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ABSTRACT

The present work aims to introduce a novel class of submanifolds, namely STCR-lightlike
submanifolds, for an indefinite Kaehler statistical manifold with a quarter symmetric non-metric
connection. The characterization theorems on totally umbilical and totally geodesic STCR-lightlike
submanifolds with respect to the integrability of distributions have been established. Some
conditions for a STCR-lightlike submanifold to be a STCR-lightlike product manifold have been
derived.

Keywords: STCR lightlike submanifolds, indefinite Kaehler statistical manifold, totally geodesic foliation, integrability.

AMS Subject Classification (2020): Primary: 53C15 ; Secondary: 53C40; 53C55; 53B05;

1. Introduction

The geometry of lightlike submanifolds of semi-Riemannian manifold introduced by Duggal and Bejancu
[8] is a prime field of study. Various classes like CR-lightlike submanifolds, SCR-lightlike submanifolds
and GCR lightlike submanifolds of an indefinite Kaehler manifold have been studied extensively by many
geometers [21], [10], [11], [9] et al. But these classes do not contain real lightlike curves. So, [22], [23] introduced
transversal lightlike submanifolds and screen transversal lightlike submanifolds of an indefinite Kaehler
manifold and also the subclasses called radical ST-lightlike submanifolds and ST-anti invariant lightlike
submanifolds. Further, as a generalization of CR-lightlike submanifolds and screen transversal lightlike
submanifolds, a new notion termed as Screen Transversal Cauchy-Riemann (STCR) lightlike submanifolds
was introduced by [7].

Statistical manifolds, which analyze the geometric structures on sets of certain probability distributions
were initiated by [20] and thereafter developed by various researchers [1], [2], [12] and [17] et al. In this
context, the lightlike theory of statistical manifolds has been investigated by [3], [4], and many others. Further,
by consolidating the notion of statistical manifold with an indefinite Kaehler manifold, several findings have
been demonstrated for the CR-lightlike submanifolds and hypersurfaces of an indefinite Kaehler statistical
manifold by [15], [18], [19].

[13] introduced a quarter symmetric linear connection as: A linear connection ∇̄ on a Riemannian manifold
(M̃, g̃) is said to be a quarter symmetric connection if its torsion tensor T̃ satisfies

T̃ (X,Y ) = π(Y )ϕ(X)− π(X)ϕ(Y ), (1.1)

where ϕ is a (1,1)-tensor field and π is a 1-form associated with a smooth unit vector field ζ, called the
characterstic vector field, by π(X) = g̃(X, ζ). If the linear connection ∇̄ is not a metric connection, then
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∇̄ is called a quarter symmetric non-metric connection. A significant number of properties on lightlike
submanifolds of an indefinite Kaehler manifold with quarter symmetric non-metric connection have been
developed by [5], [6],[14],[16].

Keeping the aforementioned theory in focus, this paper introduces the concept of STCR-lightlike
submanifolds for an indefinite Kaehler statistical manifold with a quarter symmetric non-metric connection
. Some charaterizations pertaining to the integrability of distributions for totally umbilical and totally geodesic
STCR lightlike submanifolds have been developed. Various results related to the geometry of STCR-lightlike
product manifolds have been given.

2. Preliminaries

Definition 2.1. A pair (∇̄, g̃) is called a statistical structure on a semi-Riemannian manifold M̃ such that for all
X,Y, Z ∈ Γ(TM̃)

1. ∇̄XY − ∇̄Y X = [X,Y ];

2. (∇̄X g̃)(Y, Z) = (∇̄Y g̃)(X,Z) hold.

Then (M̃, g̃, ∇̄) is said to be an indefinite statistical manifold. Moreover, there exists ∇̄∗ which is a dual
connection of ∇̄ with respect to g̃, satisfying

Xg̃(Y,Z) = g̃(∇̄XY,Z) + g̃(Y, ∇̄∗
XZ).

Also (∇̄∗)∗ = ∇̄. If (M̃, g̃, ∇̄) is an indefinite statistical manifold, then (M̃, g̃, ∇̄∗) is also a statistical manifold.
Hence, the indefinite statistical manifold is denoted by (M̃, g̃, ∇̄, ∇̄∗).

Following [8], some basic facts about the lightlike theory of submanifolds are as as below:

Consider (M̃, g̃) as an (m+ n)-dimensional semi-Riemannian manifold with semi-Riemannian metric g̃ and
of constant index q such that m,n ≥ 1, 1 ≤ q ≤ m+ n− 1.
Let (M, g) be a m-dimensional lightlike submanifold of M̃ . In this case, there exists a smooth distribution
Rad(TM) on M of rank r > 0, known as Radical distribution on M such that Rad(TMp) = TMp ∩ TM⊥

p ,∀ p ∈ M

where TMp and TM⊥
p are degenerate orthogonal spaces but not complementary. Then M is called an r-lightlike

submanifold of M̃ . Now, consider S(TM), known as Screen distribution, as a complementary distribution
of radical distribution in TM i.e., TM = Rad(TM) ⊥ S(TM) and S(TM⊥), called screen transversal vector
bundle, as a complementary vector subbundle to Rad(TM) in TM⊥ i.e., TM⊥ = Rad(TM) ⊥ S(TM⊥). As
S(TM) is non degenerate vector subbundle of TM̃ |M , we have TM̃ |M = S(TM) ⊥ S(TM)⊥ where S(TM)⊥

is the complementary orthogonal vector subbundle of S(TM) in TM̃ |M . Let tr(TM) and ltr(TM) be
complementary vector bundles to TM in TM̃ |M and to Rad(TM) in S(TM⊥)⊥. Then we have tr(TM) =

ltr(TM) ⊥ S(TM⊥), TM̃ |M = TM ⊕ tr(TM) = (Rad(TM)⊕ ltr(TM)) ⊥ S(TM) ⊥ S(TM⊥).

