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Abstract: The inclusion of energy produced from renewable energy sources (RES) such as solar and wind 

energy into existing energy systems is important to reduce carbon emissions, air pollution and climate change, 

and to ensure sustainable development. However, the integration of RES into the energy system is quite difficult 

due to their highly uncertain and intermittent nature. In this study, considering three different probability density 

functions (PDFs) in total, the scale and shape parameters of the Weibull PDF, the scale parameter of the 

Rayleigh PDF, and the scale and shape parameters of the Gamma PDF were estimated for the wind speed data 

obtained from urban stations located in Istanbul by using the four different metaheuristic algorithms, namely 

Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO) and Grey Wolf 

Optimization (GWO) algorithms. Calculating the mean absolute error (MAE), root mean squared error (RMSE), 

and R2 values for each PDF at each station, the PDF that characterizes the wind speed probability distribution the 

best was identified. 

 

Keywords: Wind speed, renewable energy, probability density function, parameter estimation, metaheuristic 

algorithm  

 

Dört Farklı Metasezgisel Algoritma Kullanılarak Rüzgâr Hızı Olasılık 

Dağılımı Parametrelerinin Tahmini 
 

Öz: Güneş ve rüzgâr enerjisi gibi yenilenebilir enerji kaynaklarından (YEK) üretilen enerjinin mevcut enerji 

sistemlerine dahil edilmesi, karbon salınımlarını, hava kirliliğini ve iklim değişikliğini azaltmak ve sürdürülebilir 

bir kalkınmayı sağlamak için önemlidir. Ancak YEK’lerin enerji sistemine entegrasyonu, oldukça belirsiz ve 

kesintili yapıları nedeniyle hayli zordur. Bu çalışmada, İstanbul’da bulunan kentsel istasyonlardan elde edilen 

rüzgâr hızı verileri için, toplamda üç farklı olasılık yoğunluk fonksiyonu dikkate alınarak, Weibull olasılık 

yoğunluk fonksiyonunun ölçek ve şekil parametreleri, Rayleigh olasılık yoğunluk fonksiyonunun ölçek 

parametresi ve Gamma olasılık yoğunluk fonksiyonunun ölçek ve şekil parametreleri, Genetik Algoritma (GA), 

Diferansiyel Evrim (DE), Parçacık Sürü Optimizasyonu (PSO) ve Gri Kurt Optimizasyonu (GWO) algoritmaları 

olmak üzere dört farklı metasezgisel algoritma kullanılarak tahmin edilmiştir. Her istasyonda her bir olasılık 

yoğunluk fonksiyonu için ortalama mutlak hata (MAE), kök ortalama kare hata (RMSE) ve R2 değerleri 

hesaplanarak, rüzgâr hızı olasılık dağılımını en iyi karakterize eden olasılık yoğunluk fonksiyonu belirlenmiştir. 

 

Anahtar Kelimeler: Rüzgâr hızı, yenilenebilir enerji, olasılık yoğunluk fonksiyonu, parametre tahmini, 

metasezgisel algoritma 

http://www.teknolojikarastirmalar./
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1. Introduction  

 

Energy consumption in the world is increasing rapidly and most of this energy is provided from 

fossil resources. However, the use of fossil resources causes environmental problems such as acid 

rain, air pollution and climate change. Since this situation is not sustainable, the importance of 

sustainable renewable energy sources is increasing day-by-day [1]. Clean and limitless wind energy, 

as one of the most important sources of renewable energy with a long history, has made significant 

development in recent years, and worldwide installed wind power is rising fast [2, 3]. Wind speed 

distribution is one of the characteristics of the wind. The distribution of wind speed is important for 

structural and environmental analysis, as well as for determining the wind energy potential and 

evaluating wind energy conversion performance. As mentioned above, with the increasing 

importance of wind energy, various statistical models are used to describe the wind speed 

distribution in a particular place [4]. Large-scale maps provide information about the behavior of 

the wind at high altitudes around the world, but in the urban areas less information is available 

about the wind speed at low altitudes [5]. 

 

Wind speed is a random variable that may be represented using a PDF, which is a mathematical 

function that expresses the probability of a random variable occurring at a particular position [6]. 

The major goal of this research is to estimate the parameters of the PDF most appropriate to the 

wind speed data obtained from 30 stations located in various places in Istanbul by using GA, DE, 

PSO and GWO algorithms for each PDF. A wide variety of PDFs are used in the literature to 

describe the wind speed distribution. Three different PDFs considered in this study are the two-

parameter Weibull PDF, the Rayleigh PDF, and the two-parameter Gamma PDF. 

 
The remainder of the research is organized as follows. The wind speed probability distribution 

models utilized in the study are introduced in the second part. A literature review is included in the 

third section. In the fourth section, the methods used in the study are explained and in the fifth 

section, the application is reported. The study will end with the conclusions in the sixth section. 

 

2. Wind Speed Probability Distribution Models  

 
In this section, the wind speed PDFs used in this study is explained. These are the two-parameter 

Weibull PDF, the Rayleigh PDF the two-parameter Gamma PDF. 

 

2.1. Two-parameter Weibull PDF 

 

The Weibull distribution is commonly applied to express the wind speed frequency distribution. 

The Weibull PDF is given by 

 

𝑓(𝑣) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1
exp [− (

𝑣

𝑐
)

𝑘

]    (1) 

 

where, 𝑣, 𝑐 and 𝑘 are the wind speed (m/s), the scale parameter (m/s) and the dimensionless shape 

parameter, respectively [7]. 

 

2.2. Rayleigh PDF 

 

The Rayleigh distribution is a special case of the Weibull distribution with 𝑘 = 2 and the Rayleigh 

PDF is given by 
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𝑓(𝑣) =
𝑣

𝑐2
exp (−

𝑣2

2𝑐2
)    (2) 

 

where, 𝑣 and 𝑐 are the wind speed (m/s) and the scale parameter (m/s), respectively. The Rayleigh 

distribution has found wide application as there is only one parameter to calculate [7] 

 

2.3. Two-parameter Gamma PDF 

 

The Gamma distribution has also been employed to fit the wind speed frequency distribution and 

the Gamma PDF is expressed as follows: 

 

𝑓(𝑣) =
1

𝑐𝑘Γ(𝑘)
𝑣𝑘−1 exp (−

𝑣

𝑐
)     (3) 

 

where, 𝑣, 𝑐 and 𝑘 are the wind speed (m/s), the scale parameter (m/s) and the dimensionless shape 

parameter, respectively [8]. 

 

3. Literature Review 

 

Researchers evaluated and compared four potential probability distributions for wind energy, 

namely Weibull, Rayleigh, Gamma, and lognormal probability distributions. In addition, three 

diverse kinds of numerical methods including method of moment, maximum likelihood estimation, 

and least squares method are deployed with these probability distributions to obtain parameter 

estimation. Furthermore, optimal parameters were tuned by three distinct types of metaheuristic 

optimization algorithms, such as cuckoo search algorithm, bat algorithm and PSO. According to 

their evaluation outcomes, metaheuristics optimization algorithms gave better performances as 

compared to numerical methods. Moreover, combinations of Weibull probability distribution with 

the three considered metaheuristics optimization algorithms provided slightly superior results in 

comparison with other three probability distributions. In addition, comparative analysis between 

possible combinations of Weibull probability distribution with different metaheuristics optimization 

algorithms revealed that bat algorithm-Weibull and PSO-Weibull are even finer than cuckoo search-

Weibull. They claimed that parameters of Weibull model considerably influence the key factors, 

which estimate the wind energy potential in low-speed regions [7]. 

 

As Weibull probability distribution is most commonly deployed for wind speed modelling in energy 

applications, mainly because of its simplicity and flexibility, some researchers proposed a novel 

“Power Density (PD) method” for estimation of scale parameters and shape parameters for Weibull 

distribution. They claimed that this newly developed method has easier implementation and simpler 

formulation. In addition, it requires minimal computations as there are no linear least square 

problems, iterative procedures, and binning to be solved. However, it requires information like 

power density and mean wind speed to estimate Weibull parameters. The authors have also 

evaluated this PD method by comparing it with other state-of-the-art methods including maximum 

likelihood, graphic, and moment methods. Also, earlier studies were being consulted and their 

power density and mean wind estimation results were being compared to estimate the accuracy of 

PD method. Their comparative analysis revealed the adequacy of PD method in extracting Weibull 

parameters. Moreover, PD method tends to outperform other methods [9]. 

