flow and heat transfer problems which is suitable 

for large scale engineering simulations. In particular, we 

deal with the formulation of presented method and 

validation of developed solver for different thermal 

convection regimes. To the best of our knowledge, there 

has been no published research on incompressible 

thermal convection that fully benefits high-order, nodal 

DG discretization and modern computational 

architectures relying on-node parallelization. 

 

The remainder of this paper is organized as follows. In 

the first section, we present the mathematical formulation 

for the DG scheme to approximate the incompressible 

Navier-Stokes equations coupled with energy equations, 

including the spatial discretizations and the temporal 

splitting scheme. Then, linear solvers and GPU-

accelerated p-multigrid preconditioner are briefly 

explained which is followed by numerical validation test 

cases. Final section is dedicated to concluding remarks 

and comments on the future works. 

 

FORMULATION 

 

We consider a closed two-dimensional domain Ω ⊂ 𝑅𝟚 

and denote the boundary of Ω by ∂Ω. Following the 

notation presented in Karakus et al. (2019b), we assume 

that ∂Ω can be partitioned into two non-overlapping 

regions denoted by ∂Ω𝐷 and ∂Ω𝑁 referring prescribed 

Dirichlet or Neumann boundary conditions, respectively. 
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We are interested in the approximation of non-isothermal 

incompressible Navier-Stokes equations coupled by the 

energy equations through Boussinesq approximation 

which reads 

 

∇ ⋅ 𝒖 = 0, (1.1) 

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅  ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
Δ𝒖 + 𝒔𝒖,  (1.2) 

𝜕𝜃

𝜕 𝑡
+ (𝒖 ⋅ ∇)𝜃 =

1

𝑅𝑒 𝑃𝑟
Δ𝜃 + 𝑠𝜃 ,  (1.3) 

 

in non-dimensional form and space-time domain Ω ×
(0, 𝒯] subject to the initial conditions 

 

𝒖 = 𝒖𝟎, 𝜃 = 𝜃𝟎  for   𝑡 = 0, 𝒙 ∈ 𝛺, (2) 

 

and the boundary conditions 

 

𝒖 = 𝒈𝑫  on  𝒙 ∈ 𝜕𝛺𝐷
𝑢 , 𝑡 ∈ (0, 𝒯], (3.1) 

𝜕𝒖

𝜕𝒏
= 0, 𝑝 = 0  on  𝒙 ∈ 𝜕𝛺𝑁

𝒖 , 𝑡 ∈ (0, 𝒯], (3.2) 

𝜃 = 𝑔𝐷  on  𝒙 ∈ 𝜕𝛺𝐷
𝜃 , 𝑡 ∈ (0, 𝒯], (3.3) 

𝜕𝜃

𝜕𝑛
= 𝑔𝑁   on  𝒙 ∈ 𝜕𝛺𝑁

𝜃 , 𝑡 ∈ (0, 𝒯]. (3.4) 

 

Here 𝑢, 𝑝 and 𝜃 are non-dimensional velocity, static 

pressure and temperature fields, respectively. In the 

equation, following parameters are used to get 

dimensionless quantities, 

 

𝒙 =
𝒙∗

𝐿𝑟

, 𝑡 =
𝑡∗

𝐿𝑟/𝑈𝑟

, 𝒖 =
𝒖∗

𝑈𝑟

, 𝑝 =
𝑝∗

𝜌𝑟𝑈𝑟
2
 

(4) 

𝜌 =
𝜌∗

𝜌𝑟

, 𝜈 =
𝜈∗

𝜈𝑟

, 𝛼 =
𝛼∗

𝛼𝑟

, 𝜃 =
𝑇 − 𝑇𝑟

𝑇𝑠

, 

 

where superscript ∗ denotes the dimensional parameter 

and the subscript 𝑟 refers to corresponding reference 

value i.e. reference length scale 𝐿𝑟, velocity 𝑈𝑟, density 

ρ𝑟, viscosity ν𝑟, thermal diffusivity α𝑟 and temperature 

𝑇𝑟. One should note that the temperature scale 𝑇𝑠 is 

problem dependent i.e. in the case of a channel flow with 

uniformly heated walls, 𝑇𝑠 can be defined as the 

maximum temperature difference between the hot and 

cold walls in the system. 

 

The non-dimensional Reynolds and Prandtl numbers in 

the eq. (1) are defined as Re = 𝑈𝑟𝐿𝑟/𝜈𝑟 and 𝑃𝑟 = 𝜈𝑟/𝛼𝑟. 