Theorem 2.1. [8] Let (M, g, S(TM), S(TM⊥)) be an r- lightlike submanifold of a semi-Riemannian manifold
(M̃, g̃).Then there exists a complementary vector bundle ltr(TM) called a lightlike transversal bundle of Rad(TM)
in S(TM⊥)⊥ and basis of Γ(ltr(TM)|U ) consisting of smooth sections {N1, · · · , Nr} S(TM⊥)⊥|U such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, i, j = 0, 1, · · · , r

where {ξ1, · · · , ξr} is a lightlike basis of Γ(RadTM)|U .

Let (M, g) be a lightlike submanifold of an indefinite statistical manifold (M̃, g̃, ∇̄, ∇̄∗). From the theory of
lightlike submanifolds of an indefinite statistical manifold, the Gauss and Weingarten formulae developed on
its structure are as below:

∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∇̄∗
XY = ∇∗

XY + h∗l(X,Y ) + h∗s(X,Y ), (2.1)

∇̄XV = −AV X +Dl
XV +Ds

XV, ∇̄∗
XV = −A∗

V X +D∗l
XV +D∗s

X V, (2.2)

∇̄XN = −ANX +∇l
XN +Ds(X,N), ∇̄∗

XN = −A∗
NX +∇∗l

XN +D∗s(X,N), (2.3)
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∇̄XW = −AWX +∇s
XW +Dl(X,W ), ∇̄∗

XW = −A∗
WX +∇∗s

XW +D∗l(X,W ). (2.4)

for any X,Y ∈ Γ(TM), V ∈ Γ(tr(TM)), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)).
Now, the concept of indefinite statistical manifold and (2.1), (2.2), (2.3), (2.4), implies

g̃(hs(X,Y ),W ) + g̃(Y,D∗l(X,W )) = g̃(Y,A∗
WX), (2.5)

g̃(hl(X,Y ), ξ) + g̃(Y,∇∗
Xξ) + g̃(Y, h∗l(X, ξ)) = 0,

g̃(Ds(X,N),W ) = g̃(N,A∗
WX),

g̃(ANX,PY ) = g̃(N, ∇̄∗
XPY ),

and
g̃(ANX,N ′) + g̃(A∗

N ′X,N) = 0.

From the theory of non-degenerate submanifolds of a statistical manifold, it is known that submanifold of a
statistical manifold is a statistical manifold but this is not true for lightlike submanifolds since the definition of
statistical manifold and (2.1) implies

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = g̃(Y, hl(X,Z))− g̃(X,hl(Y,Z)),

and
Xg(Y,Z)− g(∇XY,Z)− g(Y,∇∗

XZ) = g̃(hl(X,Y ), Z) + g̃(Y, h∗l(X,Z)).

Considering the projection morphism P of the tangent bundle TM to the screen distribution, we have the
following decomposition w.r.t ∇ and ∇∗:

∇XPY = ∇′
XPY + h′(X,PY ), ∇∗

XPY = ∇∗′
XPY + h∗′(X,PY ), (2.6)

∇Xξ = −A′
ξX +∇′t

Xξ, ∇∗
Xξ = −A∗′

ξ X +∇∗′t
X ξ, (2.7)

for any X,Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)).
Using (2.1),(2.2),(2.5) and (2.7), we obtain

g̃(hl(X,PY ), ξ) = g(A∗′
ξ X,PY ), g̃(h∗l(X,PY ), ξ) = g(A′

ξX,PY ), (2.8)

g̃(h′(X,PY ), N) = g(A∗
NX,PY ), g̃(h∗′(X,PY ), N) = g(ANX,PY ), (2.9)

for any X,Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)) and N ∈ Γ(ltr(TM)). As hl and h∗l are symmetric, so from (2.8), we
obtain

g(A′
ξPX,PY ) = g(PX,A′

ξPY ), g(A∗′
ξ PX,PY ) = g(PX,A∗′

ξ PY ).

Let ∇̄◦ be the Levi-Civita connection w.r.t g̃. Then, we have ∇̄◦ = 1
2 (∇̄+ ∇̄∗).