 

Pobočíková et al. [10] experimented with four types of probability distributions, namely the 2-

parameter Weibull, the 3-parameter Weibull, the 2-parameter Gamma, and the 2-parameter 

lognormal. For parameter estimation, they opted for the maximum likelihood method. Their 

research work proved that the 3-parameter Weibull is the optimal alternative, while the 2-parameter 

is found to be second best [10]. 
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Maximum likelihood method is being widely used in combination with Weibull probability 

distribution for parameter estimation. It incorporates iterative techniques such as Newton-Raphson 

(NR), which randomly selects some initial values. However, this selection of initial values is critical 

in determining success rate of these iterative methods. Thus, a recent research paper proposes GA to 

overcome the problem of random initial value selection. For evaluation purposes, it has compared 

the maximum likelihood estimators obtained through both techniques (namely GA and NR) with 

the method of moment estimators. As a result, the maximum likelihood estimator with GA 

technique outperformed the method of moment as well as the maximum likelihood estimator with 

NR technique [11]. 

 

Another piece of research work featured bi-parameter Weibull function for estimation of wind 

energy potential at Catalca (Marmara region of Istanbul, Turkey). Researchers investigated six 

different estimation methods, specifically energy pattern factor, graphical method, method of 

moment, power density methods, mean standard deviation, and GA. Moreover, five different test 

procedures, namely MAE, RMSE, chi-square error, normalized MAE, and regression coefficient 

were deployed to evaluate all the considered estimation methods. A new approach “Net Fitness 

test” was also experimented to determine most suitable estimation method. Their research work 

figured out that GA showed the best performance, while energy pattern factor demonstrated worst 

performance as estimation method. All other estimation methods depicted relatively similar 

performances [12]. 

 

A similar research work experimented with three mixture PDFs, namely Weibull-Lognormal, 

Weibull-Extreme Value Distribution (GEV) and GEV-Lognormal to model wind speed 

characteristics. They also deployed various judgment criteria such as RMSE, maximum error in the 

Kolmogorov-Smirnov Test, power density error, chi-square error and coefficient of determination 

to determine the most suitable PDF. The outcomes of their experiments indicated the suitability of 

Weibull-GEV PDF for both unimodal and bimodal wind distributions while GEV-lognormal PDF 

was found to be appropriate for bell-shaped unimodal distribution. In addition, researchers of this 

study found that mixture PDFs perform better than conventional Weibull, Gamma, lognormal, and 

two-component mixture Weibull for modeling wind speed characteristics [13]. Mazzeo et al. [14] 

suggested another technique called the Mixture of Two Truncated Normal Distributions (MTTND). 

In this technique, two normal distributions exhibiting dissimilar values of variance and mean are 

being combined to demonstrate PDF for wind speed. They observed greater accuracy by MTTND 

as compared to other conventional PDFs for wind speed [14]. 

 

Similarly, another study proposed “Nonparametric Kernel Density” estimation method as an 

appropriate option for wind speed probability distribution. For evaluation purposes, they compared 

their proposed method with other ten state-of-the-art parametric distribution models. According to 

their experimental results, the presented method demonstrated better accuracy and adaptability as 

compared to other methods for wind speed [15]. In addition, another innovative non-parametric 

approach has been proposed for estimating probability distributions. It utilizes differential 

equations, which are partial and diffuse and provides information to correct boundary and select 

bandwidth of “Kernel Density” estimation [16]. 

 

Subsequently, a group of researchers also developed a novel “Mixture Kernel Density” model. This 

model contained multiple kernel densities with their own specific coefficients. The authors asserted 

that their developed model can accurately estimate parameters of probability distributions for wind 

speed [17]. Some researchers suggested another approach to estimate two important parameters of 

Weibull distribution function. In this technique, support vector regression (SVR) exhibited radial 

basis functions (RBF) and polynomial functions as its kernel function. Generally, these RBF and 

polynomial functions tend to reduce the error bound. The approach demonstrated superior accuracy 
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in prediction and a better tendency to generalize as compared with other soft computing techniques 

[18]. 

 

Further, some researchers conducted a comparative study including seven widely deployed 

numerical methods for parameter estimation specifically for Weibull distribution. For that purpose, 

they collected wind speed data for two cities (Camocim and Paracuru) in the northeast region of 

Brazil within the period of two years (August 2004 to April 2006). The list of considered numerical 

methods included maximum likelihood method, energy pattern factor method, moment method, 

empirical method, graphical method, modified maximum likelihood method, and equivalent energy 

method. These methods were compared by analyzing RMSE, variance and chi-square tests with the 

aim of determining the most effective solution. The equivalent energy method accurately 

determines the 𝑘 and 𝑐 parameters of Weibull distributions in this comprehensive study. Moreover, 

the graphical method and energy pattern factor method performed worse in this regard, according to 

graphical, mean, and standard deviation evaluations. Additionally, those numerical methods that use 

mathematical iterations possess minimal error for adjusting Weibull distribution curves and are 

therefore recommended for greater accuracy [19]. 

 

Researchers have also proposed a hybrid intelligent learning based numerical method, called 

Adaptive Neuro-Fuzzy Inference System (ANFIS), for estimating Weibull PDF parameters 

accurately. They compared their proposed methodology with five other well-known numerical 

methods in their study. They claimed that the presented methodology, ANFIS, demonstrated best 

performance as compared to other numerical methods in terms of fitting the Weibull distribution 

curve. The extracted Weibull parameters were further beneficial for estimating some important 

parameters and site-based wind energy potential [20]. 

 

Similarly, another group of researchers from Egypt investigated the five numerical methods, namely 

the mean wind speed method, the maximum likelihood method, the modified maximum likelihood 

method, the graphical method, and the power density method. They conducted this comparative 

analysis specifically for wind speed data collected at Zafarana Project in Suez Gulf. The accuracies 

of these considered numerical methods were estimated based on RMSE. As a result, they concluded 

that the mean wind speed and maximum likelihood methods yield better results for wind speed 

distribution [21]. 

 

In the United Kingdom, a recently conducted research work has also recommended Weibull 

distribution function as an appropriate manner to model probability distribution for wind speeds. 

The experimented data was collected at thirty-eight surface observation stations over multiple years 

(1981-2018). The researchers claimed that parameters of Weibull distribution can be estimated and 

utilized further for wind power density evaluations locally as well as regionally. Their experimental 

results indicated that values of Weibull’s scale parameters remain within the range of 4.96 m/s and 

12.06 m/s, while values of Weibull’s shape parameter vary from 1.63 to 2.97. Furthermore, the 

wind power density estimations remain between 125 W/m2 to 1407 W/m2. They have also 

confirmed that Weibull parameter and wind power density tend to vary seasonally [22]. 

 

A comparable case study has also been reported by researchers in Turkey, which highlights the 

importance of utilizing befitting wind speed distribution. They have contemplated four different 

numerical methods including least square method, graphical method, standard deviation, and mean 

wind speed method (SDMWS), maximum likelihood method, and energy pattern factor method. 

The wind speed data of Izmir, Turkey has been considered for this purpose. To evaluate the 

robustness of considered numerical methods, three different tests namely the coefficient of 

determination, the Chi-square goodness-of-fit and RMSE have been deployed. The authors of this 

study observed that standard deviation and SDMWS method were optimal [23]. 
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The selection of suitable PDF is extremely significant in wind energy applications. To facilitate this 

selection process, Alrashidi et al. [8] developed a platform, which can effectively compare and 

evaluate the performances of various PDFs. Moreover, they have proposed a novel metaheuristic 

optimization algorithm called social spider optimization (SSO) for wind characterization. The 

authors asserted that combinations of PDFs perform better than individual PDFs for demonstration 

of wind speed frequencies. However, they found Weibull distribution as most prevailing individual 

distribution. Additionally, they also claimed that their proposed SSO method is the most effective 

for parameter estimation of PDFs in Saudi Arabia [8]. 

 

Another group of researchers at Antioquia, Colombia also experimented with four types of PDFs, 

such as Weibull, Rayleigh, Gamma, and lognormal to model the wind speed data histograms. They 

targeted one rural place and five urban places of the Aburrá Valley to conduct their research work. 

Wind power density calculated from best fitting PDF for each location was further deployed by 

several applications in this research work. The best fitting PDF for the variation in wind speed data 

was also determined by running four goodness of fit tests. Next, the most suitable PDF was utilized 

in calculation of wind power density and availability. Their measurements concluded that power 

densities at targeted urban stations vary between 1.38 to 4.54 W/m2, while rural station exhibited a 

power density of 911.1 W/m2 [5]. 

