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Abstract: In this study, hybrid methods have been developed for the estimation of 
the monthly average water level of a natural lake in the coming months from the 
next one to the sixth month ahead. Lake water level data were preprocessed using 
Discrete Wavelet Transform (DWT), Empirical Mode Decomposition (EMD), 
Singular Spectral Analysis (SSA) techniques and these subband signals were 
applied to the input data of Artificial Neural Networks (ANN). Thus, three different 
hybrid models were obtained and the prediction performance of these models was 
analyzed. According to obtained results, it was observed that the hybrid 
approaches obtained with the preprocessing methods applied to the water level 
data improved the model performance and EMD-ANN and SSA-ANN hybrid models 
were found to better predict average monthly lake water levels for a forecast 
period of one to six months than the ANN and DWT-ANN model. 

Göl Su Seviyesi Tahmininde Alt Bant Ayrıştırma Tekniklerinin Performanslarının 
İncelenmesi 

Anahtar Kelimeler 
Göl su seviyesi tahmini, 
Yapay Sinir Ağları, 
Ampirik Kip Ayrıştırma, 
Tekil Spektrum Analizi, 
Ayrık Dalgacık Dönüşümü 

Öz: Bu çalışmada, doğal bir gölde ortalama su seviyesinin bir aydan altıncı aya 
kadar olan aylık ileri tahmini için hibrit yöntemler geliştirilmiştir. Göl su seviyesi 
verileri Ayrık Dalgacık Dönüşümü (DWT), Ampirik Kip Ayrıştırma (EMD), Tekil 
Spektrum Analiz (SSA) teknikleri kullanılarak ön işleme tabi tutulmuştur ve elde 
edilen bu alt bant sinyalleri Yapay Sinir Ağlarına (YSA) giriş verileri olarak 
uygulanmıştır. Böylece üç farklı hibrit model elde edilmiş olup bu modellerin 
tahmin performansı analiz edilmiştir. Elde edilen sonuçlara göre, su seviyesi 
verilerine uygulanan ön işleme yöntemleri ile elde edilen hibrit yaklaşımların 
model performansını iyileştirdiği gözlemlenmiştir ve EMD-ANN ve SSA-ANN hibrit 
modellerinin bir ila altı aylık bir tahmin dönemi için ortalama aylık göl suyu 
seviyelerini ANN ve DWT-ANN modeline göre daha iyi tahmin ettiği görülmüştür. 