For a statistical manifold (M̃, g̃, ∇̄, ∇̄∗), the difference (1, 2) tensor K of a torsion free affine connection ∇̄ and
Levi-Civita connection ∇̄◦ is defined as

K(X,Y ) = KXY = ∇̄XY − ∇̄◦
XY, (2.10)

Since ∇̄ and ∇̄◦ are torsion free, we have

K(X,Y ) = K(Y,X), g̃(KXY,Z) = g̃(Y,KXZ), (2.11)

for any X,Y, Z ∈ Γ(TM).
Also, from (2.10), we have

g̃(∇̄XY, Z) = g̃(K(X,Y ), Z) + g̃(∇̄◦
XY, Z). (2.12)

Definition 2.2. [15] A triplet (∇̄ = ∇̄◦ +K, g̃, J̄) is called an indefinite Kaehler statistical structure on M̃ if
(i) (g̃, J̄) is an indefinite Kaehler structure on M̃
(ii)(∇̄, g̃) is a statistical structure on M̃
and the condition

K(X, J̄Y ) = −J̄K(X,Y ),

holds for any X,Y ∈ Γ(TM̃).
Then (M̃, ∇̄, g̃, J̄) is called an indefinite Kaehler statistical manifold. If (M̃, ∇̄, g̃, J̄) is an indefinite Kaehler
statistical manifold, then so is (M̃, ∇̄∗, g̃, J̄).
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3. STCR-lightlike submanifold

Sahin et.al [7] introduced screen transversal Cauchy Riemann lightlike submanifolds of an indefinite
Kaehler manifold. So motivated, we introduce a STCR-lightlike submanifold of an indefinite Kaehler statistical
manifold and elaborate its structure with an example.

Definition 3.1. A real lightlike submanifold M of an indefinite Kaehler statistical manifold M̃ is a STCR
(Screen transversal Cauchy Riemann) lightlike submanifold if the following conditions are satisfied:

1. There exist two subbundles E1 and E2 of Rad(TM) such that

Rad(TM) = E1 ⊕ E2, J̄(E1) ⊂ S(TM), J̄(E2) ⊂ S(TM⊥), (3.1)

2. There exist two subbundles E◦ and E′ of S(TM) such that

S(TM) = {J̄E1 ⊕ E′} ⊥ E◦, J̄(E◦) = E◦, J̄(E
′) = L1 ⊥ S, (3.2)

where E◦ is a non-degenerate distribution on M , L1 and S are vector subbundles of ltr(TM) and S(TM⊥)
respectively.

Thus we have following decomposition
TM = E ⊕ Ē, (3.3)

where
E = E◦ ⊕ E1 ⊕ J̄E1, (3.4)

and
Ē = E2 ⊕ J̄L1 ⊕ J̄S, (3.5)

It is clear that E is invariant and Ē is anti-invariant. Thus, we have

ltr(TM) = L1 ⊕ L2, J̄L1 ⊂ S(TM), J̄L2 ⊂ S(TM⊥),

and
S(TM⊥) = {J̄E2 ⊕ J̄L2} ⊥ S.

We denote the projections from Γ(TM) to Γ(E◦), Γ(J̄E1), Γ(J̄L1), Γ(J̄S), Γ(E1) and Γ(E2) by P◦, P1, P2, P3, S1

and S2 respectively. Also, the projections from Γ(tr(TM)) to Γ(J̄E2), Γ(J̄L2), Γ(S), Γ(L1) and Γ(L2) are denoted
by R1, R2, R3, Q1 and Q2, respectively. Therefore

X = PX +QX = P◦X + P1X + P2X + P3X + S1X + S2X, (3.6)

and
J̄X = TX + wX, (3.7)

for X ∈ Γ(TM), where PX ∈ Γ(E), QX ∈ Γ(Ē) and TX and wX are respectively the tangential and transversal
parts of J̄X . Applying J̄ to (3.6) and denoting J̄P◦, J̄P1, J̄P2, J̄P3, J̄S1, J̄S2 by T◦, T1, wL, wS , T1̄, w2̄,
respectively, we have

J̄X = T◦X + T1X + T1̄X + wLX + wSX + w2̄X, (3.8)

for X ∈ Γ(TM), where T◦X ∈ Γ(E◦), T1X ∈ Γ(E1), T1̄X ∈ Γ(J̄E1), wLX ∈ Γ(L1), wSX ∈ Γ(S), and w2̄X ∈
Γ(J̄E2). Also, for any V ∈ Γ(tr(TM)),

V = R1V +R2V +R3V +Q1V +Q2V, (3.9)

Denote J̄R1, J̄R2. J̄R3, J̄Q1, J̄Q2 by B2, C1, BS̄ , BL̄, C2, respectively so that

J̄V = B2V +BS̄V +BL̄V + C1V + C2V. (3.10)

where BV and CV are sections of TM and tr(TM), respectively.

Inspired by [7], we consider the following example:
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Example 3.1. Let M̃ = (R12
4 , g̃) be an indefinite Kaehler manifold, where

g̃ is of signature (−,−,−,−,+,+,+,+,+,+,+,+) with respect to the basis
{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7, ∂x8, ∂x9, ∂x10, ∂x11, ∂x12}. If (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) is
the standard coordinate sysytem of R12

4 , then by setting J̄(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) =
(−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9,−x12, x11), we have J̄2 = −I .