 

Furthermore, an analogous research work was conducted in Bitlis, Turkey, where average wind 

speed data collected for four years (from 2012 to 2016) was analyzed. Researchers experimented 

with Weibull, Gamma, and lognormal distributions to estimate average wind speed. Moreover, the 

maximum likelihood method was utilized as underlying numerical method for parameter estimation 

of all three distributions. To determine the best fitting distribution, three types of tests, namely 

coefficient of determination, RMSE and Kolmogorov-Smirnov Goodness of Fit test were 

performed. The authors concluded that all three distributions provided comparable results regarding 

average wind speed estimations. However, Gamma distribution showed better performance in terms 

of standard deviation from average wind speed value for the month of August (0.15 m/s). 

Furthermore, they also observed that Gamma distribution exhibited higher coefficient of 

determination, lowest Kolmogorov-Smirnov Goodness of Fit test value and smaller RMSE value as 

compared to other distributions. Consequently, they recommended Gamma distribution as optimal 

choice for modelling wind speed data in Bitlis [24]. 

 

4. Method 

 

In this section, the four metaheuristic algorithms used in the study are explained. These are genetic 

algorithm, particle swarm optimization, differential evolution algorithm and grey wolf optimizer 

algorithm. 

 

4.1. Genetic Algorithm (GA) 

 

In computer science, a genetic algorithm (GA) is a form of search algorithm that is used to obtain 

an exact or approximate response to optimization and search processes [25]. GA is an optimization 

algorithm that is inspired from the natural selection. It is a population-based search method that 

employs the concept of survival of the fittest. In the early 1970s, John Holland proposed genetic 

algorithms [26]. Inversion, a novel element that is often used in GA implementations, was also 

introduced by Holland [26]. 

 

The first set of solutions in GA is population. A chromosome is a representation of a solution. From 

generation to generation, the population size is maintained [27]. Each chromosome's fitness is 

evaluated for each generation, and chromosomes for the next generation are probabilistically chosen 



ECJSE 2022 (4) 1342-1362     Estimation of Wind Speed Probability Distribution… 

 

1348 

 

depending on their fitness scores. At random, some of the selected chromosomes mate and produce 

children. Crossover and mutation occur at random when producing progeny [28]. The offspring 

produced from crossover of parent chromosomes is probable to abolish the admirable genetic 

schemas parent chromosomes and crossover formula is defined as [29]. 

 

𝑅 = (𝐺 + 2√𝑔) (3𝐺)⁄       (4) 

 

where, 𝐺 is the total number of evolutionary generations set by the population, and 𝑔 is the number 

of generations. It is observed from Eq. (4) that 𝑅 is dynamically changed and increases with 

increase in number of evolutionary generations. The binary string format is commonly used for 

chromosomes. Each locus on chromosomes has two potential alleles (gene variants)- 0 and 1. In the 

solution space, chromosomes are treated as points. These are processed by iteratively replacing its 

population with genetic operators. The fitness function is used to assign a value to each of the 

population's chromosomes [29].  

 

The next generation's chromosomes may have a greater average fitness value than the previous 

generation's because chromosomes with high fitness values are more likely to be selected. The 

process of evolution is repeated until the ultimate condition is satisfied [28]. Figure 1 depicts the 

GA's fundamental steps. Firstly, the population is initialized with random chromosomes. The fitness 

function is then used to evaluate each individual chromosome. The chromosomes that best fit the 

new population are chosen. By crossing over, certain chromosomes are reproduced and altered [30]. 

Thereafter, the new population is exposed to the new iteration. If the maximum number of 

generation counts or termination conditions are met, the GA is terminated [30]. The GA is used for 

many optimizations, search, and selection problems. 

 

 
Figure 1. Flow Chart of GA. 

 

4.2. Particle Swarm Optimization (PSO) 

 

Kennedy and Eberhart [31] developed the PSO, a general-purpose optimization approach that 

operates by maintaining a swarm of particles that move around in the search space, impacted by the 
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improvements identified by the other particles [32,33]. The PSO is a relatively new metaheuristic 

search method whose mechanics are based on biological populations' swarming behavior [34]. Like 

other evolutionary computation techniques, PSO is a population-based search method that begins 

with a population of randomly generated solutions, also known as particles. In contrast to other 

evolutionary computation algorithms, each particle in the PSO is also associated with a velocity. 

Particles move around the search space with velocities that are dynamically changed based on their 

previous actions. A form of the PSO can be expressed as [35].  

 

𝜐𝑖,𝑗
(𝑘+1)

= 𝜂𝜐𝑖,𝑗
(𝑘)

+ 𝑐1𝑟1
(𝑘)

(𝑝𝑖,𝑗
(𝑘)

− 𝒳𝑖,𝑗
(𝑘)

) + 𝑐2𝑟2
(𝑘)

(𝑔𝑗
(𝑘)

− 𝒳𝑖,𝑗
(𝑘)

) (5) 

 

𝒳𝑖,𝑗
(𝑘+1)

= 𝒳𝑖,𝑗
(𝑘)

+ 𝜐𝑖,𝑗
(𝑘+1)

     (6) 

 

where, 

𝜐𝑖,𝑗 is the velocity of each particle 𝑖 with dimension 𝑗, and 𝑘 is the iteration index, 

𝒳𝑖,𝑗 represents each particle’s position, 

𝜂 is the inertia weight that can balance a global or local search, 

𝑝𝑖,𝑗 is the previous best position of each particle, 

𝑔𝑗 indicates the global best during all particles, 

𝑐1 and 𝑐2 are two positive constants, being set as constant 2, 

𝑟1 and 𝑟2 are two random values set between [0,1] in each iteration. 

 

4.3. Differential Evolution (DE) Algorithm 

 

The differential evolution (DE) algorithm introduced by Storn [36] is a fast and simple technique 

that performs well on a wide variety of problems that has been widely employed in many scientific 

and engineering domains. DE is an intrinsically parallel population-based stochastic search 

approach [37]. The DE algorithm tries to evolve a population of 𝑁𝑃 𝐷-dimensional parameter 

vectors, known as individuals that encode possible solutions, i.e., 𝑋𝑖,𝐺 = {𝑋𝑖,𝐺
1 , … , 𝑋𝑖,𝐺

𝐷 } , 𝑖 =

1, … , 𝑁𝑃 towards the global optimum. By uniformly randomizing individuals within the search 

space constrained by the prescribed minimum and maximum parameter bounds, the initial 

population should better cover the entire search space as much as possible such that  𝑋𝑚𝑖𝑛 =
{𝑋𝑚𝑖𝑛

1 , … , 𝑋𝑚𝑖𝑛
𝐷 } and                                 𝑋𝑚𝑎𝑥 = {𝑋𝑚𝑎𝑥

1 , … , 𝑋𝑚𝑎𝑥
𝐷 }. For example, the initial value of 

the 𝑗th parameter in the 𝑖th individual at the generation 𝐺 = 0 is generated by 

 

𝒳𝑖,0
𝑗

= 𝒳𝑚𝑖𝑛
𝑗

+ 𝑟𝑎𝑛𝑑(0,1). (𝒳𝑚𝑎𝑥
𝑗

− 𝒳𝑚𝑖𝑛
𝑗

),  𝑗 = 1, 2, … , 𝐷.   (7) 

 

where, rand (0,1) represents a uniformly distributed random variable within the range [0,1] [38]. 

 

The traditional DE algorithm begins with initializing a population of 𝑁𝑃 target individuals.             

𝑃𝐺 = {𝑋1,𝐺,𝑋2,𝐺, … , 𝑋𝑁𝑃,𝐺}, where individual 𝑋İ,𝐺 = {𝑋𝑖,𝐺
1 , 𝑋𝑖,𝐺

2 , … , 𝑋𝑖,𝐺
𝑛 }, 𝑖 = 1,2, … , 𝑁𝑃, is an.            