1.Introduction

Information about the water-related events acquired from gauged data is important because these data are used 
to estimate their future magnitudes. Quantitative estimation of future hydrological phenomena is important for 
analyzing and predicting the behavior of the nature and also for the optimal utilization of water resources 
leading to a more productive water management. Lakes are one of the most important resource on the world. 
Therefore, accurate water level forecasting of natural lakes is crucial. Lake water level estimations are needed 
for planning of water supplies, hydropower plants, commercial navigation, fishing industry, design of hydraulic 
and other structures along the coasts, evaluation of the aquatic ecosystem, and monitoring and regulation of 
water quality [1, 2]. 
As an example for the significance of forecasting the lake water surface elevations in a couple of months ahead, 
we can mention the present situation of Lake Beyşehir and the man-made Beyşehir canal conveying irrigation 
water diverted from it. Lake Beyşehir is the largest freshwater lake in Türkiye having clear water suitable for 
irrigation and even for municipal purpose. At a northern edge of this lake there is a man-made canal known as 
Beyşehir Creek which discharges the lake with a flow rate as much as 30 m3/s into the land-locked Konya plain 
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provided that the lake water surface elevation is higher than 1123.35 m above mean sea level [3]. With the 
objective of releasing as much water as needed during the cultivation season, the Beyşehir Weir, which has 15 
bays and 15 sluice gates, was contracted by the Ottoman Empire to a German company in 1908, and the 
construction was completed in 1914. Conveyance of water through Beyşehir Creek with the purpose of irrigating 
cultivated fields along the 60 km length until the canal joins the Suğla Lake has been provided in a controlled 
manner since 1914, and this practice is still operational today with further smaller diversions and subsidiary 
canals having been added along the way [3]. This irrigation activity has significantly increased the production of 
mainly chickpea and lintel in that portion of the fertile Konya plain. In short, the accurate prediction of the water 
surface elevation of Lake Beyşehir one, two, or three months ahead of the summer season would improve 
irrigation planning and management. As a second example of the significant effects of lake water level changes, 
the case of Lake Van can be mentioned. The excessive rising of Lake Van in 1996, the largest lake in Türkiye, 
which lies in the Eastern Anatolia Region, caused disruption of train services between Iran and Türkiye during 
that period, among other problematic issues. While the average water level of Lake Van over the period from 
1944 through 2007 was around 1648.0 m above MSL, the water level reached an elevation of 1950.2 m in 1996 
[4-6]. Because the train station was built along Lake Van's coast to transfer the Ro-Ro train from the ferry boat to 
the railway at the station, the unexpected rise of Lake Van that year caused inundation of the train station. There 
were problems with bus services, too. And, quite a few commercial and residential buildings and some 
agricultural fields nearby the coast of the lake were also inundated, causing considerable losses [4-6]. If the lake 
surface elevation could have been forecasted three months prior to the flooding, the transportation management 
to and from Iran would have been planned in another way, and precautionary measures in other sectors also 
could have been taken beforehand. Lake water level data, like other hydrological data, are inherently nonlinear 
and non-stationary. Many studies have been done to estimate and simulate these data. The early studies had 
been based on linear approaches such as parametric autoregressive and autoregressive moving average models, 
which had been introduced in the 1970s to analyze time series [7, 8]. These techniques assume that the time 
series is stationary and linear [9, 10]. The wavelet transform (WT), which is frequently used in the analysis of 
time series, enables the analysis of signals in both the time and frequency domains. WT is used in the estimation 
of the hydrological data as well because it makes the estimation easier by decomposing the signal at different 
resolution levels. Sifüzzaman analyzed the WT and Fourier Transform (FT) methods by detailed comparative 
studies and concluded that WT has several advantages over FT [11]. 
Wavelet analysis and short-time Fourier analysis have been designed for linear but non-stationary data analysis 
[12, 13]. Using wavelet analysis, Smith et al. carried out studies on the characterization and estimation of stream 
flows [14]. 
Yet, nonparametric models have also been used for hydrological time series analysis and estimation. Yakowitz, 
for example, presented a stochastic model for river flows [15]. In recent years, artificial intelligence (AI) 
techniques have been widely used in nonlinear hydrological applications and noisy data sets [16]. Artificial 
intelligence methods include mathematical optimization algorithms as well as logic, classification, statistical 
learning, and probability-based methods. The Artificial Neural Networks (ANN) approach, based on the principle 
of parallel processing of information by simulating the neuron structure in the human brain, has been used in 
many studies on the estimation of hydrological data. In the study conducted by the ASCE Task Committee, the 
place of ANN in hydrology has been investigated, and the strengths and limitations of the ANN methods have 
been compared to those of other approaches [17]. In general, an ANN model consists of three layers: (1) the 
input layer, into which the input data are loaded, (2) the hidden layer, to which the activation function is applied, 
and (3) the output layer, which produces the expected outcome. Hornik et al. have applied the forward feed-back 
propagation (FFBP) algorithm to ANN for the first time and used it for the modeling of hydrological data. This 
algorithm finds the error between the real and the estimated values by investigating the best link weights [18]. 
In relevant literature, many studies on flow estimation using different ANN structures and learning algorithms 
can be found [19]. Furthermore, hybrid models, Mamdani and Tagai Sugeno fuzzy system approaches, and ANN 
models for flow estimation have been introduced by combining Support Vector Machines (SVM), Adaptive Neuro 
Fuzzy Inference System (ANFIS) models, and ANN models [20-22]. Partal (2008) developed a hybrid model for 
flow estimation by combining different ANN structures with WT [23]. The flow data were decomposed into 
periodic components in his model. The ANN structure was used to estimate the decomposed data. The result was 
a successful estimation obtained by the developed hybrid structure. As presented in the related literature, 
approaches based on artificial intelligence techniques such as ANN, SVM, and ANFIS, which are nonlinear models, 
have been used in the estimation of non-linear and non-stationary data. Hybrid approaches have been developed 
to improve the performance of these approaches. The most widely used hybrid approach is also the WT-ANN 
model [24]. The Empirical Mode Decomposition (EMD) technique is another approach for analyzing non-linear 
and non-stationary data [25]. Kişi et al (2014) and Rezaie-Balf et al. (2019) revealed in their studies the success 
of a hybrid approach using the EMD method in estimating flow data [26, 27]. Another important method that 
differentiates the signals with respect to time is the single-spectrum analysis (SSA) technique, which is one of the 
most powerful approaches among multivariate analysis schemes. This method has been widely used recently in 
the analysis of stationary and non-stationary data, because it is a non-parametric model and does not require 
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priority of the data as in the EMD technique [28, 29]. In another study, Latifoğlu et al. (2015) demonstrated the 
success of a hybrid approach using the SSA method in the estimation problem [30, 31]. According to relevant 
literature research, hybrid models have been used at an increasing rate in forecasting studies in recent years. In 
this study, for estimating the monthly water surface elevations of the natural lake of Eğirdir in Türkiye, a pre-
processing treatment has been applied to the raw gauged data by separating them into subbands by each one of 
the EMD, SSA, and wavelet methods separately. Next, the estimation performance of the subband data has been 
analyzed by ANN using the pre-processed data. The lake water level data have been estimated by each of the 
hybrid models EMD-ANN, SSA-ANN, and WT-ANN. The performances of these hybrid models and of the 
conventional ANN model have been compared with each other. To the best of our knowledge, there is not a study 
in the literature analyzing and comparing the performances of the EMD-ANN, SSA-ANN, and WT-ANN hybrid 
models for forecasting lake water levels. Some meteorological factors, such as evaporation from the lake surface, 
wind speed, humidity, and temperature, affect the lake water level. Naturally, these happenings vary spatially 
from one region to another. Instead of inserting many inputs into the forecasting model, some of which may not 
even be gauged, forming a forecasting model that uses the recorded previous lake levels is obviously more 
advantageous. In this study, the lake water levels for the near future for periods from one month up to six 
months have been forecasted using past recorded data only by hybrid models, which have not been used before 
for lake level predictions using proposed models.  

2. Material and Method

Recently, artificial intelligence techniques have been used as an alternative to classical approaches for estimation 
of hydrological data. Among them, ANN is quite common. In addition to the traditional ANN method, the relevant 
literature reveals that data pre-processing has recently been used for estimation calculations. The wavelet 
transform has been used in earlier attempts at pre-processing the hydrological data, which decomposed the data 
according to its frequency characteristics [23, 32, 33]. Because the hydrological data have a non-linear and non-
stationary structure, the EMD scheme turns out to be one of the methods that can be used appropriately for the 
time-domain analysis of these data [26, 34]. Another suitable method of analysis for stationary/non-stationary 
and linear/nonlinear data is the SSA approach. This method is a multivariate analysis method that processes 
signals based on their time domain properties. Because there is no need for prior data, the EMD methods are 
widely used [28-31, 35]. In this study, the performance of a hybrid approach for estimation of lake water levels 
has been investigated. For this purpose, the gauged lake water level data have been divided into two segments as 
training and test data and further divided into subbands by the EMD, SSA, and DWT methods [30, 31]. The 
subband signals have been estimated using ANN. The flow chart of the study is shown below in Figure 1. 

