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Localization of the spectra of dual frames multipliers

ROSARIO CORSO*

ABSTRACT. This paper concerns dual frames multipliers, i.e. operators in Hilbert spaces consisting of analysis,
multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames, respectively.
The goal of the paper is to give some results about the localization of the spectra of dual frames multipliers, i.e. to
identify regions of the complex plane containing the spectra using some information about the frames and the symbols.
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1. INTRODUCTION

Frame multipliers have been objects of several studies [6, 9, 17, 18, 19, 20, 21] and appli-
cations in physics [13], signal processing (in particular, Gabor multipliers [12, 16] attracted
interest as time-variant filters) and acoustics [4, 5]. Details about applications are discussed
also in the survey [22].

Frame multipliers are part of the Bessel multipliers which were introduced in [2] and we are
going to recall. A Bessel sequence of a separable Hilbert space H is a sequence ϕ = {ϕn}n∈N of
elements ofH such that there exists Bϕ > 0 and∑

n∈N
|〈f, ϕn〉|2 ≤ Bϕ‖f‖2, ∀f ∈ H.

The constant Bϕ is called a Bessel bound of ϕ. A sequence ϕ = {ϕn}n∈N is a frame of H if there
exist A,B > 0 (lower bound and upper bound of ϕ, respectively) such that

(1.1) A‖f‖2 ≤
∑
n∈N
|〈f, ϕn〉|2 ≤ B‖f‖2, ∀f ∈ H.

Now, let ϕ = {ϕn}n∈N, ψ = {ψn}n∈N be Bessel sequences of H and m = {mn}n∈N ∈ `∞, i.e. a
bounded complex sequence. The operator Mm,ϕ,ψ given by

Mm,ϕ,ψf =
∑
n∈N

mn〈f, ψn〉ϕn, f ∈ H,

is called the Bessel multiplier ofϕ, ψ with symbolm. Correspondent versions of Bessel multipliers
have been studied also in continuous and distributional contexts (see [3, 10, 23]). A Bessel
multiplier Mm,ϕ,ψ is called a frame multiplier if ϕ and ψ are frames.

Received: 03.08.2022; Accepted: 11.11.2022; Published Online: 14.11.2022
*Corresponding author: Rosario Corso; rosario.corso02@unipa.it
DOI: 10.33205/cma.1154703

238



Localization of the spectra of dual frames multipliers 239

This paper deals with the spectra of dual frames multipliers, i.e. multipliers Mm,ϕ,ψ , where
ϕ and ψ are dual frames and m ∈ `∞. Two frames ϕ and ψ of H are called dual if f =∑
n∈N〈f, ϕn〉ψn for every f ∈ H (or, equivalently, f =

∑
n∈N〈f, ψn〉ϕn for every f ∈ H). In

particular, the study of this paper is inspired by the result for Bessel multipliers shown in
Proposition 1 below, which is an immediate consequence of [2, Theorem 6.1], i.e. of the fact
that

(1.2) ‖Mm,ϕ,ψ‖ ≤ sup
n∈N
|mn|Bϕ

1
2Bψ

1
2 ,

where Mm,ϕ,ψ is any Bessel multiplier with Bϕ and Bψ some Bessel bounds of ϕ and ψ, respec-
tively.

Proposition 1. The spectrum of any Bessel multiplier Mm,ϕ,ψ is contained in the closed disk centered
the origin with radius supn∈N |mn|Bϕ

1
2Bψ

1
2 , where Bϕ and Bψ are Bessel bounds of ϕ and ψ, respec-

tively.

Proposition 1 provides information about the location of the spectra of Bessel multipliers
in the complex plane. However, the given estimate may be too large for the spectra of dual
frames multipliers1. The main results of the paper, Theorems 4.1 and 5.2, provide more accurate
localization results for the spectra of dual frames multipliersMm,ϕ,ψ under some conditions on
ϕ and ψ. We also stress that these conditions are satisfied by many frames used in applications
(see Remark 4.2).