𝑛-dimensional vector with parameter values determined randomly and uniformly between 

predefined search ranges [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥], where 𝑋𝑚𝑖𝑛 = (𝑋𝑚𝑖𝑛
1 , 𝑋𝑚𝑖𝑛

2 , … , 𝑋𝑚𝑖𝑛
𝑛 ), and 𝑋𝑚𝑎𝑥 =

(𝑋𝑚𝑎𝑥
1 , 𝑋𝑚𝑎𝑥

2 , … , 𝑋𝑚𝑎𝑥
𝑛 ). Then, using mutation and crossover operators, new candidate vectors are 

generated, and a selection procedure is used to determine whether the child or the parent will 

survive to the next generation. The process is repeated until a criterion for termination is met [39]. 
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4.4. Grey Wolf Optimizer (GWO) 

 

The GWO algorithm is based on the natural leadership structure and hunting mechanism of grey 

wolves. For simulating the leadership structure, four sorts of grey wolves are used alpha, beta, delta, 

and omega. Furthermore, the three basic processes of hunting, namely seeking for prey, encircling 

prey, and attacking prey are implemented. Other wolves update their positions randomly around the 

prey, while alpha, beta, and delta estimate the position of the prey. When the target stops moving, 

the grey wolves conclude the hunt by attacking it. We reduce the value of �⃗� to mathematically 

model approaching the prey. Note that the fluctuation range of 𝐴 ⃗⃗⃗⃗ is also decreased by �⃗�. In other 

words, 𝐴 ⃗⃗⃗⃗ is a random value in the interval [−2𝑎, 2𝑎] where a is decreased from 2 to 0 over the 

course of iterations. When random values of 𝐴 ⃗⃗⃗⃗ are in [−1,1], the next position of a search agent can 

be in any position between its current position and the position of the prey [40]. A wolf (𝑖) 
calculates its distance from the three optimal solutions by Eqs. (8)-(11) and then uses Eq. (12) to 

update its position. 

 

 𝐴 ⃗⃗⃗⃗ = 2𝑎 ⃗⃗⃗ ⃗. 𝑟1⃗⃗⃗ ⃗ − 𝑎 ⃗⃗⃗ ⃗      (8) 

𝐵 ⃗⃗⃗⃗ = 2𝑟2 ⃗⃗⃗⃗⃗      (9) 

𝐷∝
⃗⃗⃗⃗⃗⃗ = |𝐵 ⃗⃗⃗⃗ . 𝑋∝

⃗⃗ ⃗⃗ ⃗ − 𝑋𝑖
⃗⃗⃗⃗ |, 𝐷𝛽

⃗⃗ ⃗⃗ ⃗ = |𝐵 ⃗⃗⃗⃗ . 𝑋𝛽
⃗⃗ ⃗⃗ ⃗ − 𝑋𝑖

⃗⃗⃗⃗ |, 𝐷𝛿
⃗⃗ ⃗⃗ ⃗ = |𝐵 ⃗⃗⃗⃗ . 𝑋𝛿

⃗⃗ ⃗⃗ ⃗ − 𝑋𝑖
⃗⃗⃗⃗ | (10) 

𝑋1
⃗⃗⃗⃗⃗ = 𝑋∝

⃗⃗ ⃗⃗ ⃗ − 𝐴 ⃗⃗⃗⃗ . 𝐷∝ ⃗⃗⃗⃗⃗⃗⃗, 𝑋2
⃗⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ ⃗ − 𝐴 ⃗⃗⃗⃗ . 𝐷𝛽
⃗⃗ ⃗⃗ ⃗, 𝑋3

⃗⃗⃗⃗⃗ = 𝑋𝛿
⃗⃗ ⃗⃗ ⃗ − 𝐴 ⃗⃗⃗⃗ . 𝐷𝛿

⃗⃗ ⃗⃗ ⃗  (11) 

𝑋𝑖
⃗⃗⃗⃗ (𝑛𝑡) =

𝑋1⃗⃗ ⃗⃗ ⃗+𝑋2⃗⃗ ⃗⃗ ⃗+𝑋3⃗⃗ ⃗⃗ ⃗

3
      (12) 

 

Where, 𝑋𝑖
⃗⃗⃗⃗  , 𝑋∝

⃗⃗ ⃗⃗ ⃗ , 𝑋𝛽
⃗⃗ ⃗⃗⃗ and 𝑋𝛿

⃗⃗ ⃗⃗⃗ represent the position vectors of 𝑖, ∝, 𝛽 and 𝛿; nt denotes the next 

iteration; 𝐷∝
⃗⃗⃗⃗⃗⃗  , 𝐷𝛽

⃗⃗ ⃗⃗ ⃗ and 𝐷𝛿
⃗⃗ ⃗⃗ ⃗, respectively mean the distance vectors between ∝, 𝛽 , 𝛿 and 𝑖. Both 𝑟1⃗⃗⃗ ⃗ 

and 𝑟2⃗⃗⃗⃗  are random vectors between [0,1]; 𝐴 ⃗⃗⃗⃗  and 𝐵 ⃗⃗⃗⃗ are two coefficient vectors. 𝑎 is calculated as 

follows 

 

𝑎 = 2 − 2 ∗ 𝑖𝑡/𝑀𝐴𝑋_𝐼𝑇     (13) 

 

where, 𝑖𝑡 is the present number of iteration and 𝑀𝐴𝑋_𝐼𝑇 indicates the maximum number of iteration 

[41]. 

 

5. Application and Evaluation 

 

The application side of the suggested optimization algorithms is discussed in this section. To fully 

comprehend the performance of such a method, it is required to apply it to a real-world use case and 

run the relevant evaluation parameters. 

 

5.1. Implementation Details 

 

In this study, hourly mean wind speed data for the year 2020 from 30 stations in Istanbul were used. 

These data were derived from Istanbul Metropolitan Municipality Open Data Portal [42]. For this 

reason, no ethics committee approval is required (Although it varies from station to station, no data 

recordings were made for some days and no data are available for a few hours on some days. For 

some stations, there are no data available after 07.12.2020. 0 is entered for the hourly mean wind 

speed at some stations, but not exceeding a maximum of 4 hours, which can be neglected). After the 

dataset was created, GA, DE, PSO and GWO algorithms were run for each PDF on the same dataset 

and same conditions. On the application side of this study, Python was used for all optimization 



Oral O., Aylak  B. L., Özdemir M. H., İnce M. ECJSE 2022 (4) 1342-1362 

 

1351 

 

algorithms. A computer system running an Intel Xeon e5-2620 6c/12t 2.00 GHz CPU with 24 GB 

RAM was employed for all algorithms. The parameters of each algorithm were optimized for GA. 

The maximum number of iterations was determined as 200, the population number was 50, the 

mutation rate was 0.15, and the elitism rate was 0.1. In addition, roulette wheel was used for the 

selection process and a single point crossover was used. For DE, the crossover factor was 0.7 and 

the scaling factor was 0.5. For PSO, the inertia weight was 0.1, the lower bound was 1, the upper 

bound was 2, attraction terms 𝑐1 and 𝑐2 were both equal to 2. Finally, for GWO, the population 

number was determined as 40 and the maximum number of iterations as 100. 

 

5.2. Testing and Evaluation of Optimization Algorithms on PDFs 

 

The scale and shape parameters of the Weibull PDF, the scale parameter of the Rayleigh PDF, and 

the scale and shape parameters of the Gamma PDF were estimated for the wind speed data obtained 

from different stations located in Istanbul by using GA, DE, PSO and GWO algorithms. [0.1, 10] 

was taken when estimating the scale parameter for all PDFs, and [1, 10] was taken when estimating 

the shape parameter for the Weibull PDF and Gamma PDF. Estimated parameters were given for 

each station in Tables 1-3 (4 decimal places were used). The MAE, RMSE and R2 values obtained 

for each distribution according to these algorithms are shown in the Tables 4-12 below where green 

cells indicate the maximum value in a row and the blue cells show the minimum value (5 decimal 

places were used). 