Also, 𝒔𝒖 = (𝒈𝛽(𝑇 − 𝑇𝑟)𝐿𝑟/𝑈𝑟)𝜃 is the forcing term for 

Navier-Stokes, where 𝒈 is the gravitational acceleration, 

𝛽 is the expansion coefficient. In free convection 

problems, the reference velocity is selected as 𝑈𝑟 =

𝑔𝛽(𝑇 − 𝑇𝑟)𝐿𝑟. 𝑠𝜃 = 𝑠𝜃(𝜃, ∇𝜃, 𝒖) is the generic 

generation term for the energy equation written in terms 

of temperature. We would like to emphasize that 

superscripts 𝑢 and 𝜃 in boundary representation separate 

the Dirichlet and Neumann conditions on the physical 

boundary set for flow and heat transfer equations.  

 

The governing PDE system is discretized by first 

constructing the spatial discretization using the nodal DG 

method, then by the temporal discretization using a 

pressure correction scheme that are covered in the 

following sections. 

 

Preliminaries 

 

The computational domain 𝛺 is partitioned into 𝐾 

triangular elements ℰℯ, 𝑒 = 1, … , 𝐾, such that  

 

𝛺 =∪𝑒=1
𝐾 ℰℯ  

 

The boundary of the element ℰℯ is denoted by ∂ℰℯ. Two 

elements, ℰℯ+ and ℰℯ−, are neighbours if they have a 

common face, i.e., ∂ℰℯ− ∩ ∂ℰℯ+ ≠ ∅. The unit outward 

normal vector of 𝜕ℰ is showed as 𝑛. 

 

We consider a finite element space on each element ℰℯ, 

denoted 𝑉𝑁
𝑒 = 𝒫𝒩(ℰℯ) where 𝒫𝒩(ℰℯ) is the space of 

polynomial functions of degree 𝑁 on element ℰℯ. As a 

basis of the finite element spaces, we take a set of 𝑁𝑝 =

|𝑉𝑛
𝑒| Lagrange polynomials {𝑙𝑛

𝑒 }𝑛=0

𝑛=𝑁𝑝
, interpolating at the 

Warp & Blend nodes (Warburton, 2006) mapped to the 

element ℰℯ.  

 

We have introduced the inner product (𝑢, 𝑣)ℰℯ  to denote 

the integration of the product of arbitrary variables 𝑢 and 

𝑣 computed over the element ℰℯ and the inner product 

(𝑢, 𝑣)∂ℰℯ  to denote the integration along the element 

boundary ∂ℰ𝑒. We also define internal and external trace 

values of a scalar-valued function 𝑢𝑒 as 𝑢− and 𝑢+, 

respectively. Note that we suppress the use of the 𝑒 

superscript when it is clear which element is the local 

trace. According to this definition, average and jump 

operators can be defined as: 

 

{{𝑢}} =
𝑢+ + 𝑢−

2
, [[𝑢𝑒]] = 𝑢+ − 𝑢−. (5) 

 

When 𝑢 is a vector-valued function, the above operators 

act on it component wise. 

 

Spatial Discretization 

 

The polynomial approximation of the velocity field 𝑢, the 

pressure 𝑝 and the temperature 𝜃 fields are defined on 

each element as  

 

𝒖𝑒 = ∑ 𝒖𝑛
𝑒

𝑁𝑝

𝑛=0

𝑙𝑛
𝑒 (𝒙), 𝑝𝑒 = ∑ 𝑝𝑛

𝑒

𝑁𝑝

𝑛=0

𝑙𝑛
𝑒 (𝒙), 𝜃𝑒 = ∑ 𝜃𝑛

𝑒

𝑁𝑝

𝑛=0

𝑙𝑛
𝑒 (𝒙), 
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for all 𝒙 = (𝑥, 𝑦) ∈ ℰℯ. Then, using the polynomial 

representation of 𝑢𝑒, 𝑝𝑒  and 𝜃𝑒, the semi-discrete form 

of PDE system given by the eq. (1) is defined on each 

element ℰℯ as 

 

𝐷𝑒𝒖𝑒 = 0 (6.1) 

𝑑𝒖𝑒

𝑑𝑡
+ 𝑵𝑒(𝒖𝑒) = 𝑮𝑒𝑝𝑒 +

1

𝑅𝑒
𝐿𝑒𝒖𝑒 + 𝑺𝒖

𝑒  (6.2) 

𝑑𝜃𝑒

𝑑𝑡
+ 𝑁𝑒(𝜃𝑒) =

1

𝑅𝑒𝑃𝑟
𝐿𝑒𝜃𝑒 + 𝑆𝜃

𝑒 (6.3) 

 

where the operators are defined as follow, 𝑵𝒆: (𝑉𝑁
𝑒)2 →

(𝑉𝑁
𝑒)2, 𝑁𝑒: (𝑉𝑁

𝑒) → (𝑉𝑁
𝑒), 𝑺𝒖

𝒆 : (𝑉𝑁
𝑒)2 → (𝑉𝑁

𝑒)2, 

𝑆θ
𝑒: (𝑉𝑁

𝑒) → (𝑉𝑁
𝑒), 𝑮𝒆: 𝑉𝑁

𝑒 → (𝑉𝑁
𝑒)2, 𝐿𝑒: 𝑉𝑁

𝑒 → 𝑉𝑁
𝑒  and 

𝐷𝑒: (𝑉𝑁
𝑒)2 → 𝑉𝑁

𝑒 . These terms are discrete versions of the 

nonlinear term 𝒖 ⋅ ∇𝒖, advection term 𝒖 ⋅ ∇𝜃, source 

terms 𝑠𝑢  and 𝑠θ, gradient operator ∇, Laplacian Δ, and the 

divergence operator ∇ ⋅, in the same order. In the 

subsequent parts, we define these operators in the nodal 

DG framework. 