Following definition (2.2), the triplet (∇̄ = ∇̄◦ +K, g̃, J̄) where K satisfies (2.11), defines an indefinite
Kaehler statistical structure on M̃ .

Consider a submanifold M of R12
4 given by the equations:

x1 = sinu2, x2 = − cosu2, x3 = u1, x4 = u3 −
u4

2
, x5 = u2,

x6 = 0, x7 = u1, x8 = u3 +
u4

2
, x9 = u5 + u7, x10 = u6 − u7,

x11 = u5 − u7, x12 = u6 + u7.

Here TM is spanned by Z1,Z2,Z3,Z4,Z5,Z6,Z7 where

Z1 = ∂x3 + ∂x7, Z2 = cosu2 ∂x1 + sinu2 ∂x2 + ∂x5, Z3 = ∂x4 + ∂x8,

Z4 =
1

2
{−∂x4 + ∂x8}, Z5 = ∂x9 + ∂x11, Z6 = ∂x10 + ∂x12,

Z7 = ∂x9 − ∂x10 − ∂x11 + ∂x12,

We see that M is 2-lightlike with RadTM = Span{Z1, Z2} and J̄Z1 = Z3. Thus, E1 = Span{Z1} and
E2 = Span{Z2} . Also, J̄Z5 = Z6 ∈ Γ(S(TM)) implies that E◦ = Span{Z5, Z6}.

Further, the lightlike transversal bundle ltr(TM) is spanned by

N1 =
1

2
{−∂x3 + ∂x7}, N2 =

1

2
{− cosu2∂x1 − sinu2∂x2 + ∂x5}.

Hence, L1 = Span{N1}, L2 = Span{N2}, S(TM⊥) = Span{J̄Z2, J̄N2, J̄Z7}, S = Span{J̄Z7 = W} and
E′ = Span{J̄N1 = Z4, J̄Z7 = W}.

Therefore M is a proper STCR-lightlike submanifold of the indefinite Kaehler statistical manifold R12
4 .

4. Quarter symmetric non-metric connection

For a Levi-Civita connection ∇̄◦ on an indefinite Kaehler statistical manifold (M̃, J̄ , g̃) where ∇̄◦ = 1
2{∇̄+

∇̄∗}, we set
D̃XY = ∇̄XY −K(X,Y ) + π(Y )J̄X, (4.1)

and
D̃XY = ∇̄∗

XY +K(X,Y ) + π(Y )J̄X, (4.2)

for any X,Y ∈ Γ(TM̃). Since ∇̄ and ∇̄∗ are torsion free, therefore from the relationship between dual
connections, we obtain

(D̃X g̃)(Y, Z) = −π(Y )g̃(J̄X, Z)− π(Z)g̃(Y, J̄X), (4.3)

and
T̃ D̃(X,Y ) = π(Y )J̄X − π(X)J̄Y, (4.4)

for any X,Y, Z ∈ Γ(TM̃) where T̃ D̃ is a torsion tensor of the connection D̃ and π is a 1-form associated with the
vector field U on M̃ by π(X) = g̃(X,U). So, D̃ becomes a quarter symmetric non-metric connection. Since M̃

admits a tensor field J̄ of type (1,1), therefore for any X,Y ∈ Γ(TM̃), we have

D̃X J̄Y = J̄D̃XY + π(Y )X + π(J̄Y )J̄X, (4.5)

233 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


STCR-Lightlike Product Manifolds of an Indefinite Kaehler Statistical Manifold...

Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold (M̃, g̃) with quarter
symmetric non-metric connection D̃. Let D be the induced linear connection on M from D̃. Therefore the
Gauss formula is as follows:

D̃XY = DXY + h̃l(X,Y ) + h̃s(X,Y ), (4.6)

for any X,Y ∈ Γ(TM), where DXY ∈ Γ(TM) and h̃l , h̃s are lightlike second fundamental form and the screen
second fundamental form of M , respectively. Now from (2.1), (4.6) in (4.1), we get

DXY = ∇XY + π(Y )TX −K(X,Y ), (4.7)

h̃l(X,Y ) = hl(X,Y ) + wLXπ(Y ), (4.8)

h̃s(X,Y ) = hs(X,Y ) + wsXπ(Y ) + w2̃Xπ(Y ). (4.9)

Further, using (4.3), (3.8), (4.6) we have

(DXg)(Y,Z) = g(h̃l(X,Y ), Z) + g(Y, h̃l(X,Z))− π(Y )g(TX,Z)− π(Z)g(TX, Y ), (4.10)

and
TD(X,Y ) = π(Y )TX − π(X)TY.

for any X,Y, Z ∈ Γ(TM), where TD is torsion tensor of the induced connection D on M . Hence, the following
result holds:

Theorem 4.1. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃. Then the induced connection D on the lightlike submanifold M is also a quarter
symmetric non-metric connection.

Suppose that h̃l vanishes identically on M . Therefore

(DXg)(Y,Z) = −π(Y )g(TX,Z)− π(Z)g(TX, Y ).

follows from (4.10).

Consequently, we arrive to the following outcome:

Theorem 4.2. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃. Then the induced connection D on the lightlike submanifold M is also a quarter
symmetric metric connection if and only if h̃l vanishes identically on M and the characterstic vector field ζ ∈ Γ(S(TM⊥))
such that π(X) = g(X, ζ).

