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Abstract
The Hermite-Gauss basis functions have been extensively employed in classical and quan-
tum optics due to their convenient analytic properties. A class of multivariate Hermite-
Gauss functions, the anisotropic Hermite-Gauss functions, arise by endowing the standard
univariate Hermite-Gauss functions with a positive definite quadratic form. These multi-
variate functions admit useful applications in optics, signal analysis and probability theory,
however they have received little attention in literature. In this paper, we examine the
properties of these functions, with an emphasis on applications in computational optics.
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1. Introduction

Different forms of the Hermite-Gauss functions have seen wide usage in physics and
chemistry, e.g., in the context of detection of gravitational waves [4,16], quantum encoding
[2] and communication [10], quantum entanglement with Hermite-Gauss beams [17], self-
healing [1] and non-diffracting [5] (elegant) Hermite-Gauss beams, detection beyond the
diffraction limit [11], GoosHänchen shift on reflection of a graphene monolayer [18], soft
X-ray orbital angular momentum analysis [9], turbulence-resistant laser beams [6], and for
numeric integration [12]. This list is far from exhaustive.

The anisotropic Hermite-Gauss (AHG) functions have been introduced by Amari and
Kumon [3] (using the terminology “tensorial Hermite-Gauss functions”), and were studied
further later by Holmquist [7], Ismail and Simeonov [8], Takemura and Takeuchi [15].
By using the quadratic form defined by a given positive definite matrix, these functions
form a multivariate extension of the standard univariate Hermite-Gauss (HG) functions.
The positive definite matrix can be used for the representation of spatial deformations,
geometric properties and energy tensors of structured optical beams, and potential other
future applications. In the context of optical coherence theory, it was shown that this
anisotropy matrix has a clear physical meaning [13]: the spatial coherence of light. This
allows for the representation of a large family of coherence functions using a limited count
of AHG modes, making the representation computationally-tractable.
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Ismail and Simeonov [8] have derived certain properties of the AHG functions, including
the generating functions, recurrence relations and linearization properties. The purpose
of this paper is to study the properties of these functions from a computational and
optical perspective. In addition to a number of useful identities, we derive closed-form
expressions for the linear canonical transform (LCT) of an AHG function, as well as
two important transforms generalized by the LCT: the fractional Fourier transform and
Laplace transform. In addition, we consider the Wigner-Vile distribution in Hermite-
Gauss space. These transforms are fundamental in Fourier optics, quantum mechanics
and signal processing. We also discuss the eigenfunctions of these transforms and show
that the AHG functions are the eigenfunctions for specific cases of the LCT. These results
echo well-known results for the univariate HG functions which have not been previously
investigated under the context of the multivariate AHG functions.

2. Notation and preliminaries
Let N = {0, 1, 2, . . .} represent the set of natural numbers and Z,R,C represent the

set of integers, the real field and the complex field, respectively. A vector is denoted as
~r = [r1, r2, . . . , rn]ᵀ ∈ Cn and the all-ones vector is denoted ~1 = [1, 1, . . . , 1]ᵀ ∈ Cn. We
use Rn×m,Cn×m to denote the sets of all real-valued and complex-valued n × m matrices,
respectively. Let I be the identity matrix, |A| denote the determinant of a (square) matrix
A and A

ᵀ the transpose of A. Given A ∈ Cn×m, the notation A = [~aᵀ
j ] = [ajk] defines

~a
ᵀ
j , ajk to be the row vectors and elements of A, respectively. A matrix S ∈ Rn×n is said

to be positive definite if it is symmetric and ~x
ᵀ
S~x > 0 for all 0 6= ~x ∈ Rn. The notation

S � 0 indicates that S is positive definite.
A multi-index is defined as the n-tuple ν = (ν1, ν2, . . . , νn) ∈ Nn. We use the standard

multi-index factorial, double factorial, degree and power shorthand, viz.

ν! ,
∏
j

νj ! , ν!! ,
∏
j

νj !! , (2.1)

|ν| ,
∑

j

νj , ~rν ,
∏
j

r
νj

j , (2.2)

where the double factorial of a natural integer is n!! = n · (n − 2) · . . . · 1 when n is odd
and n!! = n · (n − 2) · . . . · 2 otherwise (the factorial and double factorial of 0 is 1). The
partial order � is defined on the set of multi-indices as follows: ν � µ iff ∀jνj ≤ µj . The
usual binomial coefficients are generalized to multi-indices as(

ν

µ

)
= ν!