2.1 Lake water level data description 

The monthly average water surface elevations of Lake Eğirdir had been continuously gauged from 1953 through 
1999. Hence, this data consisting of 523 successive numbers has been used as the material for this study (Figure 
2). 310 of these elements have been used for the training phase, and the rest, 213 values, have been used for the 
testing stage [31]. These data are normalized as shown in Figure 3. 
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Figure 1. Flow chart for the proposed forecasting model 

Figure 2. Basin of the Lake Eğirdir in Türkiye 
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Figure 3a. Water level data measured on Lake Eğirdir 

Figure3b. Train data for forecasting model Figure3c. Test data for forecasting model 

2.2 Empirical Mode Decomposition method 

The Empirical Mode Decomposition (EMD) method has decomposed a signal into components called Intrinsic 
Mode Functions (IMF). The signal is defined as the sum of the IMF components and the residual signal, as 
depicted by Equation 1 below [25]. 
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The signal is subjected to the constraints defined below. 
• The total number of maximum or minimum points and zero crossing points in the data set must be equal
or differ by one element only.
• The average of the envelopes formed by local maximas at any position and the envelopes defined by
local minimas should be zero.
This time-domain separation approach is simple to implement and incredibly efficient. The signals in the time
axis are handled as a mix of repeating and original oscillations with a local mean of zero that are dispersed
symmetrically around it in this technique.
The initial step is to identify the maxima and minima, as well as the zero crossing locations.
The upper and lower envelopes of the signals are obtained in the second step by treating both peaks and
minima with cubic interpolations.
In the third stage, Equation 2 below computes the average of the upper and lower envelopes for the whole time
period.
m1(t) = [zmax(t) +zmin(t)] /2  (2) 

In the fourth step, the average signal is subtracted from the actual signal as given by Equation 3 below to obtain 
the detail signal, d(t). 
d(t) = x(t) − m(t) (3)
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The detail signal is processed as if it were a new original signal in the fifth stage, and the process steps are 
repeated until the terminate requirement is met. 
The two-level decomposition approach was used in this study to obtain good estimation accuracy on both the 
training and testing parts of the lake water level data. As shown in Figure 4, three subsets were found, including 
two subsets of IMF and R [31].  In all data sets, the last value has to be neither maxima nor minima. The reason 
for this is; if the final values in the data are determined as maxima or minima, a limitation of the so-called 
boundary effect of the EMD method arises for estimation studies and makes the model dependent on the future 
[35, 36]. In order to prevent this, while the IMF values in the training data have been determined, the final values 
in the data have been chosen not including the extremum points [36, 37]. 

Figure 4a. Training subband signal decomposed by the EMD method 

Figure 4b. Testing subband signal decomposed by the EMD method 

2.3 Singular Spectrum Analysis method 

Singular-spectrum analysis (SSA) is a decomposition method that uses the time information of the signal. SSA 
does not require any parametric model and does not call for a prerequisite. This method involves two main 
stages: decomposition and reconstruction. In the decomposition step, the embedding process and singular value 
decomposition (SVD) are applied, which express the signal as a matrix. In the reconstruction phase, there are 
grouping and diagonal averaging processes [28].  
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In the embedding process, which is the first step of the decomposition stage, the time series: X = [X1, X2, 
X3,……,XN] is expressed as a matrix of K rows and L columns (K×L) instead of a one-dimensional single row by 
taking the specified window length (L). The embedding process, expressed as the trajectory matrix of the signal, 
is also referred to as the Hankel matrix. The window length L is in the range of 1<L<N, N is the length of the 
signal and K = N − L + 1. In this case, the trajectory matrix Tx is defined as follows: 
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The SVD process is carried out after the embedding process as a second step of the decomposition stage. 
Multiplications of Tx and TxT matrices yield three kinds of matrices called the eigen triple (U orthonormal unit 
matrix of K×K size and S diagonal matrix of K×L size from the Txi*TxiT operation, and V orthonormal unit matrix 
of L×L size from the TxiT*Txi operation). And, Xi’s are determined as follows: 
Xi = Ui*Si*Vi (5) 

Next, the second stage, the reconstruction stage including the grouping and averaging steps is executed. At the 
grouping step, the singular values obtained from SVD (Si) are plotted, categorized according to their components 
such as monthly or seasonal components, white noise, trend. Equation 4 is rewritten with the number of 
categories determined based on the representation rate of eigenvalues. 

      
(6) 

At the last step of this stage called averaging, the regrouped matrix Tx is transformed into a time serie by 
averaging the Xij elements diagonally. The average of those Xij elements for which the sum of the i and j indices is 
a constant yields the kth element of the new time series component, called the reconstructive component (RC) 
satisfying i+j = k+2. This procedure is said to be dehankelization of the matrix. At the end of this process, the new 
subband time series components (RC) are obtained. 
Since the monthly lake water level data used in this study should reflect the nature’s periodic structure, the 
window length is determined to be 12 in the embedding process. The data are divided into subbands according 
to the eigenvalues (1.), (2.) and (3-12.). These are the subband signals, which are expected to lead to the best 
estimates as seen in Figure 5 [31]. 

Figure 5a. Training subband signals decomposed by the SSA method 
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Figure 5b. Testing subband signals decomposed by the SSA method 

2.4 Discrete Wavelet Transform method 

The Discrete Wavelet Transform (DWT) method runs like a filter bank that decomposes the signals according to 
the frequency bands. This method, which is based on sub-band coding, has been introduced for the fast 
calculation of the Continuous Wavelet Transform method, is used to analyze the signal at different scales using 
different cut-off frequency filters. In order to handle the low frequencies in it, the signal is passed through the 
low pass filter, and to analyze the high frequencies in the signal, it is passed through the high-pass filter. The 
resolution of the signal, indicating the amount of detailed information in the signal, is changed by the filtering 
process, and the scale is replaced by downsampling and upsampling operations. x[n], where n is an integer, 
represents the signal (Fig. 6). While the low pass filter is indicated by G0, the high-pass filter is indicated by H0 
[36]. 

x[n] 

H0

G0

  2

  2

d1[n]

H0

G0

  2

  2

d2[n]

a2[n]