 

Table 1. Estimated Weibull scale and shape parameters for each station by using GA, DE, PSO and 

GWO algorithms 
 

 GA DE PSO GWO 

STATION 𝑐 𝑘 𝑐 𝑘 𝑐 𝑘 𝑐 𝑘 

ARNAVUTKOY_MGM 5.4854 2.3342 5.5483 2.3987 5.5476 2.3982 5.8589 2.1928 

ATASEHIR 3.8376 2.4573 3.8068 2.4160 3.8067 2.4157 3.9145 2.3576 

B_CEKMECE_SVIRAJLARI 3.7323 2.7164 3.7452 2.6667 3.6660 3.5958 3.9145 2.3576 

BASAKSEHIR 4.2886 2.2354 4.2851 2.2201 4.2853 2.2205 3.9145 2.3576 

BAYRAMOGLU_TUZLA 2.9999 2.6580 3.0147 2.7300 3.0145 2.7297 3.1609 2.4796 

BEYKOZ_MGM 3.0477 1.8296 3.0503 1.8499 3.0502 1.8499 3.0595 1.7910 

BUYUKADA 6.7456 2.5147 6.7616 2.4834 6.7607 2.4821 6.4472 2.3392 

BUYUKCEKMECE_MGM 3.6774 1.8404 3.7536 1.8776 3.7523 1.8774 3.9145 2.3576 

CANTA 5.0509 2.0649 5.1061 2.1034 5.1062 2.1036 5.8589 2.1928 

CATALCA 8.1536 2.5433 8.2465 2.5286 8.2454 2.5289 8.4445 2.9149 

DURUSU 5.3352 2.2147 5.3676 2.2298 5.3671 2.2299 5.8589 2.1928 

EMINONU 3.5229 2.2187 3.5344 2.1939 3.5337 2.1945 3.9145 2.3576 

EYUP_MGM 4.2353 1.8246 4.2293 1.8352 4.2293 1.8349 4.9956 1.4663 

FLORYA 3.0551 2.2651 3.1313 2.2565 3.1314 2.2562 3.1609 2.4796 

GOZTEPE 4.1860 2.1976 4.1726 2.1765 4.1724 2.1765 3.9145 2.3576 

HADIMKOY 5.9744 2.2983 5.9866 2.2793 5.9867 2.2794 5.9334 2.1870 

KARTAL 1.8068 2.7027 1.8189 2.7132 1.8349 2.5690 1.7517 2.5514 

KILYOS 3.0845 2.0405 3.1276 2.0157 3.0686 2.0618 3.1244 1.9285 

ODAYERI 2.0565 1.9900 2.0330 2.0085 2.0334 2.0106 2.0166 2.1777 

PASAKOY 2.5516 1.9514 2.5750 1.9311 2.5775 1.9303 2.8330 1.8342 

SABIHAGOKCEN 1.4166 1.7113 1.4137 1.8225 1.4135 1.8229 1.4713 1.7847 

SARIYER_YSS_KOPRU_MGM 5.4147 2.2068 5.4705 2.1962 5.4704 2.1960 5.8589 2.1928 

SILE_2 3.0290 2.2514 2.9736 2.1860 2.9734 2.1859 3.1244 1.9285 

SILIVRI_MGM 5.2289 2.2435 5.2231 2.3004 5.2232 2.3003 5.8589 2.1928 

SILIVRI_ORMAN_SAHASI 3.9404 1.8806 3.9715 1.8648 3.9704 1.8639 3.9145 2.3576 

SISLI_MGM 2.4297 2.7926 2.4306 2.7451 2.4306 2.7483 2.3136 2.7026 

SUREYYAPASA 1.7194 2.1787 1.7412 2.2246 1.7410 2.2243 1.7517 2.5514 

TUZLA_MGM 2.4186 2.7424 2.4304 2.7445 2.4304 2.7447 2.3136 2.7026 

USKUDAR_MGM 4.5065 2.0647 4.5165 2.1384 4.5165 2.1385 4.5774 2.7056 

ZINCIRLIKUYU 2.8663 2.5599 2.9085 2.6235 2.9085 2.6239 3.1609 2.4796 
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Table 2. Estimated Rayleigh scale parameter for each station by using GA, DE, PSO and GWO 

algorithms 
 GA DE PSO GWO 

STATION 𝑐 𝑐 𝑐 𝑐 

ARNAVUTKOY_MGM 3.9718 3.9716 3.8524 3.9583 

ATASEHIR 2.7118 2.7118 2.6305 2.7409 

B_CEKMECE_SVIRAJLARI 2.6472 2.6471 2.5677 2.6314 

BASAKSEHIR 3.0516 3.0512 2.9597 3.0595 

BAYRAMOGLU_TUZLA 2.1126 2.1124 2.0490 2.1028 

BEYKOZ_MGM 2.1226 2.1232 2.0595 2.1324 

BUYUKADA 4.7899 4.7902 4.6465 4.7894 

BUYUKCEKMECE_MGM 2.6270 2.6272 2.5484 2.6314 

CANTA 3.6231 3.6228 3.5141 3.7033 

CATALCA 5.8413 5.8414 5.6662 5.8517 

DURUSU 3.8173 3.8187 3.7041 3.8389 

EMINONU 2.5165 2.5170 2.4415 2.4845 

EYUP_MGM 2.9175 2.9170 2.8294 2.8887 

FLORYA 2.2332 2.2333 2.1663 2.2093 

GOZTEPE 2.9795 2.9792 2.8898 3.0177 

HADIMKOY 4.2756 4.2756 4.1473 4.2537 

KARTAL 1.2905 1.2909 1.2522 1.2750 

KILYOS 2.2117 2.2118 2.1454 2.2093 

ODAYERI 1.4393 1.4379 1.3947 1.4105 

PASAKOY 1.8092 1.8097 1.7554 1.8131 

SABIHAGOKCEN 0.9855 0.9842 0.9700 1.0136 

SARIYER_YSS_KOPRU_MGM 3.8951 3.8953 3.7785 3.9138 

SILE_2 2.1022 2.1024 2.0393 2.1028 

SILIVRI_MGM 3.7147 3.7149 3.6035 3.7033 

SILIVRI_ORMAN_SAHASI 2.7780 2.7768 2.6935 2.7963 

SISLI_MGM 1.7066 1.7064 1.6552 1.6968 

SUREYYAPASA 1.2455 1.2411 1.2038 1.2673 

TUZLA_MGM 1.7103 1.7065 1.6553 1.6968 

USKUDAR_MGM 3.2127 3.2108 3.1145 3.2092 

ZINCIRLIKUYU 2.0648 2.0639 2.0020 2.0685 

 

Table 3. Estimated Gamma scale and shape parameters for each station by using GA, DE, PSO and 

GWO algorithms 
 

 GA DE PSO GWO 

STATION 𝑐 𝑘 𝑐 𝑘 𝑐 𝑘 𝑐 𝑘 

ARNAVUTKOY_MGM 1.1994 4.4015 1.2018 4.4315 1.2005 4.4272 1.1276 4.5703 

ATASEHIR 0.8300 4.4590 0.8122 4.4989 0.8114 4.4944 1.0778 3.7458 

B_CEKMECE_SVIRAJLARI 0.6672 5.3838 0.6497 5.5421 0.6491 5.5366 1.0778 3.7458 

BASAKSEHIR 1.0846 3.8084 1.0852 3.7935 1.0841 3.7897 1.0778 3.7458 

BAYRAMOGLU_TUZLA 0.5180 5.6641 0.4979 5.8325 0.4974 5.8267 1.3636 2.1580 

BEYKOZ_MGM 1.1032 2.6778 1.0766 2.7177 1.0755 2.7149 1.3636 2.1580 

BUYUKADA 1.4147 4.6122 1.3648 4.7593 1.3634 4.7545 1.6039 3.9304 

BUYUKCEKMECE_MGM 1.3844 2.6327 1.3503 2.6747 1.3490 2.6720 1.4105 2.8310 

CANTA 1.4952 3.2984 1.4445 3.3960 1.4430 3.3926 1.6968 2.9226 

CATALCA 1.6428 4.8358 1.6000 4.9582 1.5984 4.9533 1.6373 4.9113 

DURUSU 1.3506 3.8720 1.3517 3.8134 1.3503 3.8096 1.6400 3.2655 

EMINONU 0.9023 3.7722 0.9156 3.7058 0.9147 3.7021 1.1787 3.2723 

EYUP_MGM 1.5148 2.6696 1.5782 2.5751 1.5766 2.5725 1.4105 2.8310 

FLORYA 0.7972 3.8119 0.7783 3.8620 0.7775 3.8583 1.5102 2.2421 

GOZTEPE 1.0924 3.6078 1.1079 3.6136 1.1068 3.6100 1.0778 3.7458 

HADIMKOY 1.4677 3.8932 1.4425 3.9847 1.4411 3.9807 1.3715 4.1147 

KARTAL 0.2997 5.8164 0.3046 5.7411 0.3043 5.7354 1.1105 2.0116 

KILYOS 0.8854 3.3768 0.9535 3.1556 0.9526 3.1524 1.3636 2.1580 

ODAYERI 0.5496 3.4533 0.6253 3.1174 0.6247 3.1143 1.1105 2.0116 

PASAKOY 0.9027 2.8215 0.8628 2.8753 0.8619 2.8725 1.1481 2.1860 

SABIHAGOKCEN 0.5119 2.6664 0.5294 2.5751 0.5289 2.5726 1.2260 1.4430 
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SARIYER_YSS_KOPRU_MGM 1.3546 3.8923 1.4273 3.6826 1.4259 3.6789 1.6400 3.2655 