µ!(ν − µ)! , (2.3)

the convention being that this binomial coefficient is non-zero iff ν � µ. For a multi-index
ν ∈ Nn and a vector ~r, we define the partial derivative shorthand as

∂ν
~r ,

∂|ν|∏
j ∂r

νj

j

. (2.4)

Similarly, we define the multi-index matrix, Ω ∈ Nn×m, which consists of n rows, each a
multi-index, i.e Ω = [ωj ] = [ωjk]. We define Ω! =

∏
j,k ωjk! and, given A = [ajk] ∈ Cn×m

set AΩ =
∏

j,k a
ωjk

jk . We sometimes slightly abuse notation and write ~1ᵀΩ and Ω~1 to
denote the multi-indices that consist of the column sums and row sums of Ω, respectively.

Given a pair of L2 functions f, g, the inner product (over Rn) of f and g is denoted by
〈f | g〉 ,

∫
Rn d~x f(~x)g?(~x), with ? being complex conjugation.
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The Hermite-Gauss functions. The k-th order univariate, complex Hermite-Gauss
function is defined as

Ψk(z) ,
(√

π 2kk!
)−1/2

e− z2
2 Hk(z) = (−1)ke

z2
2√√

π 2kk!

dk

dzk
e−z2

, (2.5)

where z ∈ C, k ∈ N and Hk is the Hermite polynomial of order k.
Given a symmetric matrix Θ ∈ Cn×n with a positive definite real part (i.e. Re Θ � 0),

we define the n-dimensional complex anisotropic Hermite-Gauss function of degree ν ∈ Nn

of order |ν| associated to Θ by

ΨΘ
ν (~r) ,

(
− 1√

2

)|ν| e
1
2~r

ᵀΘ−1~r

√
ν!(πn|Θ|)

1
4

∂ν
~r e−~r

ᵀΘ−1~r . (2.6)

Similarly, the dual of the anisotropic Hermite-Gauss function is defined as

Ψ̃Θ
ν (~r) ,

(
− 1√

2

)|ν| e
1
2~s

ᵀΘ~s

√
ν!(πn|Θ|)

1
4

∂ν
~s e−~s

ᵀΘ~s , (2.7)

with ~s = Θ−1~r. The generating functions of the AHG functions are

∑
ν∈Nn

√
2|ν|

ν!
~xν ΨΘ

ν (~r) = e− 1
2~r

ᵀΘ−1~r+~x
ᵀΘ−1(2~r−~x)

(πn|Θ|)
1
4

, (2.8a)

∑
ν∈Nn

√
2|ν|

ν!
~xν Ψ̃Θ

ν (~r) = e− 1
2~r

ᵀΘ−1~r+~x
ᵀ(2~r−Θ~x)

(πn|Θ|)
1
4

, (2.8b)

for any ~x, ~r ∈ Cn (see [8, 15]).

3. Properties and identities
We begin with a few simple but useful properties of the AHG functions. Most of the

properties listed in Theorem 3.1 are known [8, 15] or easy to prove. They are included
here for completeness.

Property 3.1 (Basic properties). Let ~r ∈ Cn, symmetric Θ ∈ Cn×n such that Re Θ � 0.
Then

Ψ̃Θ
ν (~r) = |Θ|−1/2 ΨΘ−1

ν

(
Θ−1~r

)
.3.1.1

ΨΘ
ν (~r)? = ΨΘ?

ν (~r?).3.1.2

Ψz2Θ
ν (~r) = |Θ|

1
4
∣∣z2Θ

∣∣− 1
4
(

1
z

)|ν|
ΨΘ

ν

(
1
z~r
)

for 0 6= z ∈ C.3.1.3
ΨΘ

ν (−~r) = (−1)|ν|in ΨΘ
ν (~r).3.1.4

if Θ, ~r are real-valued then ΨΘ
ν (~r) is real.3.1.5

if Θ = I, the AHG function decomposes into a product of the univariate HG
functions: ΨI

ν(~r) = Ψ̃I
ν(~r) =

∏
k Ψνk

(rk).
3.1.6

ΨI
ν(~r) is even as a function of rj iff νj is even, otherwise it is odd.3.1.7

Proof. Properties 3.1.1 and 3.1.6 follow trivially from the definitions. Properties 3.1.2
and 3.1.3 follow from the generating function (Equation 2.8a). Property 3.1.5 is a conse-
quence of Property 3.1.2. Property 3.1.4 is a special case of Property 3.1.3. Property 3.1.7
is a consequence of Property 3.1.6 and the fact that the univariate HG function Ψk is even
iff k is even and odd otherwise. �

Property 3.2 (Derivatives). Let Θ−1 = [~qj ] be the rows of Θ−1. Then the partial deriv-
ative, gradient, Hessian matrix and Laplacian of the AHG function are given by
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∂
∂rj

ΨΘ
ν (~r) + ~q

ᵀ
j~r ΨΘ

ν (~r) = 2~q
ᵀ
j
~φν ,3.2.1

∂
∂~r ΨΘ

ν (~r) = Θ−1
[
2~φν − ~r ΨΘ

ν (~r)
]

,3.2.2
∂2

∂~r2 ΨΘ
ν (~r) = − Θ−1 ΨΘ

ν (~r)

+ 2Θ−1
(

Φν − ~r~φ
ᵀ

ν − ~φν~r
ᵀ + 1

2
~r~r

ᵀ ΨΘ
ν (~r)

)
Θ−1 ,

3.2.3

∇2 ΨΘ
ν (~r) = − ΨΘ

ν (~r) tr Θ−1 + 2 tr
(
Θ−2Φν

)
+
(
Θ−1~r

)ᵀ[
ΨΘ

ν (~r)Θ−1~r − 4Θ−1~φν

]
,

3.2.4

where ∇2 =
∑

j
∂2

∂r2
j

is the Laplace operator (taken with respect to ~r), ∂2

∂~r2 is the Hessian,
the matrix Φν is given by Equation 3.6 and with

~φν = 1√
2

[√
ν1 ΨΘ

ν−ε1 (~r), √
ν2 ΨΘ

ν−ε2 (~r), . . . ,
√

νn ΨΘ
ν−εn

(~r)
]ᵀ

, (3.1)

where εk ∈ Nn is such that (εk)j = δjk, i.e. the multi-index with 1 at position k and 0
elsewhere.

Remark 3.3. We adopt the convention that the AHG function vanishes identically if its
degree contains negative elements.

Remark 3.4. Properties 3.2.1 and 3.2.2 were first derived by Takemura and Takeuchi
[15]. A proof is provided below for completeness.

Proof. Differentiate the generating function (Equation 2.8a):

∑
ν∈Nn

√
2|ν|

ν!
~xν ∂

∂rj
ΨΘ

ν (~r) = ~q
ᵀ
j (2~x − ~r)e− 1

2~r
ᵀΘ−1~r+~x

ᵀΘ−1(2~r−~x)

(πn|Θ|)
1
4

(3.2)

= ~q
ᵀ
j (2~x − ~r)

∑
ν∈Nn

√
2|ν|

ν!
~xν ΨΘ

ν (~r) (3.3)

and equate the powers of ~x on both sides, proving Property 3.2.1. Property 3.2.2 follows
immediately from Property 3.2.1.

Differentiate Property 3.2.2:
∂2

∂~r2 ΨΘ
ν (~r) = Θ−1 ∂

∂~r

[
2~φν − ~r ΨΘ

ν (~r)
]

(3.4)

= Θ−1
[
2Φν − ΨΘ

ν (~r)
[
I − ~r

(
Θ−1~r

)ᵀ]
− 2~r

(
Θ−1~φν

)ᵀ]
, (3.5)

where Φν = ∂
∂~r

~φν is the matrix with the following elements:

[Φν ]jk ,


√

νj(νj − 1) ΨΘ
ν−2εj

(~r) if j = k
√

νjνk ΨΘ
ν−εj−εk

(~r) otherwise
(3.6)

and simplify, yielding Property 3.2.3.
To complete the proof, note that ∇2 ≡ tr ∂2

∂~r2 and recall that the trace of an outer
product is the inner product. This gives Property 3.2.4. �

Lemma 3.5 (Orthogonality and completeness). Given a symmetric matrix Θ with a
positive definite real part, the anisotropic Hermite-Gauss functions ΨΘ

ν form a complete
orthonormal (with respect to their dual) basis of Rn → C L2-functions. In other words,

(1) For all ν, µ ∈ Nn,
〈
ΨΘ

ν

∣∣∣ Ψ̃Θ
µ

〉
= δνµ, where δ denotes the Kronecker delta; and

(2) If an L2-function f is orthogonal to all ΨΘ
ν , then f vanishes a.e.
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Proof. See Ismail and Simeonov [8]. �

Our main contributions in this section start with the next lemma, which allows for the
expansion of an AHG function as a finite series of AHG functions with different anisotropy.