Corresponding to quarter symmetric non-metric connection D̃, the Weingarten formulae are as below:

D̃XN = −ÃNX + ∇̃l
XN + D̃s(X,N), (4.11)

D̃XW = −ÃWX + ∇̃s
XW + D̃l(X,W ), (4.12)

for any X,Y ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Using (2.3),(2.4) (4.11),(4.12) and (4.1) and then
equating the tangential and transversal parts, we derive

ÃNX = ANX − π(N)TX +K(X,N), ÃWX = AWX − π(W )TX +K(X,W ), (4.13)

∇̃l
XN = ∇l

XN + π(N)wLX, ∇̃s
XW = ∇s

XW + π(W )wsX + π(W )w2̄X, (4.14)

D̃s(X,N) = Ds(X,N) + π(N)wsX + π(N)w2̄X, D̃l(X,W ) = Dl(X,W )

+π(W )wLX.
(4.15)

Consider P as the projection of TM on S(TM) so that any X ∈ Γ(TM) can be written as X = PX +∑r
i=1 ηi(X)ξi, where {ξi}ri=1 is a basis for Rad(TM). Therefore, for any X,Y ∈ Γ(TM), ξ ∈ Γ(RadTM), we have

DXPY = D′
XPY + h̃′(X,PY ), DXξ = −Ã′

ξX + ∇̃′t
Xξ, (4.16)

where (D′
XPY, Ã′

ξX) and (h̃′(X,PY ), ∇̃′t
Xξ) belong to S(TM) and Rad(TM) respectively. Thus we have

D′
XPY = ∇′

XPY + π(PY )PTX −K(X,PY ), (4.17)
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h̃′(X,PY ) = h′(X,PY ) + π(PY )

r∑
i=1

ηi(TX)ξ, (4.18)

and
Ã′

ξX = A′
ξX − π(ξ)PTX +K(X, ξ), (4.19)

∇̃′t
Xξ = ∇′t

Xξ + π(ξ)

r∑
i=1

ηi(TX)ξi, (4.20)

where ηi(X) = g̃(X,Ni). Further, using (2.9),(4.18) and (4.13), we derive

g̃(h̃′(X,PY ), Nj) = g(Ã′
Nj

X,PY ) + π(Nj)g(PTX,PY ) + g̃(K(X,N), PY ) + π(PY )ηj(TX),

g̃(h̃l(X,PY ), ξ) = g(Ã′
ξX,PY )− π(ξ)g(PTX,PY )− g̃(K(X, ξ), PY ) + π(Y )g(wLX, ξ),

Also, for induced connection D′ of D, we get

(D′
Xg)(PY, PZ) = −π(PY )g(PTX,PZ)− π(PZ)g(PY, PTX).

Since M̄ is an indefinite Kaehler statistical manifold, the ensuing lemmas are obtained using (4.5), (3.8), (3.10)
and (4.6).

Lemma 4.1. For a STCR-lightlike submanifold M of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃, we have

DXTY − TDXY = ÃwLY X + ÃwsY X + Ãw2̄Y X + π(J̄Y )TX +Bh̃l(X,Y )

+Bh̃s(X,Y ) + π(Y )X,
(4.21)

D̃l(X,wsY ) + D̃l(X,w2̄Y ) = wL(DXY )− ∇̃l
X(wLY )− h̃l(X,TY ) + C1h̃

s(X,Y )

+C1h̃
l(X,Y ) + π(J̄Y )wLX,

(4.22)

D̃s(X,wLY ) = ws(DXY ) + w2̄(DXY )− ∇̃s
X(wsY )− ∇̃s

X(w2̄Y )− h̃s(X,TY )

+C2h̃
s(X,Y ) + C2h̃

l(X,Y ) + π(J̄Y )wsX + π(J̄Y )w2̄X,
(4.23)

for any X,Y ∈ Γ(TM).

Lemma 4.2. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃. Then

DXBV −B∇̃t
XV = −TÃV X + ÃC1V X + ÃC2V X + π(J̄V )TX + π(V )X, (4.24)

h̃l(X,BV ) = −∇̃l
XC1V − D̃l(X,C2V ) + C1∇̃t

XV − wLÃV X + π(J̄V )wLX, (4.25)

h̃s(X,BV ) = −wsÃV X − w2̄ÃV X + C2∇̃t
XV + π(J̄V )wsX + π(J̄V )w2̄X

−∇̃s
XC2V − D̃s(X,C1V ),

(4.26)

for any X,Y ∈ Γ(TM), V ∈ Γ(tr(TM)).

Definition 4.1. Let M be a lightlike submanifold of a indefinite Kaehler statistical manifold M̃ . Then M is said
to be a totally umbilical with respect to ∇̄ (resp. ∇̄∗) if h(X,Y ) = Hḡ(X,Y ) (resp. h∗(X,Y ) = H∗ḡ(X,Y )) for
all X,Y ∈ Γ(TM), where H ∈ Γ(tr(TM)) (resp. H∗ ∈ Γ(tr(TM))) stands for transversal curvature vector fields
of M in M̄ with respect to ∇̄ (resp. ∇̄∗).