SILE_2 0.7337 3.8734 0.7663 3.7415 0.7655 3.7377 1.3636 2.1580 

SILIVRI_MGM 1.1925 4.1578 1.2287 4.0800 1.2275 4.0759 1.1276 4.5703 

SILIVRI_ORMAN_SAHASI 1.4545 2.6385 1.4473 2.6455 1.4458 2.6429 1.4105 2.8310 

SISLI_MGM 0.3934 6.0083 0.3943 5.9503 0.3939 5.9444 1.1481 2.1860 

SUREYYAPASA 0.4088 4.0085 0.4367 3.8277 0.4363 3.8239 1.1105 2.0116 

TUZLA_MGM 0.3510 6.7422 0.3944 5.9474 0.3940 5.9414 1.1481 2.1860 

USKUDAR_MGM 1.2641 3.4398 1.2484 3.4767 1.2471 3.4732 1.2954 3.5113 

ZINCIRLIKUYU 0.4958 5.6607 0.5176 5.4000 0.5171 5.3946 1.3636 2.1580 

 

Table 4. MAE values for the estimation of Weibull shape and scale parameters by stations 
 

 MAE 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.00547 0.00395 0.00396 0.01074 

ATASEHIR 0.00599 0.00602 0.00602 0.00897 

B_CEKMECE_SVIRAJLARI 0.00597 0.00441 0.04845 0.02090 

BASAKSEHIR 0.00598 0.00614 0.00613 0.02017 

BAYRAMOGLU_TUZLA 0.00771 0.00512 0.00513 0.02362 

BEYKOZ_MGM 0.00805 0.00741 0.00741 0.00955 

BUYUKADA 0.00346 0.00323 0.00324 0.00838 

BUYUKCEKMECE_MGM 0.01096 0.00921 0.00923 0.03300 

CANTA 0.00657 0.00557 0.00556 0.02345 

CATALCA 0.00293 0.00248 0.00248 0.00998 

DURUSU 0.00532 0.00497 0.00497 0.01485 

EMINONU 0.00825 0.00844 0.00844 0.02777 

EYUP_MGM 0.00752 0.00744 0.00744 0.02196 

FLORYA 0.01039 0.00789 0.00789 0.01732 

GOZTEPE 0.00603 0.00623 0.00624 0.01540 

HADIMKOY 0.00418 0.00419 0.00419 0.00602 

KARTAL 0.00970 0.00847 0.01945 0.03057 

KILYOS 0.01009 0.00910 0.01121 0.01222 

ODAYERI 0.01287 0.01252 0.01244 0.02423 

PASAKOY 0.01153 0.01078 0.01072 0.02823 

SABIHAGOKCEN 0.03050 0.02075 0.02075 0.02525 

SARIYER_YSS_KOPRU_MGM 0.00521 0.00481 0.00481 0.01192 

SILE_2 0.00809 0.00682 0.00682 0.02163 

SILIVRI_MGM 0.00515 0.00423 0.00423 0.02023 

SILIVRI_ORMAN_SAHASI 0.00932 0.00927 0.00929 0.02879 

SISLI_MGM 0.00906 0.00739 0.00735 0.02399 

SUREYYAPASA 0.01745 0.01354 0.01356 0.04306 

TUZLA_MGM 0.00774 0.00740 0.00740 0.02396 

USKUDAR_MGM 0.00806 0.00657 0.00657 0.02654 

ZINCIRLIKUYU 0.00961 0.00623 0.00622 0.03156 

FREQUENCY OF MAX 1 - 1 28 

FREQUENCY OF MIN 5 18 7 - 

 

Table 5. RMSE values for the estimation of Weibull shape and scale parameters by stations 
 

  RMSE 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.00622 0.00502 0.00502 0.01327 

ATASEHIR 0.00859 0.00785 0.00785 0.01142 

B_CEKMECE_SVIRAJLARI 0.00660 0.00567 0.05648 0.02469 

BASAKSEHIR 0.00801 0.00795 0.00795 0.02410 

BAYRAMOGLU_TUZLA 0.00864 0.00655 0.00655 0.02795 

BEYKOZ_MGM 0.01100 0.01083 0.01083 0.01197 

BUYUKADA 0.00432 0.00416 0.00416 0.00995 

BUYUKCEKMECE_MGM 0.01280 0.01154 0.01154 0.03741 

CANTA 0.00776 0.00724 0.00724 0.02502 

CATALCA 0.00361 0.00319 0.00319 0.01140 
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DURUSU 0.00643 0.00629 0.00629 0.01596 

EMINONU 0.01115 0.01100 0.01100 0.03070 

EYUP_MGM 0.00958 0.00955 0.00955 0.02773 

FLORYA 0.01262 0.00983 0.00983 0.01971 

GOZTEPE 0.00801 0.00786 0.00786 0.01907 

HADIMKOY 0.00540 0.00534 0.00534 0.00675 

KARTAL 0.01189 0.01080 0.02228 0.03528 

KILYOS 0.01344 0.01273 0.01426 0.01454 

ODAYERI 0.01751 0.01675 0.01675 0.02718 

PASAKOY 0.01472 0.01440 0.01440 0.03098 

SABIHAGOKCEN 0.03507 0.02781 0.02781 0.03452 

SARIYER_YSS_KOPRU_MGM 0.00639 0.00613 0.00613 0.01308 

SILE_2 0.01262 0.00962 0.00962 0.02632 

SILIVRI_MGM 0.00610 0.00551 0.00551 0.02156 

SILIVRI_ORMAN_SAHASI 0.01187 0.01176 0.01176 0.03289 

SISLI_MGM 0.01053 0.00953 0.00953 0.02817 

SUREYYAPASA 0.02020 0.01755 0.01755 0.04868 

TUZLA_MGM 0.00989 0.00954 0.00954 0.02815 

USKUDAR_MGM 0.00919 0.00820 0.00820 0.03020 

ZINCIRLIKUYU 0.01135 0.00820 0.00820 0.03453 

FREQUENCY OF MAX 1 - 1 28 

FREQUENCY OF MIN - 30 - - 

 

Table 6. R2 values for the estimation of Weibull shape and scale parameters by stations 
 

  R2 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.98106 0.98766 0.98766 0.91396 

ATASEHIR 0.98459 0.98713 0.98713 0.97275 

B_CEKMECE_SVIRAJLARI 0.99246 0.99444 0.44815 0.89457 

BASAKSEHIR 0.97978 0.98004 0.98004 0.81672 

BAYRAMOGLU_TUZLA 0.99157 0.99515 0.99515 0.91179 

BEYKOZ_MGM 0.97136 0.97222 0.97222 0.96609 

BUYUKADA 0.98872 0.98955 0.98954 0.94004 

BUYUKCEKMECE_MGM 0.94724 0.95711 0.95711 0.54920 

CANTA 0.97084 0.97461 0.97461 0.69640 

CATALCA 0.98810 0.99069 0.99069 0.88114 

DURUSU 0.97989 0.98073 0.98073 0.87607 

EMINONU 0.97362 0.97436 0.97436 0.80018 

EYUP_MGM 0.95667 0.95688 0.95688 0.63673 

FLORYA 0.97355 0.98397 0.98397 0.93550 

GOZTEPE 0.97895 0.97973 0.97973 0.88073 

HADIMKOY 0.98236 0.98275 0.98275 0.97240 

KARTAL 0.99399 0.99505 0.97893 0.94716 

KILYOS 0.96506 0.96865 0.96063 0.95906 

ODAYERI 0.97364 0.97589 0.97588 0.93649 

PASAKOY 0.96686 0.96830 0.96829 0.85324 

SABIHAGOKCEN 0.93798 0.96101 0.96101 0.93990 

SARIYER_YSS_KOPRU_MGM 0.97793 0.97970 0.97970 0.90767 

SILE_2 0.97335 0.98451 0.98451 0.88404 

SILIVRI_MGM 0.98332 0.98638 0.98638 0.79140 

SILIVRI_ORMAN_SAHASI 0.94949 0.95042 0.95041 0.61213 

SISLI_MGM 0.99292 0.99421 0.99420 0.94935 

SUREYYAPASA 0.97724 0.98281 0.98281 0.86784 

TUZLA_MGM 0.99376 0.99419 0.99419 0.94943 

USKUDAR_MGM 0.96877 0.97512 0.97512 0.66236 

ZINCIRLIKUYU 0.98652 0.99297 0.99297 0.87530 

FREQUENCY OF MAX - 30 - - 

FREQUENCY OF MIN 1 - 1 28 
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Table 7. MAE values for the estimation of Rayleigh scale parameter by stations 
 