Figure 6. Subband decomposition operation during DWT 

For each level, while the high pass filter produces the information of the detail (d[n]), the low pass filter 
produces the information of the approximation (a[n]) by the scale function. At each decomposition level, the 
semi-band filters produce a signal in half the frequency band. The filtering process continues until it reaches the 
desired level. This process is also called "multi-resolution analysis". The maximum number of levels depends on 
the length of the data. This operation is the opposite of the decomposition process (Fig. 7). The detail and the 
approximation coefficients at each level are sampled with 2 and passed through the low- and high-pass filters, 
then combined. Then, this process continues to the level of the decomposition process to obtain the original 
signal [36]. 
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d2[n]
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  2
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  2 H1
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Figure 7. Reconstruction operation during DWT 
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In this study, the lake water level data have been treated by a two-level decomposition process. Thus, the lake 
water level signal has been decomposed into the approximation (a2) and detail (d2, d1) subbands (Fig. 8). We 
have used Daubechies' 4th wavelet function in the decomposition process. The following figure shows the lake 
water level data used in the training and testing phases, which are decomposed into subbands by using the 
Discrete Wavelet Transform (DWT) method. 

Figure 8.a. Training subband signal decomposed by the DWT method 

Figure 8.b. Testing subband signal decomposed by the DWT method 

2.4 The method of Artificial Neural Networks 

Because of its features, such as the capacity to handle nonlinear structures and parallel and serial processing 
capabilities, the ANN has recently become widely employed in data estimation. The sum and activation functions, 
as well as the learning strategy of the processor components and the learning rule, are employed in an ANN 
structure, and the topology determined by the connection of process elements produces the network model. 
Artificial neural cells (neurons) unite to create their ANN. Neurons are not collected at random. Cells, in general, 
comprise a three-layer network and are arranged in parallel inside each layer. These are the input, inner 
(hidden), and output layers [37, 38].  
The most widely used version of ANN is the multi-layer perceptron (MLP) model. An MLP model consists of the 
input layer, one or more hidden layers, and the output layer, and each one has at least one neuron layer. The 
input layer processor components act as a buffer, distributing input signals to the hidden layer processing units. 
Each of these parts incorporates the input data into the sum function by multiplying it by the weight coefficients 
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that represent the effectiveness of the input over the hidden neuron. These sum functions are then transferred 
via a transfer function to compute the output value of that neuron. These procedures are carried out for each 
processor in this tier. The processor units of the output layer also serve as hidden layer elements, calculating 
network output values. Because the information flow in the MLP model is in the forward direction, it is also 
known as "feed forward ANN". One advantage of this approach is that it may train the network using a variety of 
learning techniques. The weights of the network are modified according to the training procedure until the error 
between the network's output and the desired output is reduced. Back Propagation Neural Network (BPNN) is a 
feed forward network and is the most commonly used ANN model in time series estimation. In our study, the 
MLP model and back propagation neural network (BPNN) feed forward network structure were used. In the 
ANN, different learning algorithms are used to train the network. MLP-ANN is based on a supervised learning 
strategy in which both input and output (that has to be produced corresponding to the input) are applied to the 
network during training. The task of the network is to produce an output for each input. MLP-ANN learning 
occurs in two steps. The output of the network is computed in the first stage, the forward calculation stage. The 
weights are determined in the second stage, the backward calculation stage, based on the difference between the 
predicted output and the network output. The MLP-ANN learning rule is known as the back-propagated MLP 
learning rule because it is carried out in this manner via back-propagating. The Levenberg-Marquardt (LM) 
learning method, which outperforms the ANN in terms of computing speed, is utilized here to estimate lake 
water level data. The LM algorithm is similar to the Quasi-Newton method based on the least squares calculation 
and the maximum neighborhood approaching the second-degree training speed without the use of a Hessian 
matrix [39]. 
 
2.5 Parameters Used For Performance Criteria 
 
The statistical criteria commonly used for comparing the estimation accuracies of the hydrological data by 
various modeling techniques are the mean absolute error (MAE), the mean square error (MSE), the 
determination coefficient (R2), and the correlation coefficient (R). In the lake water level estimation study, we 
have used these parameters to evaluate the performances of the models. 
The Mean Square Error (MSE): MSE is the arithmetic average of the squares of the differences of the observed 
values in the series from the ones estimated by the model used, and is defined by Equation 7 below. 
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The Mean Absolute Error (MAE): MAE is the arithmetic average of the absolute differences of the observed 
values in the series from the ones estimated by the model used, and is defined by Equation 8 below. 
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Determination Coefficient (R2): R2 is a measure which quantitatively reflects the accuracy of the estimated 
values given by the model defined by Equation 9 below. The second term in Equation 9 approaches zero for a 
powerful model. Therefore, R2 approaches 1 for a good model. 
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Correlation Coefficient (R): It indicates the degree and trend of whether a linear relationship exists between 
the observed and estimated series. R accepts values ranging from -1 to +1. There is no association between the 
two data sets if R is near to zero, a significant positive relationship if R is close to +1, and a negative relationship 
if R is close to -1. Equation 10 below defines R. 
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Here,    and    represent the mean and standard deviation of the X data set, respectively, whereas    and    
represent the mean and standard deviation of the Y data set. 
 
3. Results  
3.1 Results for forecasting the lake water levels using the ANN Model 
In the first stage of this study, in order to evaluate the effect of pre-processing by the DWT, SSA, and EMD 
methods on the estimation of the water level data of Lake Eğirdir, the data estimation process has been 
performed without any pre-processing on these data by using the ANN model. For the estimation of the data, the 
MLP-ANN structure consists of the input, an hidden layer, and an output layer. The number of hidden layer 
neurons has been increased from 1 to 9 stepwise and the number of neurons in the hidden layer has been 
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determined according to the lowest mean square error. In order to determine the best ANN model; MSE and MAE 
values have been used as the network performance criteria and trained by using the Levenberg Marquardt back 
propagation algorithm. Successively one-month through six-months ahead forecasted lake levels have been 
computed using such formed ANN model and the error values that occured during the ANN training and testing 
stages are given in Table 1. Figure 9 shows the graphs of one-month ahead and six-months ahead forecasted 
values of the test phase by the ANN model [31]. 