 

We begin with the discretization of nonlinear term, 𝒖 ⋅

∇𝒖 and the advection term 𝒖 ⋅ ∇𝜃. Using the 

incompressibility condition eq. (1.1), the advection terms 

are written in divergence form i.e.,  𝒖 ⋅ ∇𝒖 = ∇ ⋅ 𝑭(𝒖) 

and 𝒖 ⋅ ∇𝜃 = ∇ ⋅ 𝐹(𝒖, 𝜃), where 𝑭(𝒖) = 𝒖 ⊗ 𝒖 and 

𝐹(𝜃, 𝒖) = 𝒖𝜃 . Multiplying 𝒖 ⋅ ∇𝒖 and 𝒖 ⋅ ∇𝜃 by a test 

function 𝑣 ∈ 𝑉𝑁
𝑒 , integrating over the element ℰℯ, and 

performing integration by parts, we define the discrete 

advective terms 𝑵𝒆(𝒖) and 𝑁𝑒(𝜃, 𝒖) via the following 

variational forms 

 

(𝑣, 𝑵𝑒(𝒖𝑒))
ℰ𝑒 = −(∇𝑣, 𝑭(𝒖𝑒))

ℰ𝑒 + (𝑣, 𝒏 ⋅ 𝑭∗)𝜕ℰ𝑒 ,  

(𝑣, 𝑁𝑒(𝜃𝑒 , 𝒖𝑒))
ℰ𝑒 = −(∇𝑣, 𝐹(𝜃𝑒 , 𝒖𝑒))

ℰ𝑒 + (𝑣, 𝒏 ⋅ 𝐹∗)𝜕ℰ𝑒  

 

Since DG uses discontinuous approximation space, the 

flux functions 𝑭 and 𝐹 are not uniquely defined on the 

element boundaries and hence, they are replaced by local 

Lax-Friedrichs numerical flux functions 𝑭∗ and 𝐹∗ which 

depend on the local and neighboring trace values, 

 

𝑭∗ = {{𝑭(𝒖)}} +
1

2
𝒏𝛬𝑢

𝑒 [[𝒖]],, (7.1) 

𝐹∗ = {{𝐹(𝒖𝜃)}} +
1

2
𝛬𝜃

𝑒 [[𝜃]], (7.2) 

 

The parameters  𝛬 in the eq. (7) introduce artificial 

diffusion required to stabilize the numerical 

discretization of advective terms and are defined to be the 

maximum eigenvalue of the flux Jacobians in absolute 

value, i.e.,   

 

𝛬𝑢   =   𝑚𝑎𝑥
𝑢∈[𝑢−,𝑢+]

|𝒏 ⋅
𝜕𝑭

𝜕𝒖
| ,  𝛬𝜃   =   𝑚𝑎𝑥

𝜃∈[𝜃−,𝜃+]
|
𝜕𝐹

𝜕𝜃
|. 

 

Boundary conditions are enforced weakly in flux 

functions by adjusting exterior trace values i.e. in the case 

of Dirichlet boundaries ∂ℰℯ ∩ Ω𝐷 ≠ ∅, the boundary 

conditions, eq. (3.1) and (3.3) lead 𝒖+ = 𝒈𝐷 and 𝜃+ =
𝑔𝐷. For Neumann boundaries eq. (3.2) and (3.4) where 

∂ℰℯ ∩ Ω𝑁 ≠ ∅, we simply choose 𝒖+ = 𝒖− and 𝜃+ =

𝜃−. 