A localization of the spectrum of Mm,ϕ,ψ may show that Mm,ϕ,ψ is invertible. The invertibil-
ity of multipliers was a subject faced in [6, 9, 17, 18, 19, 20] and Theorems 4.1 and 5.2 bring new
results in this direction (see Remark 5.4).

Moreover, the knowledge of a region containing the spectrum of Mm,ϕ,ψ gives, in particular,
information about the distribution of the possible eigenvalues of Mm,ϕ,ψ . In connection with
this subject, recently in [9] some types of dual frames multipliers with at most countable spectra
have been studied.

The paper is organized as follows. In Section 2, we recall some basic notions of frame theory,
while we give some preliminary localization results about the spectra of dual frames multipli-
ers in Section 3. Finally, Sections 4 and 5 contain the main results mentioned above together
with examples.

2. PRELIMINARIES

Throughout the paper, H indicates a separable Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Given an operator T acting between two Hilbert space H1 and H2, we denote by
R(T ) andN(T ) the range and kernel of T , respectively, and by T ∗ its adjoint when T is bounded.

If T : H → H is a bounded operator, then we write ρ(T ) and σ(T ) for the resolvent set and
spectrum of T , respectively. We recall that ρ(T ) is the set of λ ∈ C such that T −λI has bounded
inverse (T −λI)−1 everywhere defined onH and σ(T ) is the complement set of ρ(T ). We recall
that two bounded operators T, T ′ : H → H are said to be similar if there exists a bounded and
bijective operator S : H → H such that T = S−1TS. Throughout the paper, we will apply
the following standard perturbation result (for a reference see, for instance, Theorem IV.1.16 of
[15]).

1Indeed, ifm ∈ `∞, ϕ andψ are dual Riesz bases (for the definition see the end part of Section 2), then the spectrum
of Mm,ϕ,ψ is the closure of the set {mn}n∈N (see [1, Proposition 2.1] or [8, Section 5.1]), which is in general smaller

than the closed disk centered the origin with radius supn∈N|mn|Bϕ
1
2Bψ

1
2 .
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Lemma 2.1. Let T,B : H → H be bounded operators. If T is bijective and ‖B‖ < ‖T−1‖−1, then
T +B is bijective.

We denote by `2 (respectively, `∞) the usual spaces of square summable (respectively, bounded)
complex sequences indexed by N. A limit point for m ∈ `∞ is the limit of a converging subse-
quence of m.

In the introduction, we gave the definitions of Bessel sequences and frames. Here, we recall
some other notions and elementary results about frame theory [7]. A sequence ϕ = {ϕn}n∈N is
complete in H if its linear span is dense in H if and only if 〈ϕn, f〉 = 0 for every n ∈ N implies
f = 0. A frame forH is, in particular, complete inH.

Let ϕ be a frame for H. We say that ϕ is a Parseval frame if (1.1) holds with A = B = 1. The
operator S : H → H, defined by

Sf =
∑
n∈N
〈f, ϕn〉ϕn, f ∈ H,

is well-defined, bounded, bijective and it called the frame operator ofϕ. The sequence {S−1ϕn}n∈N
is a dual frame of ϕ, called the canonical dual, and {S− 1

2ϕn}n∈N is a Parseval frame forH.
A Riesz basis ϕ forH is a complete sequence inH satisfying for some A,B > 0

(2.3) A
∑
n∈N
|cn|2 ≤

∥∥∥∥∥∑
n∈N

cnϕn

∥∥∥∥∥
2

≤ B
∑
n∈N
|cn|2, ∀{cn} ∈ `2.

A Riesz basis ϕ for H is a frame for H, the constants in (1.1) can be chosen as in (2.3) and the
canonical dual of ϕ is a Riesz basis too (called dual Riesz basis of ϕ).