Table 1. The performance values of the estimated data obtained from one to six ahead forecasting results using the ANN 
model for the monthly water levels of Lake Eğirdir 
ONE AHEAD FORECASTING WITH ANN MODEL 

TEST TRAIN 
MSE MAE R R2 MSE MAE R R2 

0.0009 0.0264 0.9870 0.9742 0.0008 0.0227 0.9860 0.9855 

TWO AHEAD FORECASTING WITH ANN MODEL

0.0033 0.0501 0.9541 0.9103 0.0027 0.0436 0.9542 0.9522 

THREE AHEAD FORECASTING WITH ANN MODEL

0.0064 0.0696 0.9120 0.8318 0.0051 0.0610 0.9120 0.9098 

FOUR AHEAD FORECASTING WITH ANN MODEL

0.0093 0.0846 0.8726 0.7614 0.0073 0.0731 0.8726 0.8617 

FIVE AHEAD FORECASTING WITH ANN MODEL

0.0117 0.0935 0.8443 0.7128 0.0090 0.0806 0.8443 0.8472 

SIX AHEAD FORECASTING WITH ANN MODEL

0.0136 0.0982 0.8317 0.6897 0.0096 0.0821 0.8317 0.8293 

Figure 9a- One month ahead forecasted water level data 
obtained from the ANN model  

Figure 9b- Six month ahead forecasted water level data 
obtained from the ANN model  

3.2 Results for forecasting the lake water levels using the EMD-ANN model 

First, the training and test data have been decomposed into two IMF components by the EMD method. In this 
way, hydrological training and test data have been defined by the three-component equation of: The ANN model 
has been used to estimate the data of Lake Eğirdir, which has been divided into three components, two IMF and 
one residual data. 

For the estimation study, the same structure and design procedures have been carried out in the EMD-ANN 
model as with the ANN. For each subband, ANNs have been trained using the Levenberg Marquardt back 
propagation algorithm. In order to determine the best ANN model, the MSE and MAE values have been used as 
performance criteria. Using the EMD-ANN model, one-month through six-months ahead forecasted values have 
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been obtained, and the error values that occur during the EMD-ANN training and testing phases have turned out 
to be as given in Table 2. Figure 10 shows the graphs of one-month ahead and six-months ahead forecasted 
values of the test phase by the EMD-ANN model [31]. 

Table 2a. The performance values of the subband estimated data obtained for one-step to six-step ahead forecasting results 
of subbands by using EMD-ANN model for monthly water levels of Lake Eğirdir 

ONE AHEAD FORECASTING 
TEST TRAIN 
MSE MAE R R2 MSE MAE R R2 

IMF1 0.0006 0.0198 0.8599 0.7378 0.0008 0.0246 0.8698 0.7442 
IMF2 0.00001 0.0065 0.9816 0.9831 0.000001 0.0036 0.9913 0.9292 
R 0.00001 0.0073 0.9995 0.999 0.000001 0.0043 0.9997 0.9992 

TWO AHEAD FORECASTING 
IMF1 0.0017 0.0339 0.5063 0.2596 0.0023 0.0417 0.4919 0.2398 
IMF2 0.0002 0.0122 0.8644 0.8073 0.0001 0.0064 0.9697 0.9442 
R 0.0002 0.0116 0.9984 0.9967 0.0001 0.0068 0.9989 0.9976 

THREE AHEAD FORECASTING 
IMF1 0.0022 0.0395 0.0505 0.0193 0.0030 0.0481 0.0172 0.0118 
IMF2 0.0004 0.0169 0.8837 0.8761 0.0001 0.0092 0.9360 0.8142 
R 0.0004 0.0170 0.9963 0.9945 0.0003 0.0152 0.9973 0.9927 

FOUR AHEAD FORECASTING 
IMF1 0.0018 0.0357 0.4144 0.2433 0.0024 0.0427 0.4380 0.1639 
IMF2 0.0007 0.0208 0.6428 0.7841 0.0002 0.0126 0.8855 0.4132 
R 0.0007 0.0226 0.9936 0.9899 0.0006 0.0208 0.9950 0.9872 

FIVE AHEAD FORECASTING 
IMF1 0.0010 0.0264 0.7332 0.6246 0.0011 0.0273 0.7954 0.5480 
IMF2 0.0009 0.0233 0.7027 0.6658 0.0003 0.0153 0.7940 0.2411 
R 0.0011 0.0281 0.9901 0.9837 0.0010 0.0266 0.9918 0.9802 

SIX AHEAD FORECASTING 
IMF1 0.0005 0.0192 0.9042 0.8220 0.0005 0.0184 0.8722 0.7586 
IMF2 0.0005 0.0183 0.6907 0.4309 0.0010 0.0237 0.4103 0.2796 
R 0.0015 0.0327 0.9878 0.9757 0.0015 0.0334 0.9859 0.9720 

Table 2b The magnitudes of the parameters used as performance criteria for estimation of monthly water levels of Lake 
Eğirdir by the EMD-ANN model for one-step to six-step ahead forecastings 

ONE AHEAD FORECASTING WITH EMD-ANN MODEL 
TEST TRAIN 

MSE MAE R R2 MSE MAE R R2 

0.0009 0.0252 0.9879 0.9758 0.0007 0.0226 0.9939 0.9876 

TWO AHEAD FORECASTING WITH EMD-ANN MODEL 

0.0025 0.0430 0.9649 0.9306 0.0021 0.0392 0.9817 0.9640 

THREE AHEAD FORECASTING WITH EMD-ANN MODEL 

0.0035 0.0503 0.9515 0.9076 0.0032 0.0474 0.9729 0.9468 

FOUR AHEAD FORECASTING WITH EMD-ANN MODEL 

0.0034 0.0471 0.9563 0.9175 0.0033 0.0468 0.9716 0.9433 

FIVE AHEAD FORECASTING WITH EMD-ANN MODEL 

0.0027 0.0405 0.9698 0.9405 0.0030 0.0445 0.9743 0.9483 

SIX AHEAD FORECASTING WITH EMD-ANN MODEL 

0.0027 0.0498 0.9717 0.9429 0.0020 0.0443 0.9742 0.9493 
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Figure 10.a. One month ahead forecasted water level data 
obtained from EMD-ANN model  