  MAE 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.01590 0.01590 0.01674 0.01595 

ATASEHIR 0.02471 0.02471 0.02569 0.02465 

B_CEKMECE_SVIRAJLARI 0.03966 0.03966 0.04043 0.03973 

BASAKSEHIR 0.01323 0.01323 0.01455 0.01319 

BAYRAMOGLU_TUZLA 0.04856 0.04856 0.04948 0.04860 

BEYKOZ_MGM 0.01442 0.01441 0.01697 0.01430 

BUYUKADA 0.01601 0.01601 0.01646 0.01601 

BUYUKCEKMECE_MGM 0.01207 0.01207 0.01385 0.01199 

CANTA 0.00772 0.00772 0.00898 0.00785 

CATALCA 0.01375 0.01375 0.01413 0.01375 

DURUSU 0.01105 0.01105 0.01200 0.01100 

EMINONU 0.01583 0.01582 0.01713 0.01618 

EYUP_MGM 0.01284 0.01284 0.01343 0.01294 

FLORYA 0.01957 0.01956 0.02138 0.01998 

GOZTEPE 0.01154 0.01155 0.01317 0.01135 

HADIMKOY 0.01109 0.01109 0.01196 0.01117 

KARTAL 0.08454 0.08453 0.08629 0.08499 

KILYOS 0.00948 0.00948 0.01241 0.00953 

ODAYERI 0.01271 0.01278 0.01739 0.01522 

PASAKOY 0.01285 0.01283 0.01711 0.01263 

SABIHAGOKCEN 0.03665 0.03679 0.03900 0.03569 

SARIYER_YSS_KOPRU_MGM 0.00948 0.00948 0.01053 0.00943 

SILE_2 0.01492 0.01492 0.01751 0.01491 

SILIVRI_MGM 0.01345 0.01345 0.01442 0.01350 

SILIVRI_ORMAN_SAHASI 0.01211 0.01214 0.01387 0.01184 

SISLI_MGM 0.06664 0.06664 0.06752 0.06668 

SUREYYAPASA 0.03231 0.03247 0.03594 0.03230 

TUZLA_MGM 0.06657 0.06657 0.06746 0.06662 

USKUDAR_MGM 0.00989 0.00990 0.01117 0.00991 

ZINCIRLIKUYU 0.04862 0.04862 0.04971 0.04859 

FREQUENCY OF MAX - - 30 - 

FREQUENCY OF MIN 10 6 - 14 

 

Table 8. RMSE values for the estimation of Rayleigh scale parameter by stations 
 

  RMSE 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.01805 0.0181 0.0187 0.0181 

ATASEHIR 0.02784 0.0278 0.0288 0.0280 

B_CEKMECE_SVIRAJLARI 0.04480 0.0448 0.0455 0.0448 

BASAKSEHIR 0.01489 0.0149 0.0161 0.0149 

BAYRAMOGLU_TUZLA 0.05615 0.0561 0.0570 0.0562 

BEYKOZ_MGM 0.01666 0.0167 0.0188 0.0167 

BUYUKADA 0.01810 0.0181 0.0186 0.0181 

BUYUKCEKMECE_MGM 0.01442 0.0144 0.0158 0.0144 

CANTA 0.00885 0.0088 0.0102 0.0096 

CATALCA 0.01571 0.0157 0.0161 0.0157 

DURUSU 0.01246 0.0125 0.0134 0.0125 

EMINONU 0.01789 0.0179 0.0192 0.0181 

EYUP_MGM 0.01401 0.0140 0.0152 0.0141 

FLORYA 0.02208 0.0221 0.0237 0.0223 

GOZTEPE 0.01309 0.0131 0.0146 0.0134 

HADIMKOY 0.01254 0.0125 0.0133 0.0126 

KARTAL 0.09627 0.0963 0.0976 0.0965 

KILYOS 0.01279 0.0128 0.0153 0.0128 

ODAYERI 0.01679 0.0168 0.0211 0.0186 

PASAKOY 0.01575 0.0158 0.0189 0.0158 

SABIHAGOKCEN 0.04247 0.0425 0.0434 0.0459 

SARIYER_YSS_KOPRU_MGM 0.01068 0.0107 0.0118 0.0107 

SILE_2 0.01703 0.0170 0.0195 0.0170 
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SILIVRI_MGM 0.01511 0.0151 0.0160 0.0151 

SILIVRI_ORMAN_SAHASI 0.01471 0.0147 0.0160 0.0148 

SISLI_MGM 0.07616 0.0762 0.0771 0.0762 

SUREYYAPASA 0.03680 0.0368 0.0398 0.0382 

TUZLA_MGM 0.07610 0.0761 0.0770 0.0761 

USKUDAR_MGM 0.01121 0.0112 0.0126 0.0112 

ZINCIRLIKUYU 0.05491 0.0549 0.0558 0.0549 

FREQUENCY OF MAX - - 29 1 

FREQUENCY OF MIN 1 29 - - 

 

Table 9. R2 values for the estimation of Rayleigh scale parameter by stations 
 

  R2 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.84068 0.84068 0.82844 0.84053 

ATASEHIR 0.83804 0.83804 0.82712 0.83673 

B_CEKMECE_SVIRAJLARI 0.65289 0.65289 0.64248 0.65250 

BASAKSEHIR 0.93008 0.93008 0.91775 0.92999 

BAYRAMOGLU_TUZLA 0.64397 0.64397 0.63283 0.64373 

BEYKOZ_MGM 0.93430 0.93430 0.91657 0.93396 

BUYUKADA 0.80167 0.80167 0.79141 0.80167 

BUYUKCEKMECE_MGM 0.93299 0.93299 0.91940 0.93295 

CANTA 0.96205 0.96205 0.94944 0.95574 

CATALCA 0.77448 0.77448 0.76366 0.77445 

DURUSU 0.92449 0.92449 0.91267 0.92415 

EMINONU 0.93215 0.93215 0.92143 0.93023 

EYUP_MGM 0.90727 0.90727 0.89120 0.90566 

FLORYA 0.91909 0.91909 0.90644 0.91753 

GOZTEPE 0.94377 0.94377 0.93050 0.94151 

HADIMKOY 0.90471 0.90471 0.89236 0.90437 

KARTAL 0.60653 0.60653 0.59534 0.60470 

KILYOS 0.96834 0.96834 0.95474 0.96833 

ODAYERI 0.97578 0.97579 0.96169 0.97021 

PASAKOY 0.96205 0.96205 0.94518 0.96199 

SABIHAGOKCEN 0.90903 0.90906 0.90519 0.89393 

SARIYER_YSS_KOPRU_MGM 0.93846 0.93846 0.92546 0.93816 

SILE_2 0.95147 0.95147 0.93606 0.95147 

SILIVRI_MGM 0.89759 0.89759 0.88507 0.89746 

SILIVRI_ORMAN_SAHASI 0.92245 0.92245 0.90868 0.92175 

SISLI_MGM 0.62978 0.62978 0.62071 0.62947 

SUREYYAPASA 0.92445 0.92463 0.91144 0.91866 

TUZLA_MGM 0.63033 0.63037 0.62130 0.63006 

USKUDAR_MGM 0.95350 0.95351 0.94120 0.95350 

ZINCIRLIKUYU 0.68473 0.68473 0.67469 0.68468 

FREQUENCY OF MAX - 30 - - 

FREQUENCY OF MIN - - 29 1 

 

Table 10. MAE values for the estimation of Gamma shape and scale parameters by stations 
 

  MAE 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.00946 0.00903 0.00910 0.01083 

ATASEHIR 0.01369 0.01389 0.01400 0.02900 

B_CEKMECE_SVIRAJLARI 0.01364 0.01293 0.01307 0.04030 

BASAKSEHIR 0.01219 0.01235 0.01245 0.01369 

BAYRAMOGLU_TUZLA 0.01444 0.01445 0.01468 0.08036 

BEYKOZ_MGM 0.01225 0.01235 0.01247 0.02475 

BUYUKADA 0.00816 0.00794 0.00800 0.01252 

BUYUKCEKMECE_MGM 0.01579 0.01574 0.01581 0.02468 

CANTA 0.01075 0.01051 0.01058 0.01334 

CATALCA 0.00626 0.00610 0.00617 0.00597 

DURUSU 0.00990 0.01030 0.01038 0.01313 
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EMINONU 0.01685 0.01720 0.01729 0.03287 

