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R E S E A R C H  A R T I C L E  

 

A B S T R A C T  
 

Since forecasting future values is fundamental for researchers, investors, practitioners, etc., 
obtaining accurate predictions is critical in time series analysis. The accuracy is reliant on 

good modelling and good-quality data. The latter is affected by unusual observations, 

changes over time, missing data, and structural breaks among others. Economic crises are 

the major cause of data instability and therefore, this paper focuses on how structural breaks 
in conditional heteroscedastic financial and macroeconomic data affect forecasting 

accuracy on short and long-term horizons. More specifically, we are interested in the impact 

of the location of the structural break and break size on the predictive performance of two 

linear (ARIMA and Exponential Smoothing) forecasting models and two nonlinear 
(ARIMA – ARCH and Artificial Neural Network) models. We conducted Monte Carlo 

simulations and showed that the forecasting accuracy decreases as the structural break 

location approaches the end of the sample. In addition, break size and length of the horizon 

show the same impact on the forecasting accuracy as the forecasting error increases with 
the increase of break magnitude and length of the horizon. We also showed that ARIMA – 

ARCH model is the best performing in the absence of a structural break while the artificial 

neural network model outperforms all the competing models in the presence of structural 

break, especially in large break sizes and long horizons. Last, we applied the above 
techniques to forecasting daily close prices of brent oil and Turkish Lira – USD exchange 

rates out–of–sample, and similar results were found. 

 

 2022 Turkish Journal of Forecasting by Giresun University, Forecast Research Laboratory is 

licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 
 

 

 

1. Introduction 

Time series models are used for various purposes, including forecasting future outcomes, analysing past 

behaviours, and making policy recommendations. In this regard, we usually experience unexpected changes (breaks) 

in model parameters in financial time series data, perhaps due to policy changes, technological advancement, 

financial crises, and natural disasters. Events like the 2007–2008 economic crisis and the COVID-19 issue are good 

examples of structural break causes. 

Numerous studies revealed that several crucial and mainly used economic indicators have structural breaks. For 

instance, Stock and Watson [1] used several standard statistical tests to examine 76 monthly U.S. economic time 

series relationships for model instability. The series examined included key economic indicators such as interest 

rates, stock prices, industrial production, and consumer expectations. Their findings showed that a significant 
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proportion of the indicators have structural breaks. Moreover, Pettenuzzo and Timmermann [2] investigated the 

predictability of stock returns and asset allocation in the presence of structural breaks, arguing that structural breaks 

are most likely when the parameters of return prediction models are estimated on data samples spanning several 

decades. Many other authors testified the presence of structural breaks in economic and financial time series, among 

them Koop and Potter[3], Siliverstovs and Van Dijk[4]. 

Structural breaks reduce forecasting accuracy and consequently misleads policy recommendations and other 

prediction purposes. Clements and Hendry [5] stated that macroeconomic models cannot forecast well because of the 

structural breaks and warned that ignoring the breaks leads to a wide discrepancy between theory and practice. 

Hansen [6] also argued that it is perilous to ignore structural breaks in economic time series because forecasts may 

be inaccurate and therefore misleads policy implications. Yin [7] considered how to forecast a time series variable 

of interest in the case of parameter instability by emphasizing model selection criteria. In this paper, several break 

sizes, different test sample sizes, and various data-generating designs are discussed using simulation evidence and 

empirical analysis. All the experiments show that cross-validation weights outperform the competing methods in the 

under of structural breaks and heteroscedasticity.  

Altansukh and Osborn [8] conducted a study on forecasting time series using structural break inferences. This 

study suggested averaging forecasts over sub-samples indicated by a confidence interval or set for the break date 

instead of relying on a point estimate of a coefficient break date. Furthermore, they investigated whether explicit 

consideration of a potential variance break and using a two-step methodology improves forecast accuracy compared 

to robust heteroskedasticity inference. Their Monte Carlo results and empirical implementation of U.S. productivity 

growth show that averaging with the likelihood ratio-based confidence set typically outperforms other methods. 