Also, M is totally umbilical with respect to ∇̄ (respectively ∇̄∗) if and only if on each co-ordinate
neighbourhood, there exist smooth vector fields H l ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)) (H∗l ∈ Γ(ltr(TM))
and H∗s ∈ Γ(S(TM⊥)) respectively) such that hl(X,Y ) = H lḡ(X,Y ) , hs(X,Y ) = Hsḡ(X,Y ) and
h∗l(X,Y ) = H∗lḡ(X,Y ) , h∗s(X,Y ) = H∗sḡ(X,Y ) respectively with respect to ∇̄(respectively ∇̄∗).

Also, a STCR lightlike submanifold of a indefinite Kaehler statistical manifold M̃ with quarter symmetric
non-metric connection is said to be a totally umbilical if there exist smooth vector fields H̃ l ∈ Γ(ltr(TM)) and
H̃s ∈ Γ(S(TM⊥)) such that h̃l(X,Y ) = H̃ lg(X,Y ) and h̃s(X,Y ) = H̃sg(X,Y ).
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Definition 4.2. A STCR lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection is said to be a totally geodesic if h̃(X,Y ) = 0. It is simple to verify that M is
totally geodesic if h̃l(X,Y ) = 0, h̃s(X,Y ) = 0 for any X,Y ∈ Γ(TM).

Theorem 4.3. Let M be a totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃

with a quarter symmetric non-metric connection D̃ such that H̃s has no component in J̄E2. Then E◦ is integrable.

Proof. Let X,Y ∈ Γ(E◦) and N ∈ Γ(L2), then

g̃([X,Y ], N) = g̃(∇̄XY − ∇̄Y X,N),

The symmetric property of difference (1,2) tensor K and (4.1) give

g̃([X,Y ], N) = g̃(J̄D̃XY − π(Y )J̄2X − J̄D̃Y X + π(X)J̄2Y, J̄N),

Further from the definition of STCR lightlike submanifold and using (4.5), we obtain

g̃([X,Y ], N) = g̃(h̃s(X, J̄Y )− h̃s(Y, J̄X), J̄N),

M being totally umbilical lightlike submanifold implies that

g̃([X,Y ], N) = (g(X, J̄Y )− g(Y, J̄X))g̃(H̃s, J̄N).

Hence, the concept of STCR lightlike submanifolds and the hypothesis leads to the required result.
.

Theorem 4.4. Let M̃ be an indefinite Kaehler statistical manifold with a quarter symmetric non-metric connection D̃

and M be a totally umbilical STCR-lightlike submanifold of M̃ . If the distribution E◦ is integrable , then M is totally
geodesic STCR lightlike submanifold of M̃ with respect to D̃.

Proof. For any X,Y ∈ Γ(E◦) and from (4.23), we obtain

ws(DXY ) + w2̄(DXY )− ws(DY X)− w2̄(DY X) = h̃s(X,TY )− h̃s(Y, TX),

Using the fact that M is a totally umbilical lightlike submanifold, we get

ws[X,Y ] + w2̄[X,Y ] = (g̃(X, J̄Y )− g̃(Y, J̄X))H̃s,

Since E◦ is integrable and if we take X = J̄Y, then 2g̃(Y, Y )H̃s = 0. Using the non-degeneracy of E◦, we get
H̃s = 0 . Now, for any X,Y ∈ Γ(E◦), we have

wL(DXY )− wL(DY X) = h̃l(X,TY )− h̃l(Y, TX),

from (4.22).
As M is a totally umbilical lightlike submanifold, it follows that

wL[X,Y ] = (g̃(X, J̄Y )− g̃(Y, J̄X))H̃ l.

The non-degeneracy of E◦ implies H̃ l = 0. Hence the result.

Theorem 4.5. Let M be a totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold
M̃ with a quarter symmetric non-metric connection D̃. If M is totally geodesic, then h̃′ = 0 for any X,Y ∈ Γ(E◦) and
N ∈ Γ(L2).

Proof. From (4.6), we have
g̃(h̃s(X, J̄Y ), J̄N) = g̃(D̃X J̄Y, J̄N),

for any X,Y ∈ Γ(E◦). Then (4.5),(4.6) and (4.16) imply

g̃(h̃s(X, J̄Y ), J̄N) = g̃(h̃′(X,Y ), N).

Thus, the result follows using the given hypothesis.

dergipark.org.tr/en/pub/iejg 236

https://dergipark.org.tr/en/pub/iejg


V. Rani & J.Kaur

Theorem 4.6. For a totally umbilical STCR-lightlike submanifold M of an indefinite Kaehler statistical manifold M̃ with
a quarter symmetric non-metric connection D̃, the subbundle E2 of Rad(TM) is always integrable for any X ∈ Γ(E◦).