Lemma 3.6 (Anisotropy transformation). Given symmetric Θ1, Θ2 ∈ Cn×n, with Re Θ1, Re Θ2 �
0, we have

ΨΘ1
ν (~r) =

√
ν!|T |

∑
Ω=
[
ωᵀ

j

]
∈Nn×n, s.t. ~1

ᵀ
Ω=ν

with µ=(|ω1|,|ω2|,...,|ωn|)

T Ω

Ω!
√

µ! ΨΘ2
µ (T~r) , (3.7)

where T = Θ
1/2
2 Θ−1/2

1 . The summation is over all n×n multi-index matrices Ω, with rows
ωj, such that the sum of the k-th column of Ω is νk. The multi-index µ ∈ Nn is defined
to be the row sums of Ω.

Remark 3.7. There are
∏

j p(νj) such matrices, where p(m) is the partition function,
which asymptotically grows as O

(
exp

(√
|ν|
))

.

Proof. Start with the AHG generating function, Equation 2.8a, and perform the variable
changes ~y = T ~x and ~s′ = T~r, viz.

∑
ν∈Nn

√
2|ν|

ν!
~xν ΨΘ1

ν (~r) = e− 1
2~s

ᵀΘ−1
2 ~s+~y

ᵀΘ−1
2 (2~s−~y)

(πn|Θ1|)
1
4

(3.8)

= |T |1/2
∑

ν∈Nn

√
2|ν|

ν!
~yν ΨΘ2

ν (~s) . (3.9)

Then, by the multinomial theorem:

yνk
k =

∑
ω∈Nn

|ω|=νk

νk!
ω!

~t
ω
k ~xω , (3.10)

where the summation is over all the integer partitions of νk and we denote T =
[
~t
ᵀ

j

]
, i.e.

~tj are the rows of T . The two equations above yield

∑
ν∈Nn

√
2|ν|

ν!
~xν ΨΘ1

ν (~r) = |T |1/2
∑

Ω=
[
ωᵀ

j

]
∈Nn×n,

with µ=(|ω1|,|ω2|,...,|ωn|)

√
2|µ|µ! ΨΘ2

µ (~s)
∏
k

~t
ωk

k ~xωk

ωk! . (3.11)

Equating the powers of ~x on both sides above gives Equation 3.7. �

Immediate consequences of the above lemma are the next few corollaries. The first
corollary facilitates the dimensional decomposition of an arbitrary AHG function into
(finite) univariate HG functions. This has useful computational applications.

Corollary 3.8 (Dimensional decomposition). With ~s = Θ−1/2~r,

ΨΘ
ν (~r) =

√
ν!|Θ|−

1
4

∑
Ω=
[
ωᵀ

j

]
∈Nn×n, s.t. ~1

ᵀ
Ω=ν

with µ=(|ω1|,|ω2|,...,|ωn|)

(
Θ−1/2

)Ω

Ω!
√

µ!
∏
k

Ψµk
(sk). (3.12)
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It is often important to evaluate the AHG functions at 0, e.g., for computation of the
peak energy of optical beams or the determination of the total energy carried by a wave
ensemble [13]. The next corollary provides an explicit expression for the values at 0 and
may admit interesting combinatorics.

Corollary 3.9 (The AHG function at 0). Applying Theorem 3.8 and recalling the values
of the Hermite polynomials at 0, viz. Hk(0) = (−2)

k
2 (k−1)!! when k is even and Ψk(0) = 0

when k is odd, results in

ΨΘ
ν (0) =

√
ν!

(πn|Θ|)
1
4

∑
Ω=
[
ωᵀ

j

]
∈Nn×n, s.t. ~1

ᵀ
Ω=ν

and µ=(|ω1|,|ω2|,...,|ωn|)∈(2N)n

(
Θ−1/2

)Ω

Ω! i|µ|(µ − 1)!!, (3.13)

with 1 = (1, 1, . . . , 1) ∈ Nn.

Remark 3.10. Note that the summation is now also constrained to multi-index matrices
with even row sums. The double factorial of −1 is defined to be 1.