 

To obtain discrete gradient and divergence operators, 𝑮𝒆 

and 𝐷𝑒 , we multiply the pressure gradient ∇𝑝𝑒 and the 

velocity divergence ∇ ⋅ 𝒖𝒆 by a test function 𝑣 ∈ 𝑉𝑁
𝑒 , 

integrate over the element ℰℯ. Different from the 

advection operators, we use integration by parts twice to 

get strong variational forms and simply utilize central 

fluxes  𝑝∗ = {{𝑝}} and 𝒖∗ = {{𝒖}} leading 

 

(𝑣, 𝑮𝑒𝑝𝑒)ℰ𝑒 = (𝑣, ∇𝑝𝑒)ℰ𝑒  

+ (𝑣, 𝒏(𝑝∗ − 𝑝−))
𝜕ℰ𝑒 ,  

(8) 

(𝑣, 𝐷𝑒𝒖𝑒)ℰ𝑒 = (𝑣, ∇ ⋅ 𝒖𝑒)ℰ𝑒

+ (𝑣, 𝒏 ⋅ (𝒖∗ − 𝒖−))
𝜕ℰ𝑒 , 

(9) 

 

The boundary conditions are imposed for these operators 

slightly differently than for 𝑵𝒆(𝒖) and 𝑁(θ, 𝒖). For 

Dirichlet boundaries central fluxes become 𝒖∗ = 𝒈𝐷  and 

𝑝∗ = 𝑝−, and for zero Neumann boundaries, we choose 

𝒖∗ = 𝒖− and 𝑝∗ = 0. 

 

To discretize the Laplacian operator 𝐿𝑒, we follow follow 

the Symmetric Interior Penalty DG (SIPDG) approach 

(Wheeler, 1978; Arnold, 1982) which reads the following 

variational definition of the operator for velocity and 

temperature 

 

(𝑣, 𝐿𝑒𝒖𝑒)ℰ𝑒  = −(∇𝑣, ∇𝒖𝑒)ℰ𝑒 + (𝑣, 𝒏 ⋅ ∇𝒖)𝜕ℰ𝑒  

−
1

2
(𝒏 ⋅ ∇𝑣, [[𝒖]])𝜕ℰ𝑒

+ (𝑣, 𝜏[[𝒖]])𝜕ℰ𝑒  

(10.1) 

(𝑣, 𝐿𝑒𝜃𝑒)ℰ𝑒 = −(∇𝑣, ∇𝜃𝑒)ℰ𝑒 + (𝑣, 𝒏 ⋅ ∇𝜃)𝜕ℰ𝑒

−
1

2
(𝒏 ⋅ ∇𝑣, [[𝜃]])𝜕ℰ𝑒

+ (𝑣, 𝜏[[𝜃]])𝜕ℰ𝑒  

(10.2) 

 

where 𝜏 is the penalty parameter and must be chosen to 

be sufficiently large in order to enforce coercivity. On the 

other hand, selecting large τ increases the condition 

number of the Laplacian operator and degrades the 

performance of linear solvers. Along each face of an 

element shared by its neighbor element, ∂ℰ𝑒𝑓 = ℰ𝑒+ ∩

ℰ𝑒−, penalty parameter 𝜏𝑒𝑓 is selected using the lower 

bound estimate derived in in Shahbazi (2005) as   

 

𝜏𝑒𝑓 =
(𝑁 + 1)(𝑁 + 2)

2
𝑚𝑎𝑥 (

1

ℎ+
𝑒𝑓 ,

1

ℎ−
𝑒𝑓

) (11) 

 

where ℎ+
𝑒𝑓

 and ℎ−
𝑒𝑓 are characteristic length scales of the 

elements ℰℯ+ and ℰℯ− on either side of the face ∂ℰ𝑒𝑓 and 
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are defined as ℎ+
𝑒𝑓

 =  
|ℰℯ+|

|𝜕ℰ𝑒𝑓|
 and ℎ−

𝑒𝑓  =  
|ℰℯ−|

|𝜕ℰ𝑒𝑓|
. Boundary 

conditions for the discretized Laplacian operator are 

imposed in a way analogous to that described for the 

gradient and divergence operators for pressure and 

velocity systems. For the heat equation, non-

homogeneous temperature Neumann data is imposed as 

∇θ+ = ∇θ− − 2gN. 

 

With the definitions of discrete operators 𝑵𝑒, 𝑁𝑒, 𝐿𝑒, 𝑮𝑒 

and 𝐷𝑒 , we complete the semi-discrete form of the 

scheme given in eq. (6). Assembling the semi-discrete 

system defined on each element ℰ into global system, we 

arrive to following global problem 

 

𝐷𝐔 =  𝟎,  (12.1) 

∂𝐔

∂𝑡
+ 𝐍(𝐔)  = −𝐆𝑃 +

1

𝑅𝑒
𝐋𝐔 + 𝐒𝐔,   (12.2) 

∂𝛩

∂𝑡
+ 𝑁(𝛩, 𝐔) =

1

𝑅𝑒𝑃𝑟
𝐿𝛩 + 𝑆𝛩 . (12.3) 

 

To simplify the notation, we use capital letters and drop 

the superscript e to denote the global assembled vectors 

of the degrees of freedom as in Karakus et al. (2019b). In 

the next section, we proceed to the fully discrete scheme 

by introducing the semi-explicit time integration method. 