Moreover, Bouri et al. [9] examined how U.S. ethanol prices and volatility dynamics can be forecasted under 

structural breaks. The findings of this study revealed that ARCH/ GARCH models incorporating the breaks improve 

the prediction of U.S. ethanol market volatility. Furthermore, volatility persistence decreases when structural breaks 

are included in the GARCH models. Their findings suggested that ignoring such breaks could mislead the U.S. biofuel 

industry's risk assessment procedure. 

Bauwens et al. [10] also joined the other authors by revealing that ignoring change points in financial time series 

produces poor forecasts and often gives the spurious impression of nearly integrated behaviour of the time series. In 

this regard, they contributed with an algorithm based on the Markov chain Monte Carlo (MCMC) method for 

Bayesian inference in AR-GARCH models subject to an unknown number of structural breaks at unknown dates. 

This method treats break dates as parameters and determines the number of breaks using the marginal likelihood 

criterion. This study also considered both pure-change point and recurrent regime specifications and showed how to 

forecast in the presence of structural breaks. The algorithm's efficiency is illustrated through simulations and 

empirical analysis on eight financial time series of daily returns from 1987-2011. Kaushik et al. [11] evaluated the 

performance of several deep neural networks (DNN) in forecasting time series with multiple structural breaks and 

high volatility. The models they considered here were Multi‐layer Perceptron (MLP), Convolutional Neural Network 

(CNN), and RNN with Long Short‐Term Memory (LSTM‐RNN) and RNN with Gated‐Recurrent Unit (GRU‐RNN). 

These models were implemented on 10 Indian financial stocks data to forecast single-step and multi-steps. The DNN 

methods demonstrated convincing performance for single-step forecasting, while the performance of these methods 

showed that long forecast periods have a negative effect on performance. 

Despite the extensive literature on the structural break and its impact on forecasting, little emphasis is paid to how 

the location of the structural break in time series affects predicting accuracy. Questions such as whether forecasting 

accuracy decreases as the structural break approaches the end of the series remain unaddressed.   

Another issue we usually experience in time series is the problem of conditional heteroscedasticity. Assuming 

conditional homoscedasticity, especially in the case of structural breaks in forecasting macroeconomic conditions or 

financial time series may seem restrictive. For this reason, this paper investigates and compares the predictive ability 

of four (linear and nonlinear) models including Exponential Smoothing (ETS), Autoregressive Integrated Moving 

Average (ARIMA), Autoregressive Integrated Moving Average -Autoregressive Conditional Heteroskedastic 

(ARIMA – ARCH) and Artificial Neural Network (ANN) models in out-of-sample forecast setting in the presence 

of structural breaks and ARCH innovations based on simulations evidence and empirical analysis. The rest of the 

paper is structured as follows. Section 2 explains the methods used for structural break tests, forecasting, and 

forecasting accuracy measures. Section 3 describes the data generating process for simulation. Section 4 presents 

simulation results, section 5 contains empirical results while section 6 provides conclusions. 
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2. Methodology 

The forecasting methods used in this paper include Exponential Smoothing, Autoregressive Integrated Moving 

Average (ARIMA), Autoregressive Integrated Moving Average -Autoregressive Conditional Heteroskedastic 

(ARIMA – ARCH) and Artificial Neural Network (ANN). Chow Test, CUSUM Test and Bai-Perron test were used 

to detect the presence of structural break/s, while Engle's Lagrange Multiplier tests was introduced to detect the 

presence of ARCH effect. Lastly, Root Mean Squared Forecast Error (RMSE) is used to measure the forecasts 

accuracy. 