Lemma 3.11 (Offseted argument). For an arbitrary ~s ∈ Cn:

ΨΘ
ν (~r + ~s) = 2− |ν|

2 (πn|Θ|)
1
4 e

1
2 (~r−~s)ᵀΘ−1(~r−~s)

×
∑

µ∈Nn

s.t. µ�ν

(
ν

µ

)1/2

ΨΘ
ν−µ

(√
2~r
)

ΨΘ
µ

(√
2~s
)

. (3.14)

Proof. Via the generating function:

∑
ν∈Nn

√
2|ν|

ν!
~xν ΨΘ

ν (~r + ~s) = e− 1
2 (~r+~s)ᵀΘ−1(~r+~s)+~x

ᵀΘ−1(2(~r+~s)−~x)

(πn|Θ|)
1
4

(3.15)

= e− 1
2 (~r−~s)ᵀΘ−1(~r−~s)

(πn|Θ|)
1
4

e− 1
2~r

ᵀ( 1
2 Θ
)−1

~r+ ~x
ᵀ

2 ( 1
2 Θ)−1

(
2~r− ~x

2

)
× e− 1

2~s
ᵀ( 1

2 Θ
)−1

~s+ ~x
ᵀ

2 ( 1
2 Θ)−1

(
2~s− ~x

2

)
(3.16)

= (πn|Θ|)
1
4

2
n
2

e− 1
2 (~r−~s)ᵀΘ−1(~r−~s)

×
∑

ν,µ∈Nn

√
2|ν|

ν!
2|µ|

µ!

(1
2

~x

)ν+µ

Ψ
1
2 Θ
ν (~r) Ψ

1
2 Θ
µ (~s) . (3.17)

Equating the powers of ~x and applying Property 3.1.3 yields the desired result. �

Lemma 3.12 (Product of AHG functions).

ΨΘ
ν (~r) ΨΘ

µ (~r) =

√
ν!µ!

2|ν|+|µ|
1

(πn|Θ|)
1
4

e− 1
2~r

ᵀΘ−1~r

×
∑

Ω∈Nn×n,

s.t. β=ν−Ω~1∈Nn,

γ=µ−~1
ᵀ
Ω∈Nn

(
2Θ−1

)Ω√
2|β|+|γ|(β + γ)!

Ω!β!γ! ΨΘ
β+γ (~r) . (3.18)

That is, the sum is over the multi-index matrices Ω, with β being ν minus the row sums of
Ω, γ being µ minus the column sums of Ω and such that β, γ are multi-indices (consisting
of non-negative integers).
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Proof.

∑
ν,µ∈Nn

√
2|ν|+|µ|

ν!µ!
~xν~yµ ΨΘ

ν (~r) ΨΘ
µ (~r)

= e− 1
2~r

ᵀΘ−1~r+~x
ᵀΘ−1(2~r−~x)e− 1

2~r
ᵀΘ−1~r+~y

ᵀΘ−1(2~r−~y)

(πn|Θ|)
1
2

(3.19)

= e− 1
2~r

ᵀΘ−1~r

(πn|Θ|)
1
2

e− 1
2~r

ᵀΘ−1~r+(~x+~y)ᵀΘ−1[2~r−(~x+~y)]e2~x
ᵀΘ−1~y (3.20)

= e− 1
2~r

ᵀΘ−1~r

(πn|Θ|)
1
4

∑
α∈Nn

√
2|α|

α! (~x + ~y)α ΨΘ
α (~r)

∑
m≥0

(
2~x

ᵀΘ−1~y
)m

m! . (3.21)

Denote Θ−1 = [qjk], the elements of Θ−1, and apply again the multinomial theorem:

(~x + ~y)α =
∑

β∈Nn,
s.t. β�α

(
α

β

)
~xβ~yα−β , (3.22)

∑
m≥0

(
2~x

ᵀΘ−1~y
)m

m! =
∑
m≥0

[
2
∑

jk qjkxjyk

]m
m! =

∑
Ω∈Nn×n

(
2Θ−1

)Ω

Ω!
(
~x~y

ᵀ
)Ω

. (3.23)

Equating the powers of ~x and ~y proves the lemma. �

Theorems 3.11 and 3.12 extend well-known results from the univariate case to the
multivariate anisotropic case.