 

Temporal Discretization 

 

A high-order temporal discretization is used for the flow 

and energy equations by adopting an 3𝑟𝑑  order backward 

differentiation method for the stiff diffusive terms and an 

3𝑟𝑑  order extrapolation method for advective terms. 

Then, equation (12) can be advanced from time level 𝑡𝑛 

to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 by using this formulation as 

 

𝐷 ⋅ 𝑼𝑛+1 = 0, (13.1) 

𝛾𝑼𝑛+1 = ∑ 𝛽𝑖

2

𝑖=0

𝑼𝑛−𝑖 − 𝛥𝑡 ∑ 𝛼𝑖

2

𝑖=0

(𝑵(𝑼𝑛−𝑖) − 𝑺𝑼
𝑛−𝑖)

+𝑅𝑒−1𝛥𝑡𝐿𝑼𝑛+1 − 𝛥𝑡𝑮𝑃𝑛+1

 (13.2) 

𝛾𝛩𝑛+1 = ∑ 𝛽𝑖

𝑆

𝑖=0

𝛩𝑛−𝑖 − 𝛥𝑡 ∑ 𝛼𝑖

𝑆

𝑖=0

𝑁(𝛩𝑛−𝑖 , 𝑼𝑛−𝑖)

+ 𝛥𝑡 ∑ 𝛼𝑖

𝑆

𝑖=0

𝑆𝛩
𝑛−𝑖 + (𝑅𝑒𝑃𝑟)−1𝛥𝑡𝐿𝛩𝑛+1

 (13.3) 

 

where  𝛽, and  𝛾 correspond to the stiffly stable 

backwards differentiation coefficients and  𝛼 is the 

extrapolation scheme coefficients. For the third order 

scheme, the coefficients are given as 𝛾 = 11/6 , 𝛽0 = 3, 

𝛽1 = −3/2,𝛽2 = 1/3 and 𝛼0 = 3, 𝛼1 = −3, 𝛼2 = 1. 

 

Following Shahbazi et al. (2007), the fully discrete 

scheme eq. (13) is replaced with an algebraically split 

version in order to avoid solving a fully coupled system 

for velocity, temperature and pressure which reads six 

fractional steps as follows 

�̂� = ∑ 𝛽𝑖

𝑆

𝑖=0

𝛩𝑛−𝑖 − 𝛥𝑡 ∑ 𝛼𝑖

2

𝑖=0

(𝑁(𝛩𝑛−𝑖, 𝐔𝑛−𝑖) − 𝑆𝛩
𝑛−𝑖),  (14.1) 

(−𝐿 +
𝛾𝑅𝑒𝑃𝑟

𝛥𝑡
ℐ) 𝛩𝑛+1 =

𝑅𝑒𝑃𝑟

𝛥𝑡
�̂�, (14.2) 

�̂� = ∑ 𝛽𝑖

𝑆

𝑖=0

𝐔𝑛−𝑖 − 𝛥𝑡 ∑ 𝛼𝑖

𝑆

𝑖=0

(𝐍(𝐔𝑛−𝑖) − 𝐒𝐔
𝑛−𝑖), (14.3) 

(−𝐿 +
𝛾𝑅𝑒

𝛥𝑡
ℐ) �̂̂� =

𝑅𝑒

𝛥𝑡
𝐔 ̂, (14.4) 

−𝐿𝑃𝑛+1 = −
𝛾

𝛥𝑡
𝐃 ⋅ �̂�,̂ (14.5) 

𝐔𝑛+1 = �̂̂� −
𝛥𝑡

𝛾
𝐆𝑃𝑛+1. (14.6) 

 

In the splitting scheme eq. (14.1) and (14.3) are pure 

advection evaluations, eq. (14.2) and (14.4) are implicit 

screened Poisson solves for diffusive terms and eq. (14.5) 

is a pressure Poisson equation to enforce 

incompressibility condition. Equation (14.6) corrects the 

intermediate velocity field incorporating the updated 

pressure. This splitting scheme reduces the cost of the 

temporal discretization to a combination of two explicit 

and three linear elliptic solve steps. Since the advection 

evaluations are explicitly treated in time, the maximum 

stable time step size is restricted by Courant-Fredrichs-

Lewy (CFL) condition. Although stability of explicit 

schemes is restricted by a severe time step size, they are 

computationally inexpensive that conveys the 

computational load of each time step to elliptic solves. 

Because of that, effective linear solvers are crucial to 

obtain fast and scalable coupled flow and energy solvers. 

 

Linear Solvers 

 

Each time step of the temporal splitting discretization 

(14) requires solving two discrete Helmholtz equations, 

(14.2), (14.4) and a discrete Poisson problem (14.3). For 

high resolution solutions, i.e., large meshes and/or high 

degree 𝑁, assembling a full matrix and using a direct 

solver is not practically applicable. Thus, due to 

symmetric positive-definite structure of the IPDG 

discretization (10.1), we choose a preconditioned 

conjugate gradient (PCG) iterative method to solve the 

elliptic equations.  

