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Abstract: Multi-objective optimization is a method used to produce suitable solutions for problems with more than one 
Objective. Various multi-objective optimization algorithms have been developed to apply this method to problems. In multi-
objective optimization algorithms, the pareto optimal method is used to find the appropriate solution set over the problems. In 
the Pareto optimal method, the Pareto optimal set, which consists of the solutions reached by the multi-objective optimization, 
includes all the best solutions of the problems in certain intervals. For this reason, the Pareto optimal method is a very effective 
method to find the closest value to the optimum. In this study, the Multi-Objective Golden Sine Algorithm we developed 
(MOGoldSA), the recently published Multi-Objective Artificial Hummingbird Algorithm (MOAHA), and the Non-Dominant 
Sequencing Genetic Algorithm II (NSGA-II), which has an important place among the multi-objective optimization algorithms 
in the literature, are discussed. In order to see the performance of the algorithms on unconstrained comparison functions and 
engineering problems, performance comparisons were made on performance metrics 
 
Key words: Multi-objective optimization, Pareto Optimal, unconstrained benchmark functions, performance 
metrics 
 

Güncel Çok Amaçlı Metasezgisel Optimizasyon Algoritmalarının Kısıtsız Problemler için 
Performans Analizi 

 
Öz: Çok amaçlı optimizasyon, birden fazla amacı bulunan problemlere uygun çözümler üretmek için kullanılan bir yöntemdir. 
Bu yöntemi problemlere uygulamak amacıyla çeşitli çok amaçlı optimizasyon algoritmaları geliştirilmiştir. Çok amaçlı 
optimizasyon algoritmalarında problemler üzerinden uygun çözüm kümesi bulmak için pareto optimal yöntemi kullanılmıştır. 
Pareto optimal yönteminde, çok amaçlı optimizasyonun ulaştığı çözümlerden oluşan pareto optimal kümesi, problemlerin belli 
aralıklardaki tüm en iyi çözümlerini içermektedir. Bu nedenle pareto optimal yöntemi, optimuma en yakın değeri bulmak için 
oldukça etkili bir yöntemdir. Bu çalışmada, geliştirdiğimiz Çok Amaçlı Altın Sinüs Algoritmasının (MOGoldSA), son 
zamanlarda yayınlanan Çok Amaçlı Yapay Sinekkuşu Algoritması (MOAHA) ve literatürde çok amaçlı optimizasyon 
algoritmaları içerisinde önemli yere sahip Baskın Olmayan Sıralama Genetik Algoritması II (NSGA-II) ele alınmıştır. 
Algoritmaların kısıtsız kıyaslama fonksiyonları ve mühendislik problemleri üzerindeki başarımını görmek için performans 
metrikleri üzerinde performans karşılaştırılması yapılmıştır. 
 
Anahtar kelimeler: Çok amaçlı optimizasyon, Pareto Optimal, kısıtsız kıyaslama fonksiyonları, performans metrikleri 
 
1. Introduction 
 

From past to present, people have had to struggle with many problems. Problems have become more complex 
and difficult to solve with classical (stochastic and deterministic) methods. For this reason, the importance of 
modeling, calculation and algorithm studies carried out by experts on solving problems is increasing [1]. 

 
 The heuristic optimization method is one of the leading methods developed to solve problems. 

Optimization, which is the process of producing suitable solutions in line with the objective of the problem, has 
an important place for the solution of problems in many areas encountered in daily life. Vehicle routing, logistics, 
engineering, business plan, mapping, etc. fields and engineering and benchmarking functions are examples of 
places where optimization is effective [2]. 

 
 Various optimization algorithms have been developed for the implementation of the optimization 

method. In order for algorithms to produce solutions on the problem, they need to create a mathematical model for 
the Objective. Since mathematical modeling in complex problems is very costly and difficult, algorithms that need 
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modeling are insufficient to produce solutions. Since the same is true for most linear optimization models, 
metaheuristic methods have been used. 