4. Linear canonical transform
The linear canonical transform (LCT) generalizes important well-known integral trans-

forms, such as the (fractional) Fourier transform and the Fresnel transform. The n-
dimensional LCT (with unitary, angular-frequency kernels) is defined with respect to a
matrix A =

[
a b
c d

]
∈ C2×2 with |A| = 1 as

L A{f}
(
~ζ
)
,
( 1

2πib

)n
2
ei d

2b
~ζ

2 ∫
Rn

d~r′ f
(
~r′)e−i 1

2b
~r′·
(

2~ζ−a~r′
)
. (4.1)

Our main result in this section follows:

Theorem 4.1 (Linear canonical transform of the AHG function). Suppose A is as above.
Then

L A
{

ΨΘ
ν

}(
~ζ
)

=
( 1

ib

)|ν|+ n
2
e− 1

2
~ξ
ᵀ
C~ξ |Ξ|

1
4

|Σ|
1
2 |Θ|

1
4

Ψ̃Ξ
ν

(
~ξ
)

, (4.2)

where

Σ = Θ−1 − ia
b

I , Ξ = b2[2(ΘΣΘ)−1 − Θ−1] , (4.3a)

C = b−1Θ
(
b−1Σ − idΣ2

)
Θ − Ξ−1 , ~ξ = Σ−1Θ−1~ζ , (4.3b)

under the conditions that b 6= 0 and Σ, Ξ both have a positive definite real part.

Remark 4.2. A sufficient condition for Re Σ � 0 is a, b ∈ R (as Re Θ−1 � 0).

Proof. Take the LCT (with respect to the variable ~r) of each side of the generating
function for ΨΘ

ν (Equation 2.8a). Let ~y = 2Θ−1~x − i1
b
~ζ and rewrite the integral as a
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multidimensional Gaussian integral with a linear term, which admits a well-known closed-
form [14] (convergence is ensured by Re Σ � 0). Then

∑
ν∈Nn

√
2|ν|

ν!
~xνL A

{
ΨΘ

ν

}(
~ζ
)

= (πn|Θ|)− 1
4 L A

{
e− 1

2

(
~r′
)ᵀ

Θ−1~r′−~x
ᵀΘ−1~x+2

(
~r′
)ᵀ

Θ−1~x
}(

~ζ
)

(4.4)

= (πn|Θ|)− 1
4

( 1
2πib

)n
2
ei d

2b
~ζ

2
e−~x

ᵀΘ−1~x
∫
Rn

d~r′ e− 1
2

(
~r′
)ᵀ

Σ~r′+~y
ᵀ
~r′

(4.5)

= (πn|Θ|)− 1
4

1
(ib)

n
2 |Σ|

1
2

ei d
2b

~ζ
2
e−~x

ᵀΘ−1~xe
1
2~y

ᵀΣ−1~y . (4.6)

Rewrite the right-hand side above in terms of ~x,~ξ, Ξ in the form of the generating function
of the dual AHG function (Equation 2.8b), i.e.:

∑
ν∈Nn

√
2|ν|

ν!
~xνL A

{
ΨΘ

ν

}(
~ζ
)

=(πn|Θ|)− 1
4

(ib)
n
2 |Σ|

1
2

e− 1
2
~ξ
ᵀ
C~ξe− 1

2
~ξ
ᵀ
Ξ−1~ξ+

(
− i

b
~x
)ᵀ[

2~ξ−Ξ
(

− i
b
~x
)]

(4.7)

= 1
(ib)

n
2

|Ξ|
1
4

|Σ|
1
2 |Θ|

1
4

e− 1
2
~ξ
ᵀ
C~ξ

∑
ν∈Nn

√
2|ν|

ν!

(
− i~x

b

)ν

Ψ̃Ξ
ν

(
~ξ
)

. (4.8)

Equating the powers of ~x on both sides yields the final result. �

Lemma 4.3 (Eigenfunctions of the linear canonical transform). If a = d, a2 6= 1 and√
(a2 − 1)b2 6= −ab, then set α = i b2√

(a2−1)b2+ab
, β = i b2√

(a2−1)b2
. We have

L A
{

ΨβI
ν

}
=
( 1

ib

)|ν|+ n
2
α|ν|√αn ΨβI

ν . (4.9)

Proof. Θ = βI, therefore Equations 4.3a and 4.3b become

Σ = α−1I, Ξ = α2Θ−1, C = 0, Ξ−1~ξ = α−1~ζ. (4.10)

Now consider Equation 4.2 and apply Properties 3.1.1 and 3.1.3:

|Ξ|
1
4

|Σ|
1
2 |Θ|

1
4

Ψ̃Ξ
ν

(
~ξ
)

=
ΨΞ−1

ν

(
Ξ−1~ξ

)
|Ξ|

1
4 |Σ|

1
2 |Θ|

1
4

=
Ψα−2Θ

ν

(
1
α

~ζ
)

|Ξ|
1
4 |Σ|

1
2 |Θ|

1
4

= α|ν|√αn ΨΘ
ν

(
~ζ
)

, (4.11)

from which Theorem 4.3 follows. �

The following corollaries follow from Theorems 4.1 and 4.3 as well as the basic properties
of the AHG functions.