3. BASIC LOCALIZATION RESULTS

In this section, we give two preliminary localization results of the spectra of dual frames
multipliers (Propositions 2 and 3) without requiring specific properties of the two frames. For
the first one, we need the notion of numerical range. Given a bounded operator T : H → H the
numerical range of T is the set nT = {〈Tf, f〉 : f ∈ H, ‖f‖ = 1}. We recall also that the spectrum
of T is contained in the closure of nT (see [15, Corollary V.3.3]).

In addition, we are going to use the following lemma, which states that to examine the
spectrum of a dual frame multiplier Mm,ϕ,ψ where ψ is, in particular, the canonical dual frame
of ϕ, we can just consider a multiplier determined by a Parseval frame.

Lemma 3.2. Let ϕ be a frame forH, ψ its canonical dual frame andm ∈ `∞. ThenMm,ϕ,ψ is similar to
Mm,ρ,ρ, where ρ is the Parseval frame associated to ϕ, and so σ(Mm,ϕ,ψ) = σ(Mm,ρ,ρ). In particular, if
m is a real (resp., non-negative) sequence, then Mm,ϕ,ψ is similar to a self-adjoint (resp., non-negative)
operator and σ(Mm,ϕ,ψ) is real (resp., non-negative).

Proof. Let S be the frame operator of ϕ, which is a bijective operator. It is immediate to see that
S−

1
2Mm,ϕ,ψS

1
2 = Mm,ρ,ρ, where ρ = S−

1
2ϕ is the Parseval frame associated to ϕ. The rest of

the statement follows easily. �

Proposition 2. Let ϕ be a frame forH, ψ its canonical dual andm ∈ `∞. Then σ(Mm,ϕ,ψ) is contained
in the closed convex hull of m, i.e. the closure of the set {

∑
n∈N anmn :

∑
n∈N|an|2 = 1}.

Proof. By Lemma 3.2, we can confine to the case where ϕ = ψ is a Parseval frame. We note that

〈Mm,ϕ,ϕf, f〉 =
∑
n∈N

mn|〈f, ϕn〉|2,
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therefore, because ‖f‖2 =
∑
n∈N|〈f, ϕn〉|2, the numerical range (and then also the spectrum) of

Mm,ϕ,ϕ is contained in the closed convex hull of m. �

Remark 3.1.
(i) Under the hypothesis of Proposition 2, if in additionm is a real sequence, we have that σ(Mm,ϕ,ψ) ⊆

[infn∈Nmn, supn∈Nmn].
(ii) If ϕ is not a Parseval frame and ψ is its canonical dual, then the numerical range of Mm,ϕ,ψ

is not necessarily contained in the closed convex hull of m (even though by Proposition 2
σ(Mm,ϕ,ψ) is). For example, let

ϕ = {e1, e1 + e2, e3, . . . , en, . . . } and ψ = {e1 − e2, e2, e3, . . . , en, . . . },

where {en}n∈N is an orthonormal basis of H and m = {2, 1, 1, . . . }. The sequences are frames
and ψ is the canonical dual of ϕ. Moreover, 3+i

2 belongs to the numerical range of Mm,ϕ,ψ ,
because 〈Mm,ϕ,ψf, f〉 = 3+i

2 , where f = e1+ie2√
2

. Nevertheless, 3+i
2 is not in the convex hull of

m.

The statement of Proposition 2 may not hold if ψ is just a dual frame of ϕ. For example, take

ϕ = {e1, e1, e2, . . . , en, . . . } and ψ = {ie1, (1− i)e1, e2, . . . , en, . . . },

where {en}n∈N is an orthonormal basis of H and m = {2, 1, 1, . . . }. Then, a straightforward
calculation shows that Mm,ϕ,ψf = f + (1 − i)〈f, e1〉e1 for every f ∈ H, so Mm,ϕ,ψ is not self-
adjoint and, in particular, its spectrum is not contained in the closed convex hull of m, which is
a subset of the real line. For generic dual frames, we can actually state the following.