 
 Since metaheuristic methods examine the search space efficiently and actively regardless of the problem, 

they find the most appropriate solutions to the problems that deterministic methods cannot solve in a reasonable 
time. Metaheuristic methods do not always find the global optimum, but they are very useful because they produce 
the most effective solution to the global optimum in the fastest time [3,4]. In general, metaheuristic methods are 
evaluated in seven different categories: physics, mathematics, chemistry, biology, social, music and herd-based. 
These algorithms produce solutions by mimicking ethological, biological and physical behaviors [5]. 

 
 Multi-objective optimization algorithms are being developed to produce effective solutions to problems 

with multiple Objectives encountered in daily life. Examples of these algorithms are the Arrow Dragonfly 
Algorithm (MODA)[6], Multi-Objective Ant Lion Optimization (MOALO)[7], Multi-Objective Differential 
Evolution (MODE)[8], Multi-Objective Gray Wolf Optimization (MOGWO)[9], Algorithms such as Multi-
Objective Particle Swarm Optimization (MOPSO)[10], Non-Dominant Sequence Genetic Algorithm II 
(NSGA)[11] and Multi-Objective Artificial Hummingbird Algorithm (MOAHA)[12] can be given as examples of 
current multi-objective optimization algorithms[13]. 

 
 In this study, the effects of the MOGoldSA algorithm we developed, the newly developed MOAHA and 

the NSGA-II metaheuristic multi-objective optimization algorithms, which have an important place in the 
literature, on unconstrained comparison functions and engineering problems are examined through success criteria. 
 
2. Performance Comparison Optimization Algorithms 

 
2.1 Multi-Objective Golden Sine Algorithms (MOGoldSA) 

 
It is the version of Gold-SA developed for single-objective optimization algorithms, which has been made 

applicable to problems with more than one purpose. It is a mathematics-based metaheuristic optimization 
algorithm developed based on the sine function. The sine function can be defined as the coordinate of a point to 
the y-axis on a 1-unit radius circle whose center is the origin. It is calculated using the angle that the line drawn 
from the origin to the point makes with the y-axis. Since the values of the sine function with a definition range of 
[-1,1] are repeated at regular intervals, it is characterized as a periodic function [14]. 

 
Scanning all values of the sine function in the unit circle is similar to scanning the search space in optimization 

problems. Based on this similarity, Gold-SA was developed. Like all other swarm-based optimization algorithms, 
Gold-SA starts with a randomly generated population. For population-based algorithms, it is very important to 
choose the first population well. As shown in Equation 1, the Gold-SA initial population aims to better scan the 
search space by generating a random distribution for each dimension. 
                                                                   

V	 = 	rand(agent_no, size) 	∗ 	(ub − 	lb) 	+ 	lb   (1) 
 

The main purpose of metaheuristic methods is to search for the regions considered to be the best in the search 
area and to make sure that these areas are scanned as much as possible. Gold-SA uses the gold section method to 
do this as best as possible. The MOGoldSA method has been introduced in order to apply Gold-SA to multi-
purpose problems due to its important features such as wide scanning of the search space, producing near-optimal 
results and fast working while producing solutions to problems. The pseudo-code of MOGoldSA is given in Figure 
2 [12]. 
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Figure 2.1 Pseudo code of MOGoldSA 

2.1 Multi-Objective Artificial Hummingbird Algorithms (MOAHA) 
 
 MOAHA is an algorithm developed by Artificial Hummingbird Algorithm (AHA) for multi-objective 
optimization problems[15]. MOAHA starts with a random solution set and a random artificial hummingbird 
population by creating a fixed number of external archives. All non-dominant solutions are archived and the visit 
table is initialized. The visitation chart monitors the level of hummingbird visitation of each food source and is a 
very important component of the MOAHA algorithm. When the food source is not visited by the hummingbird for 
a long time, the value in the visitation table is high. In this case, the priority of visiting hummingbirds will be 
increased as the food source is more voluminous. During each iteration, the MOAHA has a 50% probability of 
performing a guided foraging or regional foraging. During the guided search, each hummingbird updates the 
location for the selected target food source and the dominance relationship for the visit table. In regional foraging, 
updates are made according to the local population. As a result of the search, an NDS-based solution update is 
applied and the visit table is updated. In every 2n iterations, a migration search is performed and the solutions on 
the worst front are randomly started and the visit table is changed. At the end of the iteration, if the non-dominant 
solutions in the new population exceed the size, they are added to the archive according to the external archiving 
procedure based on DECD. All these processes are repeated until the maximum number of iterations is reached. 
Finally, the archive with the optimal solution set is returned [12]. 
 