 

For the solution of Helmholtz equations (14.2) and 

(14.4), we choose the scaled inverse mass matrix on each 

element for the preconditioner. As the time step size is 

relatively small and coefficients 𝑅𝑒/Δ𝑡  and  𝑅𝑒𝑃𝑟/Δ𝑡 

are large, the Helmholtz operators are dominated by the 

mass matrix. Since the mass matrix is block diagonal and 

geometric factors are constant for triangular elements, 

inverting the mass matrix is computationally cheap and 

simple which makes the inverse matrix preconditioner 

very effective for the Helmholtz solves (Karakus et al., 

2019b). 
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For the pressure Poisson problem, we consider a p-

multigrid preconditioner (pMG) where we manually 

coarsen from degree 𝑁 to degree 1 before setting up the 

algebraic multigrid (AMG) levels for the degree 1 coarse 

stiffness matrix. The coarse levels of this AMG method 

are constructed as unsmoothed aggregations of maximal 

independent node sets, see (Notay, 2006, 2010), while 

smoothing is chosen to be a degree 2 Chebyshev iteration 

(Adams et al., 2003). The multigrid preconditioning 

cycle itself consists of a K-cycle on the finest two levels, 

followed by a V-cycle for the remaining coarse levels 

(Gandham et al., 2014). With this manual coarsening 

approach, we are able to implement the finest levels of 

the multigrid cycle in a matrix-free way and avoid the 

storage of the full degree 𝑁 stiffness matrix. 

 

RESULTS 

 

We have implemented the solver on the libParanumal 

(Chalmers et al., 2020) library using C++ together with 

the OCCA API and OKL kernel language (Medina et al., 

2014) and MPI to enable using distributed multi-

GPU/CPU platforms. OCCA is an abstracted 

programming model designed to encapsulate native 

languages for parallel devices such as CUDA, OpenCL, 

HIP, and OpenMP. For all the results presented in this 

section, we have compiled the source code using the 

GNU GCC 9.3.0 compiler and the Nvidia CUDA 

V11.0.221 NVCC compiler. The tests were run using 

Nvidia Tesla P100 GPUs on a machine equipped with an 

Intel Xeon E5-2680v4 processor.  

 

We solved 2D thermal convection tests to verify the 

spatial accuracy of the presented algorithm on 2D 

unstructured triangular grids. To evaluate the accuracy of 

the numerical scheme, we use 𝐿2 norm of error given as, 

 

𝐿2 = ∑(𝜙𝑒 − 𝜙𝑒𝑥 , 𝜙𝑒 − 𝜙𝑒𝑥)ℰ𝑒∈𝛺 , (15) 

 

where 𝜙 is the arbitrary field that error is computed and  

𝜙𝑒𝑥 denotes the exact solution or a very accurate 

approximation of the exact solution if it is not explicitly 

known. 

 

Poiseuille Flow 

 

In the first test case, we consider two-dimensional 

channel flow with a fully developed Poiseuille profile to 

show the spectral convergence rate of the solver. The 

channel having the dimension of [0,2] × [−1,1] is 

uniformly heated from the lower wall with θ𝐿 = 1 while 

isothermal upper plate is kept with 𝜃𝑈 = 0. No-slip 

boundary conditions are imposed for upper and lower 

walls. The fully developed velocity field with linear 

temperature profile is prescribed as the initial condition 

which reads 

𝑢 = 1 − 𝑦2,  𝑣 = 0,  

𝑝 =
𝑅𝑎

2𝑃𝑟𝑅𝑒2
(𝑦 −

𝑦2

2
) −

2𝑥

𝑅𝑒
,  𝜃 =

1 − 𝑦

2
. 

 

Computations are performed on the successively refined 

meshes by uniformly dividing the initial coarse level 

grid. The initial mesh, defined with the characteristic 

scale ℎ0, has the element number of 𝐾 = 68 which is 

constructed by triangles with the edge length of ℎ = 0.4 

on the boundary of domain ∂Ω. Then the sequence of 

meshes constructed with the element number of 𝐾 =

272, 𝐾 = 1088 and 𝐾 = 4352 for ℎ = 0.5ℎ0, ℎ =
0.25ℎ0 and ℎ = 0.125ℎ0, respectively. Approximating 

polynomial order is changed from 𝑁 = 1 to 𝑁 = 5 for all 

mesh configurations. 

 

Figure 1 shows the computed 𝐿2 norm of the numerical 

error in the 𝑥 component of velocity, 𝑢 and the 

temperature, θ fields for the flow conditions 𝑅𝑎 = 1000, 

𝑅𝑒 = 100 and 𝑃𝑟 = 0.71  at the final time 𝑇 = 10. The 

velocity and the temperature remain unchanged 

indicating no flow bifurcation in the flow field.  The 

figure clearly demonstrates the expected spectral 

converge rates in the numerical error i.e. ℎ𝑁+1 accuracy 

for velocity and temperature.   