Proof. For any ξ1, ξ2 ∈ Γ(E2) and X ∈ Γ(E◦), we have

g̃([ξ1, ξ2], X) = g̃(∇̄ξ1ξ2 − ∇̄ξ2ξ1, X),

= g̃(J̄∇̄ξ1ξ2, J̄X)− (J̄∇̄ξ2ξ1, J̄X),

From definition (2.2), we get

g̃([ξ1, ξ2], X) = g̃(∇̄∗
ξ1 J̄ξ2, J̄X)− (∇̄∗

ξ2 J̄ξ1, J̄X),

Now (4.1) and (2.11) imply

g̃([ξ1, ξ2], X) = −g̃(J̄ξ2, D̃ξ1 J̄X) + g̃(J̄ξ1, D̃ξ2 J̄X),

Further, using (4.6), we derive

g̃([ξ1, ξ2], X) = −g̃(J̄ξ2, h̃
s(ξ1, J̄X)) + g̃(J̄ξ1, h̃

s(ξ2, J̄X)),

Since M is totally umbilical, therefore

g̃([ξ1, ξ2], X) = −g̃(ξ1, J̄X)g̃(J̄ξ2, H̃
s) + g̃(ξ2, J̄X)g̃(J̄ξ1, H̃

s),

As ξ1, ξ2 ∈ Γ(E2) and X ∈ Γ(E◦), we obtain

g̃([ξ1, ξ2], X) = 0.

Thus our assertion follows.

Theorem 4.7. Let M be a proper totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical
manifold M̃ with a quarter symmetric non-metric connection D̃. Then J̄H̃s = U for any X,Y ∈ J̄S.

Proof. Let X,Y ∈ J̄S. Then using (4.21)

−TDXY = ÃwY X +Bh̃l(X,Y ) +Bh̃s(X,Y ) + π(Y )X,

Taking the inner product on both sides with respect to X , we have

g̃(ÃJ̄Y X,X) = g̃(h̃s(X,Y ), J̄X)− g̃(X,X)π(Y ),

Now, (4.9) and (4.13) imply

g̃(AJ̄Y X,X) + g̃(K(X, J̄Y ), X) = g̃(hs(X,Y ), J̄X), (4.27)

Further, using (2.5), (4.9) for dual connections of the indefinite Kaehler statistical manifold M̃ , we have
g̃(h∗s(X,X), J̄Y ) = g̃(X,AJ̄Y X),

g̃(h̃s(X,X), J̄Y ))− π(X)g̃(X,Y ) + g̃(K(X, J̄Y ), X) = g̃(h̃s(X,Y ), J̄X)

−g̃(X,X)π(Y ),

From the concept of a totally umbilical lightlike submanifold, we get

g̃(X,X)g̃(H̃s, J̄Y )− π(X)g̃(X,Y ) + g̃(K(X, J̄Y ), X) = g̃(X,Y )g̃(H̃s, J̄X)

−g̃(X,X)π(Y ),

Interchanging Y by X and subtracting these equations, we obtain

g̃(J̄H̃s − U,X)(g̃(X,X)g̃(Y, Y )− g̃(X,Y )2) = g̃(X,X)g̃(K(Y, J̄X), Y )

−g̃(X,Y )g̃(K(X, J̄Y ), X),

Since X,Y ∈ J̄S and M is a Kaehler statistical manifold, it follows that

g̃(J̄H̃s − U,X)(g̃(X,X)g̃(Y, Y )− g̃(X,Y )2) = 0.

So, using the non-degeneracy of S , we get the desired result.
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5. STCR-lightlike product manifolds

Definition 5.1. A STCR lightlike submanifold M of an indefinite Kaehler statistical manifold M̃ is called a
STCR-lightlike product manifold if E and Ē define totally geodesic foliations in M .

Theorem 5.1. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃. Then the distribution E defines a totally geodesic foliation in M if and only if
h̃(X, J̄Y ) = 0 for any X,Y ∈ Γ(E).

Proof. From the concept of STCR-lightlike submanifold, the distribution E defines a totally geodesic foliation
in M , if and only if, DXY ∈ Γ(E) for X,Y ∈ Γ(E) or g̃(DXY, J̄ξ) = g̃(DXY, J̄W ) = g̃(DXY,N2) = 0 for ξ1 ∈
Γ(E1), N2 ∈ Γ(L2),W ∈ Γ(S). Thus from definition (3.1) and equations (4.5), (4.6), we have

g̃(DXY, J̄ξ1) = g̃(D̃XY, J̄ξ1) = −g̃(D̃X J̄Y ), ξ1),

g̃(DXY, J̄ξ) = −g̃(h̃l(X, J̄Y ), ξ1),

Also,
g̃(DXY,N2) = g̃(D̃X J̄Y ), J̄N2) = g̃(h̃s(X, J̄Y ), J̄N2),

Similarly,
g̃(DXY, J̄W ) = g̃(D̃XY, J̄W ) = −g̃(D̃X J̄Y ),W ) = −g̃(h̃s(X, J̄Y ),W ).

Therefore, the distribution E defines a totally geodesic foliation in M , if and only if, h̃(X, J̄Y ) = 0 for X,Y ∈
Γ(E).

Theorem 5.2. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃. Then the distribution Ē defines a totally geodesic foliation in M if and only if
ÃwY X + π(Y )X ∈ Γ(Ē) for any X,Y ∈ Γ(Ē).