 Non-Dominant Ranking (NDS); The basic principle is that solutions dominated by fewer solutions have a 
higher dominance hierarchy. All solutions are ranked according to their dominance level. There are three different 
solution update states in NDS. These situations are shown in Figure 2.1. 
 
 



Performance Analysis of Current Multi-Objective Metaheuristic Optimization Algorithms for Unconstrained Problems 

226 
 

(1) If the candidate solution front is better than the current solution front, the candidate solution replaces the current 
solution 
(2) If the candidate solution and the current solution front are equal, the probability of being selected is 50%. 
(3) If the candidate solution front is worse than the current solution front, there is no change and the next iteration 
continues. 
 

 
Figure 2.2 a) The front of the candidate solution is better than the front of the current solution, b) The probability 
of choosing between the candidate and existing solutions is 50%, c) The front of the current solution is better than 
the front of the candidate solution [12] 
 

DECD method; The crowd distance method is an effective parameterless method to increase the variety of 
solutions [16]. For this reason, it is used in most multi-objective optimization algorithms to maintain a fixed size 
external archive by removing excessive solutions with smaller crowd distance. When a solution is removed, the 
order of the crowd distance of the remaining solutions will change. Therefore, the next solution to be removed in 
terms of the initial crowd order may not have the current crowd order, reducing the variety of solutions in the 
archive. The crowd-distance-based archiving procedure is ineffective in maintaining the sustainable diversity of 
the optimal solution set. Therefore, an external archive with DECD is recommended. In the DECD method, when 
the solution with the minimum crowd distance present in the optimal solution set is removed, only the crowd 
distances of the solutions adjacent to the removed solution need to be updated and the crowd distances of the 
remaining solutions do not change. To generate n solutions to create an external archive using the DECD method, 
the crowd distances of the 2n solutions need to be recalculated. 
 
 While adding multiple strategies, the theoretical analysis is as follows; 
(1) An external archive is created to record non-dominant optimal solutions. Using the archive for storage can 
greatly benefit all multi-objective optimization algorithms[17]. The DECD method is used to manage the solutions 
in the archive. It has been proven in the literature that the translation distance is suitable for maintaining solution 
diversity. A phase out strategy can significantly improve solution delivery [18]. Therefore, DECD can benefit 
uniformity and solution diversity. 
 
(2) The NDS method can count the distribution of all solutions on the fronts that can be easily compared while 
performing the sorting [16]. Thus, better non-dominant solutions may be kept in the archive. It can be passed to 
the next iteration to allow other individuals to search. In other words, NDS can facilitate the algorithm to reach 
optimal solutions. 
 
2.3 Non-Dominant Sorting Genetic Algorithm II (NSGA-II) 
 
 Non-Dominant Sorting Genetic Algorithm II (NSGA-II) is a multi-objective genetic algorithm proposed by 
Deb et al. in 2002. It is an extension and development of the NSGA previously proposed by Srinivas and Deb in 
1995. In the structure of NSGA-II, in addition to genetic operators, crossover and mutation, two special multi-
objective operators and mechanisms have been defined and used. 
 Non-dominated Sorting: Population is sorted and sorted by F1, F2, etc. is partitioned. Here F1 (first front 
part) shows the approximate Pareto front. Crowding Distance: It is a sorting mechanism between members of a 
front where each other dominates or dominates. These sequencing mechanisms are used in conjunction with 
genetic selection operators (usually Tournament Selection Operator) to create the next generation population [11]. 
The pseudo code of NSGA II is given in Table 4.3. 
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Figure 2.3 Psuedo code of NSGA-II 

3. Experiments and Results 
 

In order to test the success of the developed method, the performance values of 11 different unconstrained 
comparison functions (unconstrained function and engineering problems) in the literature were examined. The 
mathematical expressions of some of the functions used are given in Table 3.1. 