Proposition 3. Let ϕ,ψ be dual frames forH with upper bounds Bϕ, Bψ , respectively. Let m ∈ `∞. If
λ, µ ∈ C and

(3.4) sup
n∈N
|mn − µ|Bϕ

1
2Bψ

1
2 <|µ− λ|,

then λ ∈ ρ(Mm,ϕ,ψ). In particular,
(1) if m is contained in the disk of center µ with radius r, then σ(Mm,ϕ,ψ) is contained in the disk

of center µ with radius rBϕ
1
2Bψ

1
2 ;

(2) if m is real, then σ(Mm,ϕ,ψ) is contained in the disk of center 1
2 (supn∈Nmn + infn∈Nmm)

with radius 1
2 (supn∈Nmn − infn∈Nmm)Bϕ

1
2Bψ

1
2 .

Proof. For simplicity, we write m − λ and m − µ for the complex sequences {mn − λ} and
{mn − µ}, respectively. If (3.4) holds, then by (1.2) we have ‖Mm−µ,ϕ,ψ‖ <|µ − λ| and by
Lemma 2.1 we have λ− µ ∈ ρ(Mm−µ,ϕ,ψ), i.e. λ ∈ ρ(Mm,ϕ,ψ). Now, the rest of the statement is
immediate. �

When ψ is the canonical dual of ϕ, Proposition 2 gives a more accurate result than Proposi-
tion 3.

4. MAIN RESULT 1

For the localization result in this section, we make the assumption that a frame contains
a Riesz basis. Note that this is not a very strong requirement. Indeed, it is satisfied by many
frames used in applications (see Remark 4.2 below for a consideration about Gabor and wavelet
frames). For simplicity, we write the statement of the result in terms of the resolvent set.
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Theorem 4.1. Let ϕ,ψ be frames for H such that for some I ⊆ N, {ϕn : n ∈ I}, {ψn : n ∈ I} be
Riesz bases forH with lower frame bounds Aϕ,1 and Aψ,1, respectively. Moreover, let Bϕ,2 and Bψ,2 be
Bessel bounds of {ϕn : n ∈ N\I} and {ψn : n ∈ N\I}, respectively. Let m ∈ `∞. If

(4.5) sup
n∈N\I

|mn|Bϕ,2
1
2Bψ,2

1
2 < inf

n∈I
|mn|Aϕ,1

1
2Aψ,1

1
2 ,

then Mm,ϕ,ψ is bijective.
If, in addition, ϕ and ψ are dual frames and

(4.6) sup
n∈N\I

|mn − λ|Bϕ,2
1
2Bψ,2

1
2 < inf

n∈I
|mn − λ|Aϕ,1

1
2Aψ,1

1
2 ,

then λ ∈ ρ(Mm,ϕ,ψ).

Proof. We can write Mm,ϕ,ψ = M1 +M2, where M1 = Mm(1),ϕ(1),ψ(1) and M2 = Mm(2),ϕ(2),ψ(2) ,
m(1) = {mn : n ∈ I}, m(2) = {mn : n ∈ N\I}, ϕ(1) = {ϕn : n ∈ I}, ϕ(2) = {ϕn : n ∈ N\I},
ψ(1) = {ψn : n ∈ I}, ψ(2) = {ψn : n ∈ N\I}. First of all, infn∈I |mn| > 0 holds by (4.5), so M1 is
bijective by [17, Theorem 5.1]. Moreover, (4.5) allows to apply Lemma 2.1 because

‖M2‖ ≤ sup
n∈N\I

|mn|Bϕ,2
1
2Bψ,2

1
2

by (1.2), and
inf
n∈I
|mn|Aϕ,1

1
2Aψ,1

1
2 ≤ ‖M−11 ‖−1

by Propositions 7.7 and 7.2 of [2] and the fact that a Bessel bound of the canonical dual of ϕ
(resp., ψ) is Aϕ,1−1 (resp., Aψ,1−1). The second part of the statement now follows from the fact
that Mm,ϕ,ψ − λI = Mm−λ,ϕ,ψ when ϕ and ψ are dual frames (here, we write m − λ for the
sequence {mn − λ}). �

We show an application of Theorem 4.1 with an example of multiplier with 0−1 symbol (i.e.
a sequence made only of 0 and 1)2.