EYUP_MGM 0.01176 0.01176 0.01180 0.01241 

FLORYA 0.01633 0.01654 0.01666 0.04556 

GOZTEPE 0.01338 0.01258 0.01267 0.01213 

HADIMKOY 0.00909 0.00867 0.00874 0.00922 

KARTAL 0.02585 0.02567 0.02598 0.15964 

KILYOS 0.01579 0.01599 0.01612 0.03611 

ODAYERI 0.02674 0.02377 0.02394 0.06100 

PASAKOY 0.01706 0.01731 0.01746 0.03191 

SABIHAGOKCEN 0.03215 0.03313 0.03341 0.10493 

SARIYER_YSS_KOPRU_MGM 0.00914 0.00946 0.00953 0.01111 

SILE_2 0.01329 0.01258 0.01278 0.04240 

SILIVRI_MGM 0.00961 0.00927 0.00936 0.00970 

SILIVRI_ORMAN_SAHASI 0.01508 0.01510 0.01518 0.01544 

SISLI_MGM 0.01993 0.02075 0.02100 0.10996 

SUREYYAPASA 0.03048 0.02857 0.02883 0.11651 

TUZLA_MGM 0.02311 0.02077 0.02102 0.10986 

USKUDAR_MGM 0.01268 0.01260 0.01269 0.01387 

ZINCIRLIKUYU 0.01671 0.01759 0.01778 0.08437 

FREQUENCY OF MAX 2 - - 28 

FREQUENCY OF MIN 14 14 - 2 

 

Table 11. RMSE values for the estimation of Gamma shape and scale parameters by stations 
 

  RMSE 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.01114 0.01100 0.01101 0.01266 

ATASEHIR 0.01735 0.01701 0.01702 0.03131 

B_CEKMECE_SVIRAJLARI 0.01625 0.01600 0.01602 0.04607 

BASAKSEHIR 0.01540 0.01537 0.01538 0.01603 

BAYRAMOGLU_TUZLA 0.01862 0.01785 0.01787 0.09366 

BEYKOZ_MGM 0.01573 0.01556 0.01557 0.02702 

BUYUKADA 0.00988 0.00975 0.00975 0.01412 

BUYUKCEKMECE_MGM 0.01888 0.01880 0.01880 0.02844 

CANTA 0.01321 0.01310 0.01310 0.01562 

CATALCA 0.00762 0.00756 0.00757 0.00778 

DURUSU 0.01296 0.01267 0.01267 0.01590 

EMINONU 0.02128 0.02120 0.02121 0.03516 

EYUP_MGM 0.01404 0.01379 0.01380 0.01538 

FLORYA 0.01995 0.01968 0.01969 0.05451 

GOZTEPE 0.01542 0.01503 0.01503 0.01547 

HADIMKOY 0.01080 0.01066 0.01067 0.01111 

KARTAL 0.03140 0.03124 0.03127 0.18579 

KILYOS 0.02175 0.02081 0.02081 0.04080 

ODAYERI 0.03406 0.02918 0.02920 0.07370 

PASAKOY 0.02231 0.02090 0.02092 0.03610 

SABIHAGOKCEN 0.04189 0.04114 0.04115 0.12624 

SARIYER_YSS_KOPRU_MGM 0.01204 0.01160 0.01160 0.01333 

SILE_2 0.01660 0.01606 0.01608 0.04994 

SILIVRI_MGM 0.01154 0.01132 0.01133 0.01487 

SILIVRI_ORMAN_SAHASI 0.01846 0.01845 0.01846 0.02141 

SISLI_MGM 0.02649 0.02617 0.02619 0.12555 

SUREYYAPASA 0.03741 0.03533 0.03535 0.13621 

TUZLA_MGM 0.03183 0.02619 0.02621 0.12545 

USKUDAR_MGM 0.01538 0.01536 0.01537 0.01782 

ZINCIRLIKUYU 0.02262 0.02182 0.02184 0.09615 

FREQUENCY OF MAX - 30 - - 

FREQUENCY OF MIN - - - 30 
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Table 12. R2 values for the estimation of Gamma shape and scale parameters by stations 
 

  R2 

STATION GA DE PSO GWO 

ARNAVUTKOY_MGM 0.93927 0.94086 0.94079 0.92163 

ATASEHIR 0.93711 0.93954 0.93947 0.79521 

B_CEKMECE_SVIRAJLARI 0.95431 0.95570 0.95562 0.63294 

BASAKSEHIR 0.92522 0.92544 0.92537 0.91891 

BAYRAMOGLU_TUZLA 0.96083 0.96402 0.96392 0.00931 

BEYKOZ_MGM 0.94139 0.94265 0.94257 0.82718 

BUYUKADA 0.94097 0.94249 0.94242 0.87933 

BUYUKCEKMECE_MGM 0.88515 0.88616 0.88610 0.73948 

CANTA 0.91535 0.91684 0.91678 0.88168 

CATALCA 0.94692 0.94776 0.94768 0.94462 

DURUSU 0.91823 0.92194 0.92188 0.87699 

EMINONU 0.90397 0.90465 0.90460 0.73790 

EYUP_MGM 0.90685 0.91015 0.91008 0.88828 

FLORYA 0.93393 0.93572 0.93565 0.50689 

GOZTEPE 0.92195 0.92593 0.92586 0.92145 

HADIMKOY 0.92939 0.93113 0.93106 0.92524 

KARTAL 0.95815 0.95857 0.95848 0.46542 

KILYOS 0.90843 0.91622 0.91616 0.67788 

ODAYERI 0.90029 0.92680 0.92674 0.53319 

PASAKOY 0.92386 0.93317 0.93309 0.80069 

SABIHAGOKCEN 0.91150 0.91467 0.91460 0.19635 

SARIYER_YSS_KOPRU_MGM 0.92170 0.92740 0.92733 0.90407 

SILE_2 0.95386 0.95680 0.95672 0.58253 

SILIVRI_MGM 0.94020 0.94246 0.94238 0.90071 

SILIVRI_ORMAN_SAHASI 0.87785 0.87791 0.87785 0.83568 

SISLI_MGM 0.95523 0.95628 0.95621 0.00601 

SUREYYAPASA 0.92196 0.93036 0.93029 0.03489 

TUZLA_MGM 0.93533 0.95620 0.95613 0.00459 

USKUDAR_MGM 0.91249 0.91268 0.91262 0.88242 

ZINCIRLIKUYU 0.94651 0.95019 0.95012 0.03335 

FREQUENCY OF MAX - 30 - - 

FREQUENCY OF MIN - - - 30 

 

As depicted by Tables 4-12, when three PDFs are compared for wind speed data from urban 

stations in Istanbul, the Weibull PDF has higher R2 and a lower MAE and RMSE values in 

parameter estimation than the other two PDFs. This is followed by the Gamma PDF and then the 

Rayleigh PDF except for a few stations. So, the Weibull PDF fits best to model the wind speed data 

obtained. 

 

The following Figures 2-4 show the Weibull PDF plotted with the scale and shape parameters 

obtained by using DE algorithm for the stations with the highest R2 value. 

 

 
Figure 2. Weibull PDF for the wind speed data from station BAYRAMOGLU_TUZLA 
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Figure 3. Weibull PDF for the wind speed data from station KARTAL 

 

 
Figure 4. Weibull PDF for the wind speed data from station B_CEKMECE_SVIRAJLARI 

 

It has been observed that when the four metaheuristic algorithms used in the study are compared 

among themselves, the GWO algorithm, for Weibull PDF and Gamma PDF, generally has the 

lowest R2 as well as the highest MAE and RMSE values. For these two PDFs, the DE algorithm 

outperforms as it yields the highest R2 values and the lowest RMSE values. As for the Rayleigh 

PDF, which is less suitable as mentioned before, the DE algorithm yields the highest R2 values and 

the lowest RMSE values again except for one station. However, for the Rayleigh PDF, PSO showed 

the worst performance in terms of MAE, RMSE and R2 values. 

 

6. Conclusion 

 

As every geographical location exhibit different wind speed profile and characteristics, site-based 

wind engineering is indispensable for optimal exploitation of available wind energy potential. 

Researchers all over the world have experimented with different PDFs for modelling available wind 

speed dataset. They have used different numerical methods and metaheuristic optimization 

algorithms for the determination of parameters of PDFs. They have also opted for various testing 

procedures to determine optimal PDFs, optimization algorithms and numerical methods. The 

conclusions of the research work indicate that the Weibull PDF fits best the wind speed data 

obtained from urban stations in Istanbul and the DE algorithm outperforms other algorithms used in 

the study. 
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