 

2.1. Structural break testing methods 

Identifying structural breaks in time-series modelling is essential in statistical and econometric literature. By 

considering the statistical characteristics of structural breaks and time series data, this study implemented the Chow, 

CUSUM, and Bai and Perron tests. The Chow [12] test belongs to a class of structural change tests based on F 

statistics. It is commonly used in time series analysis to test for the presence of a single structural break at a known 

period (for example, a significant historical event such as a war or pandemic). The main disadvantage of the Chow 

test is that the change point must be specified in advance; however, Supremum Test and Wald and Lagrange 

Multiplier test statistics solved this problem. These are tests based on Chow statistics and do not require explicitly 

stating a particular change point. The CUSUM test developed in Brown et al.'s seminal paper [13], a widely used test 

for model parameters stability, contains cumulative sums of standardized residuals. This test comes under the class 

of generalized fluctuation test framework of structural change tests. Bain and Perron’s [14] test is also utilized to test 

if multiple structural breaks are present and estimate break dates. 

 

2.2. Forecasting models 

This study employs two linear (ARIMA and Exponential Smoothing) forecasting models and two nonlinear 

(ARIMA – ARCH and Artificial Neural Network) models in an out-of-sample forecast setting. 

 

2.2.1. Exponential smoothing (ETS) model 

The exponential smoothing class of models was proposed in 1950s [15], [16] and they are capable of producing 

time series forecasts by employing a weighted average of its historical values and allocating more weight to recent 

observations. These models consist of observation/ measurement equation which denotes the observed data and state 

equations which stands for states (level, trend, seasonal) change over time and that is why are called state-space 

models. Exponential smoothing models are labelled with the notation ETS for the terms of Error, Trend, Seasonal. 

The ETS models have got variations because of the trend and seasonal combinations. The trend component may be 

none (N), may be additive (A), or additive damped (Ad) while the seasonal component can be none (N), additive (A) 

and multiplicative (M) yielding nine variants of exponential smoothing models [17]. 

The component form of 𝐸𝑇𝑆(𝐴, 𝑁, 𝑁) model with additive errors is as following: 

Forecast equation  �̂�𝑡+1|𝑡 = ℓ𝑡  (1) 

Smoothing equation  ℓ𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)ℓ𝑡−1 (2) 

By re-arranging the smoothing equation, we get the  

ℓ𝑡 = ℓ𝑡−1 + 𝛼(𝑦𝑡 − ℓ𝑡−1) = ℓ𝑡−1 + 𝛼𝑒𝑡   (3) 

where ℓ𝑡is the estimated level, �̂�𝑡+1|𝑡is one step-ahead prediction for time 𝑡 + 1 which results from the weighted 

average of all historical data while 0 ≤ 𝛼 ≤ 1 is the smoothing parameter and 𝑒𝑡 = 𝑦𝑡 − ℓ𝑡−1 = 𝑦𝑡 −  �̂�𝑡|𝑡−1 is error 

at time 𝑡. 

Other ETS models can be written in similar fashion for each of the exponential smoothing methods. An automated 

selection procedure is utilized to identify the exponential smoothing models by using “𝑒𝑡𝑠” function from 

“𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡” package in R environment proposed by Hyndman et al. [18]. This function automatically identifies 

which model best suits the given time series, estimates the model parameters, and returns information about the fitted 

model. It can use all information criteria but the bias-corrected Akaike criterion (AICc) is the default information 

criterion to select an appropriate model.  
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2.2.2. Autoregressive integrated moving average (ARIMA) model 

One of the most extensively used models for time series forecasts is the Autoregressive Integrated Moving 

Average (ARIMA) model, which was first suggested by Box and Jenkins [19] . The ARIMA model is a generalization 

of an ARMA model. ARIMA(p,d,q) is a non-seasonal ARIMA model with non-negative parameters p, d, and q, 

where p is the number of time lags referred to as the order of the autoregressive model, d is the degree of differencing, 

and q is the order of the moving-average model.  

The ARIMA models transform a non-stationary series to a stationary series through a sequence of differencing 

steps. A time series yt is integrated of order d, if ∇𝑑𝑦𝑡 is stationary and  

∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1  (4) 

where 𝑦 is the time series and 𝑡 is the time index. 