 
Table 3.1 Mathematical representation of the Unconstrained functions used 

 
F LIMIT OF VARIABLE OBJECTIVE FUNCTIONS 
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Table 3.1 Mathematical representation of the Unconstrained functions used (continued) 
 

F LIMIT OF VARIABLE OBJECTIVE FUNCTIONS 
KUR 𝑥! ∈ [−5,5] 
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 The criteria used to evaluate the success of the developed algorithms are called performance criteria. In our 
study, performance criteria, which have taken place in the literature and are frequently used in the comparison of 
multi-objective optimization algorithms, are used. These; Distance Distance (SE)[19], Inverse Distance Distance 
(RGD)[19,20], Space(S)[21], Spread (SP)[22], Maximum Spread(MS)[22,23] and High Volume Indicator 
(HV)[19] are performance measurement metrics. The explanations of the metrics are given in Table 3.2. 
 

Table 3.2 Performance Criteria Used 
 

Metric Name Criteria Definition 
GD Convergence The lower the GD value, the better for convergence. 
RGD Convergence The lower the RGD value, the better for convergence. 
S Variation The lower the S value, the better for convergence. 
SP Spread The higher the SP value, the better for propagation. 
MS Spread The higher the MS value, the better for propagation. 
HV Convergence and Diversity Higher HV value is better for all criteria 

 
When Table 3.3 is looked at, statistical data are seen according to GD and RGD criteria. According to the GD 

criterion, MOGoldSA achieved 9/11 and MOAHA 2/11 success out of 11 comparison functions. When compared 
according to the RGD criterion, the MOAHA algorithm was successful at a rate of 9/11, and the MOGoldSA was 
successful at a rate of 2/11. In this case, the superiority of MOGoldSA according to the GD success metric and 
MOAHA according to the RGD criterion is clearly seen. 

 
Looking at Table 3.4, statistical data according to MS and S criteria can be seen. In these criteria, as seen in 

Table 3.2, higher for MS and lower for S means better. Accordingly, MOGoldSA 4/11 and NSGA-II 7/11 were 
successful for the MS criterion. In the S criterion, 4/11 MOGoldSA, 6/11 MOAHA and 1/11 NSGA-II algorithms 
were successful. 
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Table 3.3 Statistical data according to GD and RGD criteria 

 
 
 
 

F I MOGOLDSA MOAHA NSGA-II MOGOLDSA MOAHA NSGA-II 
  GD RGD 

FBTP 

Best 1,3538 22,2135 1,522E+04 4,8131 100,4478 1,344E+04 
Mean 1,7139 22,2268 1,724E+06 5,3122 113,8351 4,596E+04 
Worst 2,2770 22,2396 3,301E+07 6,0131 127,9738 2,770E+05 
Standart 0,2163 0,0059 7,365E+06 0,3271 0,0855 6,400E+04 
Time 394,6623 207,6105 4236,8051 394,6623 207,6105 4236,8051 

GEAR 

Best 4,852E+04 519,4864 1,371E+10 5,431E+04 364,8572 1,746E+07 
Mean 1,179E+05 573,0392 3,826E+10 7,558E+04 402,6668 5,789E+09 
Worst 3,278E+05 626,3775 1,324E+11 1,368E+05 489,9123 3,884E+10 
Standart 6,615E+04 266,1139 3,176E+10 2,339E+04 285,6714 1,052E+10 
Time 299,9048 215,4202 4523,8692 299,9048 215,4202 4523,8692 