Figure 10.b. Six month ahead forecasted water level data 
obtained from EMD-ANN model 

3.3 Results for forecasting the lake water levels using the SSA-ANN model 

The signals, which are the lake water levels in this case, are decomposed into related and non-related 
components symbolized by RCi, using the SSA method, and they have been recovered as RC1 + RC2 + RC3. In the 
SSA process, the signals are subjected to the hankelization process with a 12 length of window size and 
transformed into the trajectory matrix. The component with the highest eigenvalue is denoted by RC1, the 
component with the second highest eigenvalue by RC2, and the component with the other eigenvalues by RC3.  
For the estimation study, the same structure and design procedures have been carried out in the SSA-ANN model 
as in the ANN and EMD-ANN models. Using the SSA-ANN model also, one-month through six-months ahead 
forecasted values have been obtained; and the resulting error values that occurred with this model are presented 
in Table 3. Figure 11 shows the graphs of one-month-ahead and three-months-ahead forecasted values of the 
test phase by the SSA-ANN model [31]. 

Table 3.a The performance values of the subband estimation data obtained from one to six ahead forecasting results of 
subbands using the SSA-ANN model for monthly water levels of Lake Eğirdir 

ONE AHEAD FORECASTING 
TEST TRAIN 
MSE MAE R R2 MSE MAE R R2 

RC1 0.000001 0.0031 0.9999 0.9954 0.000001 0.0024 0.9999 0.9987 
RC2 0.0003 0.0070 0.9889 0.8185 0.000001 0.0042 0.9983 0.8243 
RC3 0.0008 0.0247 0.8709 0.7416 0.0007 0.0216 0.9232 0.7574 

TWO AHEAD FORECASTING 
RC1 0.000001 0.0031 0.9998 0.9963 0.000001 0.0029 0.9998 0.9968 
RC2 0.0003 0.0079 0.9801 0.7515 0.0001 0.0072 0.9948 0.7857 
RC3 0.0025 0.0428 0.5477 0.3369 0.0022 0.0394 0.7457 0.3577 

THREE AHEAD FORECASTING 
RC1 0.0001 0.0055 0.9994 0.9914 0.0001 0.0074 0.9996 0.9929 
RC2 0.0001 0.0068 0.9912 0.8942 0.0001 0.0077 0.9929 0.9655 
RC3 0.0037 0.0526 0.1315 0.098 0.0036 0.0499 0.5053 0.0897 

FOUR AHEAD FORECASTING 
RC1 0.0001 0.0060 0.9991 0.9846 0.000001 0.0057 0.9993 0.9877 
RC2 0.0001 0.0079 0.9917 0.8142 0.0001 0.0097 0.9880 0.9537 
RC3 0.0034 0.0499 0.1001 0.0606 0.0049 0.0863 0.1806 0.0842 

FIVE AHEAD FORECASTING 
RC1 0.0001 0.0075 0.9986 0.9757 0.0001 0.0053 0.9991 0.9814 
RC2 0.0002 0.0094 0.9862 0.9478 0.0002 0.0119 0.9815 0.9431 
RC3 0.0034 0.0500 0.0829 0.0823 0.0048 0.0553 0.1652 0.1563 

SIX AHEAD FORECASTING 
RC1 0.0002 0.0090 0.9979 0.9642 0.0001 0.0084 0.9984 0.9741 
RC2 0.0003 0.0110 0.9785 0.9696 0.0003 0.0141 0.9737 0.8081 
RC3 0.0029 0.0446 0.4435 0.4081 0.0046 0.0543 0.2383 0.2315 

Table 3b The performance values of the estimation data obtained from one to six six ahead forecasting results using the SSA-
ANN model for the monthly water levels of Lake Eğirdir 
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SSA-ANN MODEL ONE AHEAD FORECASTING 
TEST TRAIN 
MSE MAE R R2 MSE MAE R R2 

0.0010 0.0257 0.9869 0.9758 0.0008 0.02180 0.9939 0.9776 

TWO AHEAD FORECASTING WITH SSA-ANN MODEL

0.0028 0.0451 0.9611 0.9540 0.0024 0.0357 0.9623 0.9589 

THREE AHEAD FORECASTING SSA-ANN MODEL

0.0037 0.0545 0.9430 0.9214 0.0030 0.0526 0.9659 0.9533 

FOUR AHEAD FORECASTING SSA-ANN MODEL

0.0038 0.0552 0.9456 0.9325 0.0024 0.0511 0.9528 0.9489 

FIVE AHEAD FORECASTING SSA-ANN MODEL

0.0039 0.0568 0.9446 0.9502 0.0036 0.0517 0.9514 0.9605 

SIX AHEAD FORECASTING SSA-ANN MODEL

0.0053 0.0583 0.9529 0.9520 0.0045 0.0467 0.9532 0.9529 

Figure 11.a. One month ahead forecasted water level data 
computed by the SSA-ANN model  

Figure 11.b. Six month ahead forecasted water level data 
computed by the SSA-ANN model  

3.4 Results For Forecasting The Lake Water Levels Using The DWT-ANN Model 

For the monthly lake water level data, the DWT method also has been decomposed into related and non-related 
components. The two levels of the signals that are decomposed by DWT are approximation (A) and detail (D1, 
D2) signals. In this way, both hydrological training and test data are expressed by the equation: x (t) = A + D1 + 
D2. For the estimation study, the same structure and design procedures have been carried out in the DWT-ANN 
model as in the ANN, EMD-ANN, SSA-ANN models. Using the DWT-ANN model also, one-month through six-
months ahead forecasted values have been computed and the error values that occurred during the training and 
test phases turned out to be as given Table 4. Figure 12 shows the graphs of one-month ahead and three-months 
ahead forecasted values of the test phase by the DWT-ANN model. 