Proof. Since M is a STCR-lightlike submanifold of M̃ , the distribution Ē defines a totally geodesic foliation in
M , if and only if, DXY ∈ Γ(Ē) for X,Y ∈ Γ(Ē). From (4.21), we get

−Bh̃l(X,Y )−Bh̃s(X,Y ) = AwLY X +AwsY X +Aw2̄Y X + π(Y )X,

which implies
−Bh̃(X,Y ) = ÃwY X + π(Y )X.

Thus, the proof is completed.

Theorem 5.3. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃. Then M is STCR lightlike product manifold if the tensor field T is parallel with
respect to the induced connection i.e. (DXT )Y = 0 for any X,Y ∈ Γ(TM).

Proof. For X,Y ∈ Γ(E) and from (4.21)

π(J̄Y )TX +Bh̃l(X,Y ) +Bh̃s(X,Y ) + π(Y )X = 0,

using the hypothesis. Therefore, we get
g̃(Bh̃s(X,Y ), N2) = 0,

Also,
g̃(Bh̃l(X,Y ), ξ1) = 0, g̃(Bh̃s(X,Y ),W ) = 0.

for N2 ∈ Γ(L2), ξ ∈ Γ(E1) and W ∈ Γ(S). This implies that E defines a totally geodesic foliation in M . As per
the supposition and (4.21), we derive

−Bh̃(X,Y ) = ÃwY X + π(Y )X.

Thus Ē defines a totally geodesic foliation in M . Accordingly, M is a STCR lightlike product manifold.
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However the converse does not hold.
If Ē defines a totally geodesic foliation in M , then TDXY = 0 for X,Y ∈ Γ(Ē). Now for Y ∈ Γ(Ē), we have
TY = 0 which implies that DXTY = 0. Hence (DXT )Y = 0, for any X,Y ∈ Γ(Ē). Also, since E defines totally
geodesic foliation in M , therefore from equation (4.21), we get (DXT )Y = π(J̄Y )TX + π(Y )X ̸= 0. This is the
claimed result.

Theorem 5.4. Let M be a STCR-lightlike submanifold of an indefinite Kaehler statistical manifold M̃ with a quarter
symmetric non-metric connection D̃ such that w(DXY ) = 0 for any X,Y ∈ Γ(TM). Then M is STCR-lightlike product
manifold if M is a totally geodesic STCR-lightlike submanifold of M̃ .

Proof. For any X,Y ∈ Γ(E), we have

h̃s(X,TY )− C2h̃
s(X,Y )− C2h̃

l(X,Y ) = 0,

using (4.23). As M is totally geodesic STCR-lightlike submanifold, then

g̃(h̃s(X,TY ),W ) = g̃(h̃s(X,TY ), J̄N2) = 0,

for any W ∈ Γ(S) and N2 ∈ Γ(L2). Also, from (4.22), we derive

g̃(h̃l(X,TY ), ξ) = 0,

for any ξ ∈ Γ(E1). This implies that E defines a totally geodesic foliation in M .
Further, from (2.11),(4.1), (4.2), we obtain

g̃(TDXY, Z) = −g̃(Y, J̄h̃(X,Z)).

for any X,Y ∈ Γ(Ē) and Z ∈ Γ(E◦). Since M is totally geodesic STCR-lightlike submanifold and the
distribution E◦ is non-degenerate, therefore TDXY = 0 for X,Y ∈ Γ(Ē). Thus, Ē defines a totally geodesic
foliation in M . This completes the proof.

Theorem 5.5. Let M be a totally umbilical STCR-lightlike submanifold of an indefinite Kaehler statistical manifold
M̃ with a quarter symmetric non-metric connection D̃. Then M is a STCR-lightlike product manifold if and only if
h̃(X, J̄Y ) = 0 for any X ∈ Γ(TM), Y ∈ Γ(E).

Proof. Let M be STCR-lightlike product manifold it follows that h̃(X, J̄Y ) = 0 for any X,Y ∈ Γ(E). Since M is
a totally umbilical STCR-lightlike submanifold, therefore

h̃(X, J̄Y ) = ḡ(X, J̄Y )H̃ = 0,

for any X ∈ Γ(Ē) and Y ∈ Γ(E). So, we obtain h̃(X, J̄Y ) = 0 for any X ∈ Γ(TM), Y ∈ Γ(E).
Conversely, if h̃(X, J̄Y ) = 0 for any X,Y ∈ Γ(E), then E defines a totally geodesic foliation in M . Now, for
X,Y ∈ Γ(Ē) and Z ∈ Γ(E◦) ,

g̃(TDXY,Z) = −g̃(ÃJ̄Y X,Z) = g̃(D̃X J̄Y, Z),

Since M̄ is an indefinite Kaehler statistical manifold,

g̃(J̄Y, ∇̄∗
XZ)− g̃(K(X, JY ), Z),

follows from (4.1).
Further from (4.2) and (2.11), we derive

g̃(TDXY,Z) = −g̃(Y, J̄ h̃(X,Z)) = 0.

Since E is non-degenerate, therefore TDXY = 0, which shows that Ē defines a totally geodesic foliation in M .
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