FON 

Best 0,0010 0,0046 0,0022 0,0056 0,0014 0,0046 
Mean 0,0013 0,0049 0,0025 0,0062 0,0018 0,0049 
Worst 0,0018 0,0051 0,0030 0,0076 0,0020 0,0057 
Standart 0,0002 0,0001 0,0003 0,0004 0,0001 0,0003 
Time 430,5992 167,6028 4338,8464 430,5992 167,6028 4338,8464 

KUR 

Best 16,0989 15,6197 16,1477 15,5874 16,1614 15,6148 
Mean 16,1460 15,6336 16,1936 15,5995 16,1736 15,6299 
Worst 16,1950 15,6388 16,2691 15,6140 16,1922 15,6399 
Standart 0,0289 0,0047 0,0270 0,0060 0,0086 0,0077 
Time 213,2565 131,9476 4406,5289 213,2565 131,9476 4406,5289 

POL 

Best 0,0303 0,0687 0,3466 0,1083 0,0216 1,2796 
Mean 0,2755 0,0745 0,4699 0,1468 0,0566 3,0514 
Worst 0,5155 0,0827 0,6717 0,1838 0,0876 9,6327 
Standart 0,1651 0,0036 0,1122 0,0234 0,0243 3,3753 
Time 224,9433 189,4781 4294,0028 224,9433 189,4781 4294,0028 

VIE 

Best 0,0067 0,0506 16,2128 0,0472 0,0017 0,1080 
Mean 0,0124 0,0550 18,5965 0,0711 0,0020 0,1323 
Worst 0,0221 0,0611 19,8853 0,1124 0,0024 0,1779 
Standart 0,0048 0,0028 0,9337 0,0138 0,0002 0,0175 
Time 545,3776 183,1814 4870,8179 545,3776 183,1814 4870,8179 

ZDT1 

Best 0,0007 0,0046 7,6003 0,0065 0,0012 6,0681 
Mean 0,0017 0,0049 8,8265 0,0076 0,0016 6,9284 
Worst 0,0038 0,0052 9,6329 0,0103 0,0022 7,6887 
Standart 0,0007 0,0002 0,6086 0,0010 0,0003 0,4094 
Time 662,2493 141,3644 4053,5786 662,2493 141,3644 4053,5786 

ZDT2 

Best 0,0004 0,0047 6,223E+07 0,0059 0,0005 1,757E+03 
Mean 0,0005 0,0049 1,508E+11 0,0073 0,0012 4,575E+05 
Worst 0,0006 0,0053 2,645E+12 0,0083 0,0022 7,931E+06 
Standart 0,0000 0,0002 5,921E+11 0,0005 0,0004 1,762E+06 
Time 702,9784 157,1703 4786,8025 702,9784 157,1703 4786,8025 

ZDT3 

Best 0,0011 0,0052 1,4137 0,0068 0,0009 1,8811 
Mean 0,0015 0,0053 7,7594 0,0086 0,0011 7,1750 
Worst 0,0024 0,0056 12,3287 0,0144 0,0012 12,6277 
Standart 0,0003 0,0097 3,2963 0,0016 0,0008 3,0546 
Time 442,1689 142,1434 4218,0993 442,1689 142,1434 4218,0993 

ZDT4 

Best 0,0021 0,0047 1,5646 0,0070 0,0010 0,7822 
Mean 0,0036 0,0048 4,2266 0,0090 0,0013 3,5352 
Worst 0,0061 0,0050 17,4885 0,0112 0,0017 17,6962 
Standart 0,0010 0,0074 5,4102 0,0012 0,0002 5,7539 
Time 347,9827 152,1434 4269,7994 347,9827 152,1434 4269,7994 

ZDT6 

Best 0,0003 0,0036 7,877E+36 0,0055 0,0003 7,878E+36 
Mean 0,0003 0,0036 1,449E+44 0,0068 0,0402 1,449E+44 
Worst 0,0004 0,0038 1,408E+45 0,0091 0,1488 1,408E+45 
Standart 0,0000 0,0002 4,323E+44 0,0009 0,0408 4,323E+44 
Time 683,4443 207,2610 5032,5692 683,4443 207,2610 5032,5692 