Table 4.a The performance values of the subband estimation data obtained from one to six ahead forecasting results of the 
subbands using the DWT-ANN model for the monthly water levels of Lake Eğirdir 

ONE AHEAD FORECASTING 
TEST TRAIN 
MSE MAE R R2 MSE MAE R R2 

D1 0.000001 0.0034 0.4273 0.1826 0.000001 0.0028 0.4302 0.1851 
D2 0.000007 0.0068 0.4379 0.1917 0.00002 0.0122 0.4494 0.2019 
A  0.00009 0.0253 0.9882 0.9766 0.00007 0.0215 0.9934 0.9868 

TWO AHEAD FORECASTING 
D1 0.000002 0.0035 0.3841 0.1475 0.00001 0.0030 0.3161 0.0999 
D2 0.000009 0.0078 0.3254 0.1059 0.00002 0.0121 0.4974 0.2474 
A  0.0034 0.0486 0.9578 0.9174 0.0024 0.0396 0.9777 0.9559 

THREE AHEAD FORECASTING 
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D1 0.000002 0.0035 0.4710 0.2219 0.000001 0.0029 0.2150 0.0462 
D2 0.000003 0.0051 0.7602 0.5779 0.00001 0.0085 0.7731 0.5976 
A  0.0064 0.0681 0.9219 0.8500 0.0044 0.0534 0.9594 0.9204 

FOUR AHEAD FORECASTING 
D1 0.000002 0.0038 0.1326 0.0176 0.00001 0.0030 0.1369 0.0187 
D2 0.000008 0.0077 0.3314 0.1098 0.00002 0.0120 0.4913 0.2414 
A  0.0089 0.0801 0.8914 0.7947 0.0063 0.0638 0.9413 0.8860 

FIVE AHEAD FORECASTING 
D1 2.4456x10-5 0.0039 0.1479 0.0219 0.000001 0.0032 0.0093 0.00008 
D2 1.0356x10-4 0.0081 0.1755 0.0308 0.00002 0.0126 0.3453 0.1192 
A  0.0106 0.0867 0.8714 0.7593 0.0076 0.0702 0.9280 0.8612 

SIX AHEAD FORECASTING 
D1 0.00002 0.0042 0.2515 0.0633 0.000001 0.0030 0.2234 0.0499 
D2 0.000005 0.0058 0.7448 0.5548 0.000009 0.0077 0.7879 0.6207 
A  0.0107 0.0867 0.8688 0.7548 0.0085 0.0748 0.9186 0.8438 

Table 4b The performance values of one to six ahead forecasting data obtained by using the DWT-ANN model for monthly 
water levels of Lake Eğirdir 

ONE AHEAD FORECASTING WITH WAVELET-ANN MODEL 
TEST TRAIN 
MSE MAE R R2 MSE MAE R R2 

0.0010 0.0267 0.9874 0.9750 0.00007 0.0224 0.9932 0.9865 

TWO AHEAD FORECASTING WITH WAVELET-ANN MODEL

0.0038 0.0516 0.9529 0.9081 0.0024 0.0400 0.9779 0.9563 

THREE AHEAD FORECASTING WITH WAVELET-ANN MODEL 

0.0067 0.0697 0.9189 0.8443 0.0044 0.0540 0.9592 0.9200 

FOUR AHEAD FORECASTING WITH WAVELET-ANN MODEL

0.0090 0.0816 0.8899 0.7920 0.0066 0.0662 0.9381 0.8800 

FIVE AHEAD FORECASTING WITH WAVELET-ANN MODEL

0.0109 0.0887 0.8663 0.7505 0.0083 0.0738 0.9213 0.8488 

SIX AHEAD FORECASTING WITH WAVELET-ANN MODEL

0.0113 0.0897 0.8613 0.7418 0.0094 0.0796 0.9094 0.8270 

Figure 12.a. One month ahead forecasted water level data 
obtained by the DWT-ANN model  

Figure 12.b. Six month ahead forecasted water level data 
obtained by the DWT-ANN model  

4. Discussion and Conclusion
When the literature is examined, there are studies that include linear and nonlinear approaches for estimating
the lake water level. In a study carried out in the literature, lake water levels were estimated up to 3-day time
intervals by using the autoregressive moving average (ARMA), ANN, adaptive-neuro-fuzzy inference system
(ANFIS), and gene expression programming (GEP). According to the results obtained, the superiority of GEP,
ANFIS, and ANN models over ARMA models has been demonstrated [40]. In another study, a recurrent neural
network (RNN) and ANFIS models were constructed, and the most suitable model was searched. In addition,
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autoregressive (AR) and autoregressive moving average (ARMA) models, which are classical stochastic models, 
were obtained and compared with RNN and ANFIS models. The results show that RNN and ANFIS can be applied 
successfully and provide higher performance in lake level estimation than AR and ARMA models [41]. In a review 
article study, it was seen that the main machine learning (ML) models ANN, SVM, ANFIS, hybrid models, 
evolutionary ML models, ELM, and deep learning models were used in lake water level estimation.  
Also, in another review article, the performance of M5-Tree, multivariate adaptive regression spline (MARS) and 
least square support vector regression (LSSVR) models in lake water level prediction was analyzed [42]. Demir 
has shown that the MARS model performs better than LSSVR and M5-tree [43]. Although great progress has been 
made in the application of ML models to predict the water level in lakes, there is still much space for further 
research [44].  
In this study, the lake water level was estimated using the ANN, EMD-ANN, SSA-ANN, and DWT-ANN methods, 
and the estimation performance of these four methods with the effect of preprocessing the time series data in the 
forecasting study was analyzed.  The difference between this study and the literature studies is that it analyzes 
the performance of the preprocessing methods in lake water level estimation. 
All of the parameters of each of the four models are computed using the available recorded series, and in our 
study, this is the 310-month portion of the approximately 44-year-long gauged data. Once a model is formed in 
the optimized way summarized in the relevant sub-sections above, based on the single lake water value of the 
present month, the water level of either one-month or two-months, …, or six-months ahead is computed 
(estimated) by that model. For example, for estimating the 311st water level by any model, the water level 
measured on the 310th day is given as the input value. Similarly, for any one-month ahead estimated water level, 
the actual water level measured one month before, for each 213-element test series, is used. Also, the actual 
water level of the present month is used for estimation of water levels more than one month ahead. Figures 9, 10, 
11, and 12 reveal the same information for the models of ANN, EMD-ANN, SSA-ANN, and DWT-ANN, respectively. 
The black lines in all of these eight figures are exactly the same because they exhibit the actual lake water levels 
measured over the 213-month test period on normalized scales. The red points represent the estimated values in 
the 213-element test segment. In any case, the closer the red points are to the solid black line, the better the 
estimation accuracy. These eight figures are provided here to allow the reader to make a visual assessment of the 
goodness of estimation accuracy of any model. As it can be observed in these figures, although the one-month 
ahead forecasts by all four methods look pretty good, the six-months ahead water levels computed by the EMD-
ANN and SSA-ANN models are closer to the black line than the other two. The two-months, three-months, four-
months, and five-months ahead levels are not given with the purpose of not elongating the paper. They have 
appearances that are relatively similar to the six-month-ahead figures, given here as Figures 9.b through 12.b. 
Figures 13a and 13b show the magnitudes of the performance parameters of R, and R2 obtained for all four 
models over the 213-month test segment, respectively. As it is seen in these four figures, one-month ahead 
prediction abilities of all of the four models seem to be good and close. However, the values begin deviating from 
each other appreciably with increasing forecast periods up to six months. The calculated performance 
parameters for the models of ANN, and DWT-ANN deteriorate while those for the models of EMD-ANN and SSA-
ANN stay fairly good and much better than the former with increasing forecast periods. 