Corollary 4.4 (Fourier Transform). The LCT reduces to the standard Fourier trans-
form (with unitary, angular frequency kernels) by setting AFT =

[ 0 1
−1 0

]
, viz. F {ΨΘ

ν } ,
i

n
2 L AFT{ΨΘ

ν }. In this case the Fourier transform of the anisotropic Hermite-Gauss func-
tion is:

F
{

ΨΘ
ν

}(
~ζ
)

= (−i)|ν| Ψ̃Θ−1
ν

(
~ζ
)

= (−i)|ν||Θ|1/2 ΨΘ
ν

(
Θ~ζ

)
. (4.12)

In addition,
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ΨI
ν are the eigenfunctions of the Fourier transform with corresponding eigen-

values (−i)|ν|.
4.4.1

If Θ is real, then the Fourier transform of an even-order AHG function is
purely real, and of an odd-order AHG function purely imaginary.

4.4.2

Corollary 4.5 (Fractional Fourier Transform). Similarly, the LCT also generalizes the
fractional Fourier transform (FrFT) of degree γ via the parameter matrix AFrFT(γ) =[

cos γ sin γ
− sin γ cos γ

]
by F γ{ΨΘ

ν } , ei n
2 γL AFrFT(γ){ΨΘ

ν }. The eigenfunctions of the Fractional
Fourier transform are ΨI

ν , with corresponding eigenvalues e−iγ|ν|

The fact that the univariate HG functions serve as the eigenfunctions of the (fractional)
Fourier transform is well-known. The corollaries above generalize these results to the mul-
tivariate (fractional) Fourier transform and AHG functions. This has interesting Fourier
optics interpretations: AHG beams remain AHG beams under far-field diffraction (Corol-
lary 4.4.1). Furthermore, only diffracted even-order AHG modes propagate to the far-field
while odd-order modes diffract as evanescent waves (consequence of Corollary 4.4.2).

We omit the proof of the following corollary.

Corollary 4.6 (Laplace Transform). The (two-sided) Laplace transform is a special case
of the LCT with AL = [ 0 i

i 0 ], viz.

B
{

ΨΘ
ν

}(
~ζ
)
, (−2π)

n
2 L AL

{
ΨΘ

ν

}
= (2π)

n
2 i|ν||Θ|1/2 ΨΘ

ν

(
iΘ~ζ

)
. (4.13)

The eigenfunctions of the Laplace transform are ΨI
ν(1+i√

2
~ζ), with corresponding eigenvalues

(2π)
n
2 i|ν|√(−i)n.

5. Wigner-Vile distribution
The Wigner-Vile Distribution (WVD) is an integral transform that commonly arise in

optics and quantum mechanics, useful for processing linear frequency-modulated signals.
The WVD of a Rn → C L2-function f is defined as the following Fourier transform:

W {f}
(
~r, ~ζ

)
, F

{
f

(
~r − 1

2
~ξ

)
f?
(

~r + 1
2
~ξ

)}(
~ζ
)
, (5.1)

where the FT is taken with respect to the integration variable ~ξ.

Lemma 5.1. Let ~r, ~ζ ∈ Rn, Θ ∈ Rn×n s.t. Θ � 0. Then

F
{

ΨΘ
ν

(
~r − 1

2
~ξ

)
ΨΘ

µ

(
~r + 1

2
~ξ

)}(
~ζ
)

=
(
4nπn|Θ|3

) 1
4 e− 1

2
~ζ
ᵀ
Θ~ζ

∑
τ�ν,
σ�µ

(−1)|ν−τ |

× i|ν+µ−τ−σ|

√√√√(ν

τ

)(
µ

σ

)(
ν + µ − τ − σ

ν − τ

)
ΨΘ

τ (~r) ΨΘ
σ (~r) Ψ̃Θ−1

µ+ν−σ−τ

(
~ζ
)

.
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Proof. Take the FT of the generating functions:

∑
ν,µ∈Nn

√
2|ν|+|µ|

ν!µ!
~xν~yµF

{
ΨΘ

ν

(
~r − 1

2
~ξ

)
ΨΘ

µ

(
~r + 1

2
~ξ

)}(
~ζ
)

= 1√
πn|Θ|

F
{

e− 1
2

(
~r− 1

2
~ξ
)ᵀ

Θ−1
(
~r− 1

2
~ξ
)