 

Differentially Heated Square Cavity 

 

We focus on the natural convection problem on a closed 

enclosure. The cavity width and height are denoted with 

𝑊 = 1 and 𝐻 = 1 respectively leading 𝑊: 𝐻 aspect 

ratio, 𝐴 = 1. The enclosure boundary conditions are 

simple and consist of no-slip walls, i.e. 𝑢 = 𝑣 = 0 on all 

four walls. The thermal boundary conditions on the left 

and right walls are prescribed as  

 

𝜃𝐿 = 1, 𝜃𝑅 = 0 

 

and the upper and the lower walls are thermally insulated 

∂𝜃

∂𝑦
= 0,  for 𝑦 = 0, 𝑦 = 𝐻. 

We solved the problem for polynomial order, 𝑁 = 4 on 

a relatively coarse grid composed of uniformly spaced 

triangular grids having characteristic length of ℎ = 0.1 

which leads element number of 𝐾 = 242. The flow 

conditions are 𝑃𝑟 = 0.71, 𝑅𝑎 = 103, 104, 105. 

Reference velocity is selected as 𝑈𝑟 =

√ℎ𝛽(𝜃𝐿 − 𝜃𝑅)𝑊 so that 𝑅𝑒 = √𝐺𝑟. 
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Figure 1. Spatial accuracy test for the Poiseuille test problem using 𝐿2 relative errors on successively refined triangular elements. 

The error in the 𝑥-velocity is shown on the left and the error in the temperature is shown right 

 

Table 1. Maximum and minimum velocities along the center lines of square cavity for 𝑃𝑟 = 0.71 and 𝑅𝑎 = 103 , 104 , 105 

 

 𝑅𝑎 =  103 𝑅𝑎 =  104 𝑅𝑎 =  105 

 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 𝑢𝑚𝑎𝑥 𝑣𝑚𝑎𝑥 

Present 0.137 0.139 0.192 0.233 0.129 0.257 

Stokos et al. (2015) 0.137 0.139 0.192 0.233 0.130 0.256 

De Vahl Davis (1983) 0.136 0.138 0.192 0.234 0.153 0.261 

 

In Table 1, we presented the computed maximum and 

minimum velocities along the horizontal 𝑦 =  0.5 and 

the vertical 𝑥 =  0.5 lines. 𝑢𝑚𝑎𝑥 stands for the maximum 

value of 𝑥 −velocity, 𝑢 along the vertical line while 𝑣𝑚𝑎𝑥 

denotes maximum 𝑦 −velocity, 𝑣 along the horizontal 

line. For all simulations, our results compare well with 

the reported values in the relevant literature (De Vahl 

Davis, 1983; Stokos et al., 2015). Figure 2 and Figure 3 

illustrate temperature contours and velocity profiles on 

center lines for different Ra numbers. The temperature 

contours and velocity fields depicted by center lines 

profiles provide qualitative agreement with those 

reported in the literature (Stokos et al., 2015; Hossain et 

al., 2021). 

 

Mixed Convection 

 

The square cylinder test is considered with various 

channel confinement degrees and  aiding (𝑅𝑖 > 0) and 

opposing (𝑅𝑖 < 0) buoyancy strengths or without the 

effect of thermal buoyancy 𝑅𝑖 = 0. The computational 

domain is composed of a square cylinder of length, 𝐵 

located at the center of the domain and a vertically 

aligned channel of width 𝐿. The channel blockage ratio 

𝐵𝑅 = 𝐵/𝐿 defines the degree of channel confinement 

when imposing no-slip conditions on the left and right 

sides of the channel. We consider uniform inflow 

velocity on the lower side and zero Neumann conditions 

are used on the upper boundary for velocity.

 

 
Figure 2. Temperature contours for the square cavity test. The temperature contours drawn between 1 and 0 with the increment of 

0.05 for 𝑅𝑎 = 103 , 104,105 from left to right 
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Figure 3. Velocity and temperature profiles along the 𝑦 = 0.5 and 𝑥 = 0.5 lines for the square cavity test 

 

The square cylinder is kept at a fixed temperature of 𝜃 =
1 and homogeneous temperature is applied on the 

channel side walls and the inlet. In this test, we consider 

following geometric and flow parameters: blockage 

ratios, 𝐵𝑅 = 0%, 10%, 30%, 50%, and Richardson 

number, 𝑅𝑖 = −1.0, −0.5, 0.0 for the fixed Reynolds 

number 𝑅𝑒 = 100 and Prandtl number 𝑃𝑟 = 0.71.  