c d 
Figure 13. The performance parameters of the EMD-ANN, SSA-ANN, DWT-ANN and ANN 

models for the estimation of monthly water levels of Lake Eğirdir 
a. R values, b. R2 values

In this study, the configurations of these four models have been formed the way summarized here and their 
model parameters have been determined out of the 310-month sequentially gauged data of water levels of Lake 
Eğirdir as summarized above. We have used the remaining 213-month segment of sequentially gauged water 
levels in Lake Eğirdir as testing for the developed models. The measured water levels of Lake Eğirdir over this 
213-month period are the actual naturally occurring water levels, and we have computed the estimated water
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levels for one-month ahead to six-month-ahead periods using these four models. Therefore, Figures 10 through 
12, and especially Figure 13, are tangible validations of these models, and yet they are comparisons of them for 
betterness in estimation accuracies. Visual observations of graphs of actual water levels and estimated water 
levels are in the same figures as those in Figures 9 through 12. The second quantification of the R and 
R2performance of these forecasted values is shown in Figure 13. The ANN, DWT-ANN, EMD-ANN, and SSA-ANN 
models are used to forecast the monthly average water levels of Lake Eğirdir in Turkey one, two, and six months 
ahead. In the study of the lake water level by the ANN model, one input layer, one hidden layer, and one output 
layer structure is used. In the estimation study carried out by the EMD-ANN model, the hydrological data are 
divided into three subbands. Two of these are the IMF components, and the other is the data called the residual 
component. These subbands are named IMF1, IMF2, and R, and an input-output ANN model is used for the 
estimation of IMF1, IMF2, and R subband data. In the estimation study performed by the SSA-ANN model, the 
hydrological data are divided into three subbands called reconstruction components (RCs). These subband data 
consist of the subband data RC1 having the first highest eigenvalue, the subband data RC2 having the second 
highest eigenvalue, and the subband data RC3 having the sum of the other residual eigenvalues. In the estimation 
study performed by the DWT-ANN model, the hydrological data are divided into three subbands. Two of these 
are the detail subbands, and the third one is the approximation data subband. These subbands are named D1, D2, 
and A. As for the other models, one input, one output ANN is used for the estimation of D1, D2, and A subband 
data. In all of the models developed for the lake water level estimation, we have performed estimation studies 
from one month ahead up to six months ahead. The worst estimation performance is obtained in three-month-
ahead forecasting. The performances are compared in three-months ahead forecasting, which is used to 
determine the best results under the worst conditions. For the three-months ahead forecasting, the magnitudes 
of the MSE, MAE, R, and R2 performance parameters have turned out to be; for the ANN model, 0.0064, 0.0696, 
0.9120, and 0.8318; for the EMD-ANN model, 0.0035, 0.0503, 0.9515, and 0.9076; for the SSA-ANN model, 
0.0037, 0.0545, 0.9430, and 0.9214; and for the DWT-ANN model, they are: 0.0067, 0.0697, 0.9189, and 0.8443, 
respectively. In the study of the hydrological data on temporal variations of the water surface level of a natural 
lake, it is seen that the performances of the estimation studies carried out by the EMD-ANN and SSA-ANN models 
are better than the estimation performances of the ANN and DWT-ANN models. Also, when compared to other 
models, the EMD-ANN and SSA-ANN models perform quite well, particularly in two-month, three-month, and six-
month ahead estimation studies. The overall result of this study is that the preprocessing performed by the SSA 
and EMD procedures for forecasting the water level of a natural lake one to six months in the future by such a 
hybrid ANN method appreciably improves the estimation performance. Hence, the conclusion and 
recommendation for natural lake management administrations is that a hybrid ANN model similar to either the 
EMD-ANN or the SSA-ANN models developed in this study will enable them to forecast the average lake water 
surface elevations in the coming couple of months up to six months with a pretty good accuracy. In this study, we 
have used two-thirds of the gauged lake water data for obtaining the relevant parameters of these models, and 
we have used the remaining one third for testing the goodness of the forecasts. The goodness of estimations has 
been checked quantitatively by those four comparison criteria. The prediction ability of the recommended 
models is indeed good because the errors are very small and the R2s are very close to 1.0. The proposed 
approach should be used for forecasting the future water levels of the other lakes reliably. 
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