Performance Analysis of Current Multi-Objective Metaheuristic Optimization Algorithms for Unconstrained Problems 

230 
 

Table 3.4 Statistical data according to MS and S criteria 
 

 

F I MOGOLDSA MOAHA NSGA-II MOGOLDSA MOAHA NSGA-II 
  MS S 

FBTP 

Best 545,7294 0,6163 8,839E+02 78,7184 80,5914 2,442E+02 
Mean 551,7484 0,5908 1,735E+06 134,2362 121,2974 2,897E+05 
Worst 553,3824 0,5627 3,380E+07 176,2839 157,2897 5,550E+06 
Standart 1,9343 0,0146 7,547E+06 26,9925 17,3091 1,238E+06 
Time 394,6623 207,6105 4236,8051 394,6623 207,6105 4236,8051 

GEAR 

Best 1,021E+07 0,4672 3,283E+10 1,964E+06 205,1385 1,746E+09 
Mean 1,167E+07 0,3276 6,638E+10 2,628E+06 279,4360 8,706E+09 
Worst 1,282E+07 0,2764 1,271E+11 3,357E+06 317,7173 3,110E+10 
Standart 8,638E+05 0,0469 2,844E+10 3,650E+05 299,9545 7,029E+09 
Time 299,9048 215,4202 4523,8692 299,9048 215,4202 4523,8692 

FON 

Best 1,3732 0,1784 0,0022 0,0785 0,0626 0,0747 
Mean 1,3832 0,1411 0,0025 0,0939 0,0826 0,0981 
Worst 1,3884 0,1149 0,0030 0,1144 0,0970 0,1124 
Standart 0,0054 0,0152 0,0003 0,0087 0,0085 0,0097 
Time 430,5992 167,6028 4338,8464 430,5992 167,6028 4338,8464 

KUR 

Best 12,6658 0,8029 16,1477 1,2163 1,1087 1,8929 
Mean 12,8601 0,7923 16,1936 1,6905 1,5875 2,1941 
Worst 12,8978 0,7842 16,2691 2,1380 2,0207 2,6364 
Standart 0,0541 0,0050 0,0270 0,2524 0,2989 0,1932 
Time 213,2565 131,9476 4406,5289 213,2565 131,9476 4406,5289 

POL 

Best 29,2133 0,4224 0,3466 2,6133 3,0190 3,5888 
Mean 31,4311 0,2931 0,4699 4,7876 3,7678 4,5154 
Worst 32,8554 0,1967 0,6717 6,2262 5,0254 5,5066 
Standart 1,2887 0,0863 0,1122 0,9793 0,5071 0,4832 
Time 224,9433 189,4781 4294,0028 224,9433 189,4781 4294,0028 

VIE 

Best 8,0552 0,7767 16,2128 1,4520 1,7465 15,8646 
Mean 8,3637 0,7223 18,5965 1,9821 2,0917 20,4540 
Worst 8,4388 0,6566 19,8853 2,6379 2,5596 25,8887 
Standart 0,0800 0,0349 0,9337 0,3704 0,2333 2,4413 
Time 545,3776 183,1814 4870,8179 545,3776 183,1814 4870,8179 

ZDT1 

Best 1,3606 0,1841 7,6003 0,0559 0,0505 0,1332 
Mean 1,3917 0,1522 8,8265 0,0717 0,0697 0,6825 
Worst 1,4088 0,1210 9,6329 0,0912 0,0882 0,9233 
Standart 0,0125 0,0161 0,6086 0,0100 0,0089 0,2263 
Time 662,2493 141,3644 4053,5786 662,2493 141,3644 4053,5786 

ZDT2 

Best 1,3643 0,1764 6,223E+07 0,0625 0,0568 2,457E+06 
Mean 1,3941 0,1517 1,508E+11 0,0769 0,0749 1,324E+11 
Worst 1,4111 0,1140 2,645E+12 0,0883 0,0955 2,621E+12 
Standart 0,0152 0,0158 5,921E+11 0,0061 0,0089 5,857E+11 
Time 702,9784 157,1703 4786,8025 702,9784 157,1703 4786,8025 