 

Table 2. Comparison of Strouhal number for flow past a square 

cylinder test at 𝑅𝑒 =  100 for 𝐵𝑅 =  2.3% and 𝑅𝑖 =  0 

 

 𝑁 𝑆𝑡 

Present 
3 0.144 

5 0.145 

Ferrer and Willden (2011) 5 0.144 

Darekar and Sherwin (2001) 6 0.145 

Shahbazi et al. (2007) 4 0.145 

 

As a preliminary test, we solved the problem without 

buoyancy forcing, 𝑅𝑖 = 0 to validate the solver in a 

complex flow. The flow condition 𝑅 = 100 leads an 

unsteady Von Karman vortex street with a characteristic 

vortex shedding frequency which can be represented as a 

non-dimensional Strouhal number,𝑆𝑡 = 𝑓𝐵/𝑈𝑟, where 

𝑓, 𝐵, and 𝑈𝑟 are the non-dimensional vortex shedding 

frequency, characteristic length as cylinder dimension  

and the uniform free stream velocity, respectively. We 

use the same domain and boundary conditions with 

Darekar and Sherwin (2001); Ferrer and Willden (2011); 

Shahbazi et al. (2007), with  blockage ratio, 𝐵𝑅 =  2.3%. 

In order to make direct comparisons between the 

reference studies, we created identical mesh 

configuration and used the same non-dimensional time 

step size which lead to 896 triangular elements  and 

∆ 𝑡 = 0.002. In Table 2, we report computed 𝑆𝑡 numbers 

for the approximating polynomial orders, 𝑁 = 3 and 𝑁 =

5. In both cases, we observe that present solver provides 

good agreement with the reference, high-order numerical 

results.  

 

Figure 4 shows instantaneous vorticity contours around 

the square cylinder for 𝐵𝑅 = 30% and 𝑅𝑖 =

−1.0, −0.5, 0.5. The free and forced convection effects 

are comparable under these flow settings which makes 

the vortex shedding phenomena more complicated. In the 

figure, the vorticity contours show a wavering motion 

which increases with increased cooling (decreasing 𝑅𝑖 <
 0) of the cylinder and decreases with increased heating 

(increasing 𝑅𝑖 >  0) before it ceases at critical $Ri$ for 

the given specific blockage ratio. In this work, we only 

focus on the solver performance in reflecting the flow 

physics and skip to determine critical 𝑅𝑖 > 0 numbers 

that Von Karman vortex street breakdowns. 

 

Table 3. Strouhal numbers for different 𝑅𝑖 numbers and 

blockage ratios at 𝑅𝑒 =  100 

 𝑅𝑖 
𝐵𝑅 −1.0 −0.5 0 

10% 0.127 0.137 0.176 

30% 0.303 0.312 0.322 

50% 0.498 0.508 0.527 

 

In Table 3, Strouhal numbers are listed for different 

opposing 𝑅𝑖 numbers and channel blockage ratios for 

𝑁 = 5. A fast Fourier transform of the lift coefficient's 

time history is used to determine the Strouhal number 

accurately.  For the opposing buoyancy cases, the table 

shows that the Strouhal number increases monotonically 

with increasing 𝑅𝑖 at a constant blockage ratio before 𝑅𝑖 
number reaches the critical value where the breakdown 

of the Karman vortex street is obseved. It is also shown 

that the Strouhal number increases monotonically with 

increasing blockage ratio due to the acceleration of the 

cylinder-wall boundary layer. 
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Figure 4. Instantaneous vorticity contours at 𝑡 = 100 for different 𝑅𝑖 and the influence of aiding and opposing buoyancy at a 

blockage ratio of 30% and 𝑅𝑒 =  100. The solid and dashed lines represent positive and negative vorticity contours, respectively.  

 (Only a part of the domain is shown) 

 

CONCLUSION 

 

We have presented a  GPU-accelerated, high-order, nodal 

discontinuous Galerkin approach for the solution of 

incompressible thermal convection problems on 

unstructured meshes. The incompressible Navier–Stokes 

and the energy equation written in terms of temperature 

are  coupled through a Boussinesq type thermal body-

forcing term. The equations system is discretized in time 

using an algebraic splitting scheme where advection 

terms are evaluated explicitly while diffusive terms 

together with Poisson equation to impose 

incompressibility are treated implicitly. This further 

decouples velocity field from pressure. We showed that 

the scheme achieves designed order of accuracy and 

preserves stability for thermal convection problems.  

The presented solver is implemented on the open source 

project libParanumal (LIBrary of PARAllel NUMerical 

ALgorithms) (Chalmers et al., 2020). libParanumal 

consists of a collection of mini-apps with high-

performance portable implementations of high-order 

finite element discretizations for a range of different fluid 

flow models (Karakus et al., 2019a,b).  

 

Extending the scheme to 3D using tetrahedral elements 

and assessing its performance on multi-GPU systems for 

triangular/tetrahedral elements remain to be investigated. 
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