Example 4.1. Let ϕ be a Parseval frame for H such that {ϕ2n}n∈N is a Riesz basis for H with lower
bound A. Clearly, we have 0 < A < 1. Consequently, {ϕ2n−1} is a Bessel sequence with bound 1−A.
Let, moreover, m be a sequence of 0 and 1. With these choices, we apply Theorem 4.1 to Mm,ϕ,ϕ.
Condition (4.6) is

(4.7) sup
n∈N
|m2n−1 − λ|(1−A) < inf

n∈N
|m2n − λ|A.

We have

inf
n∈N
{| − λ|, |1− λ|} =


−λ, λ < 0,

λ, 0 ≤ λ ≤ 1
2 ,

1− λ, 1
2 < λ ≤ 1,

λ− 1, 1 < λ,

and

sup
n∈N
{| − λ|, |1− λ|} =


1− λ, λ < 0,

1− λ, 0 ≤ λ ≤ 1
2 ,

λ, 1
2 < λ ≤ 1,

λ, 1 < λ.

2Such a multiplier often occurs in applications, see e.g. [22].
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Since, by Proposition 2, we already know that σ(Mm,ϕ,ϕ) ⊆ [0, 1], we need to check the validity of
(4.7) only for 0 ≤ λ ≤ 1. We note that if 0 ≤ λ ≤ 1

2 , then (4.7) is true if and only if λ > 1− A, which
makes sense only if A > 1

2 . On the other hand, if 1
2 < λ ≤ 1, then (4.7) is true if and only if λ < A,

which makes sense again only if A > 1
2 . Thus, by Theorem 4.1, we can write that if A > 1

2

σ(Mm,ϕ,ϕ) ⊆ [0, 1−A] ∪ [A, 1].

As particular case of Theorem 4.1, we get the following.

Corollary 1. Let ϕ be a frame forH with bounds A and B such that for some I ⊆ N {ϕn : n ∈ I} is a
Riesz basis forH with lower frame bound A′. Let ψ be the canonical dual of ϕ and m ∈ `∞. If

sup
n∈N\I

|mn − λ|
B −A′

A
< inf
n∈I
|mn − λ|

A′

B
,

then λ ∈ ρ(Mm,ϕ,ψ).

Proof. The statement follows by Theorem 4.1 once noticed that {ψn}n∈I = {S−1ϕn}n∈I is
a Riesz basis with lower bound A′

B2 , {ψn}n∈N\I has Bessel bound B − A′ and {ψn}n∈N\I =

{S−1ϕn}n∈N\I has Bessel bound B−A′

A2 . �

Remark 4.2. Gabor and wavelet frames are classical frames which occur in applications (see [7, 11, 14]).
A (regular) Gabor frame for L2(R) is a frame of the form

G(g, a, b) = {Emb Tna g}m,n∈Z,
where g ∈ L2(R), a, b > 0, (Taf)(x) = f(x − a) and (Ebf)(x) = e2πibxf(x) for x ∈ R. A Gabor
frame which is a finite union of Riesz bases can be easily constructed in this way. Let N ∈ N and
G(g, a, b) a Riesz basis for L2(R). A simple calculation shows that G(g, aN , b) (as well as G(g, a, bN )) is
a frame for L2(R) which is a union of N Riesz bases.

Frames which are unions of Riesz bases can be found also in the context of wavelet frames. In par-
ticular, the frame multiresolution analysis technique (see [7, Ch. 17]) gives a way to construct wavelet
frames which are unions of Riesz bases.

5. MAIN RESULT 2

In this section, we consider Parseval frames ϕ for H which are unions of multiples of or-
thonormal bases. In other words, we can think that there exists k ∈ N such that

(5.8) {ϕ(i−1)k+j : i ∈ N} = {αjeji : i ∈ N},

where αj ∈ C\{0} and {eji : i ∈ N} is orthonormal basis for H for j = 1, . . . , k. Also here,
we remark that this condition occurs for frames used in application. For instance, following
Remark 4.2, if G(g, a, b) is an orthonormal basis for L2(R), then 1

N G(g,
a
N , b) and 1

N G(g, a,
b
N )

are Parseval frames and unions of N multiples of orthonormal bases.