ZDT3 

Best 1,9235 0,2551 1,4137 0,1825 0,1515 0,0000 
Mean 1,9466 0,2186 7,7594 0,2211 0,1946 1,5494 
Worst 1,9648 0,1931 12,3287 0,2711 0,2371 7,4420 
Standart 0,0122 0,0192 3,2963 0,0264 0,0236 1,8608 
Time 442,1689 142,1434 4218,0993 442,1689 142,1434 4218,0993 

ZDT4 

Best 1,3938 0,1821 1,5646 0,0535 0,0576 0,2266 
Mean 1,4117 0,1609 4,2266 0,0690 0,0695 0,5705 
Worst 1,4141 0,1403 17,4885 0,0886 0,0810 1,0606 
Standart 0,0046 0,0136 5,4102 0,0092 0,0063 0,2767 
Time 347,9827 152,1434 4269,7994 347,9827 152,1434 4269,7994 

ZDT6 

Best 1,1466 1,7003 7,877E+36 0,0697 0,0443 3,938E+21 
Mean 1,1670 0,9235 1,449E+44 0,0864 0,2547 3,662E+40 
Worst 1,1687 0,1086 1,408E+45 0,1085 0,7843 4,127E+41 
Standart 0,0049 0,7189 4,323E+44 0,0113 0,2629 1,034E+41 
Time 683,4443 207,2610 5032,5692 683,4443 207,2610 5032,5692 
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A high value in these criteria indicates the ideal solution. While NSGA-II 6/11, MOAHA 3/11 and 
MOGoldSA 2/11 were successful according to SP criteria, MOAHA 4/11 and NSGA-II 7/11 success rates were 
statistically successful according to HV criteria. 

 
Table 3.5 Statistical results according to SP and HV criteria 

F I MOGOLDSA MOAHA NSGA-II MOGOLDSA MOAHA NSGA-II 
  SP HV 

FBTP 

Best 0,8277 1,0506 0,9921 0,0000 0,0000 1,0000 
Mean 0,9161 1,0506 1,1328 0,0000 0,0000 1,0000 
Worst 0,9899 1,0506 1,4065 0,0000 0,0000 1,0000 
Standart 0,0525 0,0456 0,1524 0,0000 0,0000 0,0000 
Time 394,6623 207,6105 4236,8051 394,6623 207,6105 4236,8051 

GEAR 

Best 0,7453 0,7890 1,1597 0,8910 0,9040 0,9920 
Mean 0,8089 0,7936 1,3023 0,6582 0,6859 0,2377 
Worst 0,8954 0,8023 1,3753 0,0000 0,0000 0,0000 
Standart 0,0445 0,0024 0,0628 0,2848 0,3312 0,3811 
Time 299,9048 215,4202 4523,8692 299,9048 215,4202 4523,8692 

FON 

Best 0,6229 0,3619 0,2776 0,0785 0,0040 0,0747 
Mean 0,7041 0,3623 0,3284 0,0939 0,0009 0,0981 
Worst 0,7831 0,3626 0,3669 0,1144 0,0000 0,1124 
Standart 0,0491 0,0002 0,0293 0,0087 0,0010 0,0097 
Time 430,5992 167,6028 4338,8464 430,5992 167,6028 4338,8464 

KUR 

Best 0,8811 0,9901 0,8316 1,2163 1,0000 1,8929 
Mean 0,9085 0,9901 0,8418 1,6905 0,8983 2,1941 
Worst 0,9276 0,9901 0,8590 2,1380 0,8550 2,6364 
Standart 0,0156 0,0005 0,0069 0,2524 0,0465 0,1932 
Time 213,2565 131,9476 4406,5289 213,2565 131,9476 4406,5289 

