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Abstract 

Mathematical models for an adiabatic tubular chemical reactor which forms an 

irreversible exothermic reaction are investigated by an efficient numerical technique, 

Fibonacci Collocation method. The reaction's steady-state temperature is calculated 

for several values of three parameters, namely, Peclet and Damkohler numbers and 

the dimensionless adiabatic temperature increment. When the generated outcomes 

are compared with the other numerical approaches, it has been sighted that the 

presented method produces reliable results for this type of problems. 

 
 

 
1. Introduction 

 

It is presented a model for an irreversible exothermic 

reaction produced by an adiabatic tubular chemical 

reactor [1]. This model can be turned into a BVP of 

second order [2], as shown below,    
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where y  is the reaction's steady-state temperature,   

is Peclet number,   is the Damkohler number and   

is the adiabatic temperature increase with no 

dimensions. The existence of the numerical solutions 

to (1) for a specific range has been demonstrated by 

the authors [2]-[3]. In recent years, this equation has 

been dealt with many numerical methods [4]-[11].  

In this study, the problem (1) is solved by 

Fibonacci collocation method [12]-[15]. Numerical 

illustrations are carried out to validate the accuracy of 

the proposed numerical scheme. The reaction's 

steady-state temperature is calculated for several 

values of  ,  and  . The obtained numerical 

outcomes are compared with the well-known 

numerical approaches and it has been shown that the 

results reflect the adequacy of the method and 

give high accuracy.  
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The outline of the paper is as follows: In 

Section 2, Fibonacci collocation method is presented. 

Section 3 is devoted to the applications of the method 

for the Adiabatic Tubular Chemical Reactor problem. 

The conclusions are given in Section 4. 

 
2. Fibonacci Collocation Method 

 

The approach to a function can be suggested with the 

help of Fibonacci polynomials [16]-[17] as,   
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where N  indicates the approximation polynomial’s 

order. Fibonacci polynomials are identified as 
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. The recurrence 

relationship is, 
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(2) can be expressed as a matrix form, 

( )Ny x F.C
    (5) 

where  1 2 1( ) ( ) ( ) ( )Nx F x F x F x


F  and 

 1 2 1Nc c c


C . Also, Fibonacci 

polynomials can also be written as a matrix form, 
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and,  
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With the help of  (5) and (6), the derivatives of ( )Ny x  

can be given as,  
( ) ( )( ) ( ) ( )k k k
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Here, 
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When the collocation points are taken as 

, 0,1,...,j

j
x j N

N
  , the value of 

( )( )k
N jy x can be 

defined as,   
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By using (10) in the problem (1), given BVP is 

transformed into  1N   algebraic equations. Any 

suitable root finding method can be used to find 

 1N   unknowns of the approximation 

polynomials. 

 

3. Applications of the Fibonacci Collocation 

Method for the Adiabatic Tubular Chemical 

Reactor Problem 

 

The Fibonacci collocation method is applied to the 

Adiabatic Tubular Chemical Reactor problem in this 

section. To indicate the accuracy and applicability of 

the present method, the maximum absolute residual 

errors are calculated, which is defined by,  
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The numerical results of the method ( 12N  ) for 

different values of ,   and   are given in Figure 1 

and the comparisons of the numerical results of the 

presented method (for 13N  ) with Taylor Wavelet 

Method (TWM), B-Spline Wavelet, Adomian 

Method (ADM), Shooting Method, the contraction 

mapping principle (CMP), Sinc-Galerkin Method, 

Chebyshev Finite Difference Method (CFDM) for 

10, 3, 0.02      are given in Table 1. Besides, 

absolute residual errors in logarithm base 10 (

10
log err ) are given in Figure 2 for the different 

values of .N  

 

 
a) 3, 10    

b) 10, 0.02     
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c) 3, 0.02    

Figure 1.  The numerical outcomes of the present method 

( 12N  ) for a) 3, 10   and different values of  , 

b) 10, 0.02    and different values of   and 

c) 3, 0.02    and different values of  . 

 

 
Figure 2.  The absolute errors in the logarithm base 10 (

10
log err ) different numbers of polynomial degrees ( N ). 

 

Table 1. The comparison of the numerical outcomes for 10, 3, 0.02     . 

x  TWM 
B-Spline 

Wawelet 
ADM Shooting CFDM 

Sinc-

Galerkin 

20N   

Present 

Method 

13N   

0  0.006048  0.006045  0.006048  0.006048  0.006048  0.006048  0.006048  

0.2  0.018192  0.018194  0.018192  0.018192  0.018192  0.018192  0.018192  

0.4  0.030424  0.030424  0.030424  0.030424  0.030424  0.030424  0.030424  

0.6  0.042669  0.042675  0.042669  0.042669  0.042669  0.042669  0.042669  

0.8  0.054332  0.054332  0.054371  0.054371  0.054371  0.054371  0.054371  

1  0.061458  0.062030  0.061458  0.061458  0.061458  0.061458  0.061458  

 

4. Conclusion and Suggestions 

 

The boundary value problem arising from an 

adiabatic tubular chemical Reactor Theory is solved 

by an effective and robust technique, Fibonacci 

collocation method. From numerical results, it can be 

observed that the this problem is influenced by  ,   

and  . The numerical results reveal that the 

presented technique achieves high accuracy. 

Moreover, the presented numerical scheme is capable 

of solving this type of models.    
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