Theorem 5.2. Let ϕ be as in (5.8), m ∈ `∞ and l1, . . . , lk ∈ C. If λ ∈ C and

(5.9)
k∑
j=1

|αj |2 sup
i∈N
|m(i−1)k+j − lj | <

∣∣∣∣∣∣
k∑
j=1

|αj |2lj − λ

∣∣∣∣∣∣ ,
then λ ∈ ρ(Mm,ϕ,ϕ). As a consequence, if m is a real sequence, then

(5.10) σ(Mm,ϕ,ϕ) ⊆

 k∑
j=1

|αj |2 inf
i∈N

m(i−1)k+j ,

k∑
j=1

|αj |2 sup
i∈N

m(i−1)k+j

 .
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Proof. First of all, we note that λ 6=
∑k
j=1|αj |2lj by (5.9). We have Mm,ϕ,ϕf =

∑k
j=1|αj |2ljf +

Mm′,ϕ,ϕ, where m′ = {m′n} and m′(i−1)k+j = m(i−1)k+j − lj for i ∈ N and j = 1, . . . , k. Thus,
the first statement follows by Lemma 2.1 noting that

‖Mm′,ϕ,ϕ‖ ≤
k∑
j=1

|αj |2 sup
i∈N
|m(i−1)k+j − lj |.

Now assume that m is real, i.e. Mm,ϕ,ϕ is self-adjoint. Therefore, (5.9) implies that σ(Mm,ϕ,ϕ)
is contained in the interval

(5.11)

 k∑
j=1

|αj |2(lj − sup
i∈N
|m(i−1)k+j − lj |),

k∑
j=1

|αj |2(lj + sup
i∈N
|m(i−1)k+j − lj |)

 .
Choosing in (5.11), first lj < infi∈Nm(i−1)k+j and then lj > supi∈Nm(i−1)k+j for every j =
1, . . . , k, we find (5.10). �

Example 5.2. Let ϕ = { 1√
2
e1,

1√
2
f1,

1√
2
e2,

1√
2
f2, . . . }, where {en} and {fn} are orthonormal bases

for H. Furthermore, let m = {mn} be such that m4n−3 = 0, m4n−2 = 1
3 , m4n−1 = 2

3 and m4n = 1,
n ∈ N. Taking into account Proposition 2, the spectrum of Mm,ϕ,ϕ is contained in [0, 1]. This estimate
can be improved by Theorem 5.2: in particular, we obtain that σ(Mm,ϕ,ϕ) ⊆ [ 16 ,

5
6 ].

Remark 5.3. Theorem 5.2 is not a special case of Theorem 4.1 (and vice-versa). In particular, Theorem
4.1 gives no improvement on the localization of the spectrum in Example 5.2. On the other hand,
Theorem 5.2 does not add any further information about the spectrum of the multiplier in Example 4.1,
even in the case where {ϕ2n}n∈N and {ϕ2n+1}n∈N are multiples of orthonormal bases.

Remark 5.4. Theorems 4.1 and 5.2 give, in particular, new criteria of invertibility in comparison to the
results in [17]. For instance, let

ϕ =

{
1√
2
e1,

1√
2
f1,

1√
2
e2,

1√
2
f2, . . .

}
,

where {en} and {fn} are orthonormal bases for H and m = {mn} is such that m2n−1 = 1
n+1 and

m2n = 2 − 1
n+1 , n ≥ 1. Both Theorems 4.1 and 5.2 show that σ(Mm,ϕ,ϕ) ⊆ [ 34 ,

5
4 ]. In particular,

Mm,ϕ,ϕ is invertible. However, Propositions 4.1, 4.2 and 4.4 of [17] do not apply to this multiplier
Mm,ϕ,ϕ.
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