POL 

Best 1,0821 1,0812 0,7580 2,6133 0,7750 3,5888 
Mean 1,1438 1,0832 1,0109 4,7876 0,1133 4,5154 
Worst 1,1919 1,0884 1,1176 6,2262 0,0000 5,5066 
Standart 0,0320 0,0030 0,1217 0,9793 0,2768 0,4832 
Time 224,9433 189,4781 4294,0028 224,9433 189,4781 4294,0028 

VIE 

Best 0,7333 0,8686 0,9875 1,4520 1,0000 15,8646 
Mean 0,8610 0,8686 1,0218 1,9821 0,6671 20,4540 
Worst 0,9945 0,8686 1,0582 2,6379 0,4160 25,8887 
Standart 0,0654 0,0000 0,0186 0,3704 0,2061 2,4413 
Time 545,3776 183,1814 4870,8179 545,3776 183,1814 4870,8179 

ZDT1 

Best 0,6312 0,2776 0,8175 0,0559 0,2430 0,1332 
Mean 0,7551 0,2776 0,8601 0,0717 0,0975 0,6825 
Worst 0,8869 0,2776 1,0232 0,0912 0,0000 0,9233 
Standart 0,0695 0,0000 0,0432 0,0100 0,1121 0,2263 
Time 662,2493 141,3644 4053,5786 662,2493 141,3644 4053,5786 

ZDT2 

Best 0,6657 0,2293 1,0127 0,0625 0,0000 2,457E+06 
Mean 0,7834 0,2293 1,2470 0,0769 0,0000 1,324E+11 
Worst 0,8453 0,2293 1,3996 0,0883 0,0000 2,621E+12 
Standart 0,0430 0,0000 0,1175 0,0061 0,0000 5,857E+11 
Time 702,9784 157,1703 4786,8025 702,9784 157,1703 4786,8025 

ZDT3 

Best 0,8497 0,9671 0,7542 0,1825 1,0000 0,0000 
Mean 0,9385 0,9671 0,9655 0,2211 0,9500 1,5494 
Worst 1,0533 0,9671 1,3790 0,2711 0,0000 7,4420 
Standart 0,0580 0,0000 0,1483 0,0264 0,2236 1,8608 
Time 442,1689 142,1434 4218,0993 442,1689 142,1434 4218,0993 

ZDT4 

Best 0,6315 0,2770 0,9092 0,0535 0,2690 0,2266 
Mean 0,6956 0,2770 0,9555 0,0690 0,1332 0,5705 
Worst 0,7693 0,2770 1,0041 0,0886 0,0000 1,0606 
Standart 0,0379 0,0000 0,0304 0,0092 0,1241 0,2767 
Time 347,9827 152,1434 4269,7994 347,9827 152,1434 4269,7994 

ZDT6 

Best 0,7094 0,1692 0,8813 0,0697 0,0000 3,938E+21 
Mean 0,8393 0,5665 0,9938 0,0864 0,0000 3,662E+40 
Worst 0,9498 0,8606 1,0613 0,1085 0,0000 4,127E+41 
Standart 0,0714 0,3338 0,0378 0,0113 0,0000 1,034E+41 
Time 683,4443 207,2610 5032,5692 683,4443 207,2610 5032,5692 
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4. Conclusion 
 

In the study, the performance of current multi-objective optimization algorithms on unconstrained 
comparison functions and unconstrained engineering problems has been evaluated. While evaluating, MOAHA, 
which is the most up-to-date multi-objective optimization algorithm, NSGA-II, which is a very useful algorithm 
with its success in multi-objective problems, and MOGoldSA algorithms, which we brought to the literature in our 
master's study and which revealed very efficient results, were used. The studies were carried out equally for each 
algorithm and were evaluated according to the success metrics based on the literature while comparing the 
performance. According to this evaluation, on unconstrained comparison functions and engineering problems, 
MOGoldSA according to GD and S criteria, NSGA-II according to MS, SP and HV criteria, and finally MOAHA 
multi-objective optimization algorithms according to RGD criteria were superior. 
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