+~x
ᵀΘ−1

(
2~r−~ξ−~x

)
× e− 1

2

(
~r+ 1

2
~ξ
)ᵀ

Θ−1
(
~r+ 1

2
~ξ
)

+~y
ᵀΘ−1

(
2~r+~ξ−~y

)}(
~ζ
)

(5.2)

= 1√
πn|Θ|

e−~r
ᵀΘ−1~re~x

ᵀΘ−1(2~r−~x)e~y
ᵀΘ−1(2~r−~y)

× F
{

e− 1
2
~ξ
ᵀ
(2Θ)−1~ξe2~ξ

ᵀ
(2Θ)−1(~y−~x)

}(
~ζ
)

, (5.3)

complete the square and integrate (in similar fashion to Equation 4.6):

F
{

e~ξ
ᵀ
(2Θ)−1[− 1

2
~ξ+2(~y−~x)

]}(
~ζ
)

=
( 1

2π

)n
2
∫

d~ξ e− 1
2
~ξ
ᵀ
(2Θ)−1~ξ+~ξ

ᵀ
~ζ

′
(5.4)

=
√

2n|Θ|e
(

~ζ
′
)ᵀ

Θ~ζ
′

(5.5)

where we set ~ζ
′

= Θ−1(~y − ~x) − i~ζ. The FT always convergences as Θ−1 � 0. Then,
putting Equations 5.3 and 5.5 together and rewriting the result as the generating functions
of ΨΘ

τ (~r), ΨΘ
σ (~r), Ψ̃Θ−1

α (~ζ) with variables ~x, ~y and ~x − ~y, respectively, gives

∑
ν,µ∈Nn

√
2|ν|+|µ|

ν!µ!
~xν~yµF

{
ΨΘ

ν

(
~r − 1

2
~ξ

)
ΨΘ

µ

(
~r + 1

2
~ξ

)}(
~ζ
)

=
( 2
π

)n
2
e−~ζ

ᵀ
Θ~ζe2i(~x−~y)ᵀ~ζe(~x−~y)ᵀΘ−1(~x−~y)

× e− 1
2~r

ᵀΘ−1~r+~x
ᵀΘ−1(2~r−~x)e− 1

2~r
ᵀΘ−1~r+~y

ᵀΘ−1(2~r−~y) (5.6)

= (4nπn|Θ|)
1
4 e− 1

2
~ζ
ᵀ
Θ~ζ

∑
α∈Nn

√
2|α|

α! (~x − ~y)αi|α| Ψ̃Θ−1
α

(
~ζ
)

×
∑

τ ,σ∈Nn

√
2|τ |+|σ|

τ !σ!
~xτ ~yσ ΨΘ

τ (~r) ΨΘ
σ (~r) . (5.7)

Finally, apply the multinomial theorem, viz.:

(~x − ~y)α =
∑
β�α

(
α

β

)
(−1)|β|~xα−β~yβ (5.8)

and equate the powers of ~x and ~y, yielding the lemma. �

As any arbitrary L2-function can be expanded in AHG space (Theorem 3.5), by using
Theorem 5.1 we can write an expression for the WVD of that function. In practice,
this allows direct computation of the WVD for functions that can be expressed as a
superposition of a limited number of AHG functions (e.g., AHG beams).

Theorem 5.2 (WVD in AHG space). Let Θ ∈ Rn×n, with Re Θ � 0, and f(~r) =∑
ν aν ΨΘ

ν (~r) be an Rn → C L2-functions expressed via its AHG-basis coefficients, viz.
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aν = 〈f | Ψ̃Θ
ν 〉. Then,

W {f}
(
~r, ~ζ

)
= (4nπn|Θ|)

1
4 e− 1

2
~ζ
ᵀ
Θ~ζ

∑
ν,µ∈Nn

aνa?
µ

∑
τ�ν,
σ�µ

(−1)|ν−τ |

× i|ν+µ−τ−σ|

√√√√(ν

τ

)(
µ

σ

)(
ν + µ − τ − σ

ν − τ

)
ΨΘ

τ (~r) ΨΘ
σ (~r) Ψ̃Θ−1

µ+ν−σ−τ

(
~ζ
)

.

Proof. Write

W {f}
(
~r, ~ζ

)
= F

 ∑
ν,µ∈Nn

aνa?
µ ΨΘ

ν

(
~r − 1

2
~ξ

)
ΨΘ

µ

(
~r + 1

2
~ξ

)(~ζ) (5.9)

and apply Theorem 5.1. �
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