After we transform the time series into stationary, the estimation is done like the following: 

�̂�𝑡 = 𝜇 + ∑ 𝜙𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖 + 𝜀𝑡  (5) 

where 𝜙𝑖 denotes the coefficients of 𝐴𝑅 terms of order 𝑝 and 𝜃𝑖 denotes the coefficients of the 𝑀𝐴 terms of order 𝑞 

and 𝜀 is a random term that is white noise and 𝜇 is a constant term. The model parameters are estimated using 

Maximum Likelihood Estimation (MLE). 

For best ARIMA model selection, we relied on 𝑎𝑢𝑡𝑜. 𝑎𝑟𝑖𝑚𝑎 function from "𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡" package in 𝑅 proposed 

by Hyndman and Khandakar [20]. This function identifies best ARIMA model based on either the Akaike information 

criterion (AIC), the bias-corrected Akaike criterion (AICc) and the Bayesian information criterion (BIC) value. This 

function searches over possible models within the order constraints provided. 

 

2.2.3. Combined ARIMA and ARCH (ARIMA – ARCH) model 

The error structures in ARIMA models are assumed to be generated from linear combinations of the innovations, 

with the innovations being, i.i.d. normal random variables, but that is not always the case. The variance fluctuates 

widely with time in many financial and economic time series, and ARIMA models cannot capture this behaviour. To 

address these conditions, ARCH (autoregressive conditionally heteroscedastic) proposed by Engle [21] and GARCH 

(generalized ARCH) by Bollerslev [22] models have been constructed. For this reason, the ARIMA and GARCH 

models are combined. While the ARIMA part of the model estimates the conditional mean, a GARCH part of the 

model estimates the conditional variance included in the residuals of the ARIMA estimation. The estimation based 

on the combined model is as follows: 

�̂�𝑡 = 𝜇 + ∑ 𝜙𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖 + 𝜀𝑡  (6) 

𝜀𝑡 = 𝜎𝑡𝑎𝑡 (7) 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2  (8) 

where 𝑎𝑡 is white noise 𝜔 and 𝛼1 are the parameters of the model. Substituting for 𝜎𝑡
2, we get: 

𝜀𝑡 = 𝑎𝑡√𝜔 + 𝛼1𝜀𝑡−1
2  (9) 

Then 𝜀𝑡 is ARCH (1) model which stands for autoregressive conditionally heteroscedastic. An ARCH(q) process is 

given by:  
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𝜀𝑡 = 𝑎𝑡√𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2

𝑞

𝑖=1

 (10) 

GARCH(q,p) can be formulated if we define 𝜀𝑡 = 𝜎𝑡𝑎𝑡 where 𝑎𝑡 white noise and 𝜎𝑡
2 is given by: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ β𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 (11) 

where 𝛼𝑖 and β𝑗 are parameters of the model. The forecast is calculated by combining the output of the ARIMA part 

and the ARCH/GARCH part of the model. 

 

2.2.4. Artificial neural network (ANN) model 

The neural network connects the predictors and the outcome through a series of layers. In each layer, some 

operation is performed on the input data to produce an output. The output of one layer becomes the input for the next 

layer. As shown in Figure 1, the structure of ANN is characterized by three layers: 

1. An input layer that accepts the input values of the predictors or lagged terms in the time series case.  

2. Hidden layers that generate derived variables. A hidden layer receives inputs from the preceding layer, which 

is the input layer, performs some calculations on those inputs based on some activation function, and creates 

an output. 

3. An output layer receives input from the latest hidden layer and predicts future values. 

 

Figure 1. Artificial neural networks architecture 

Each layer contains nodes denoted by circles. While input layer nodes are the original predictors, hidden layer 

nodes are the weighted sum of the inputs to which some monotone function, called an activation function, is applied. 

Common functions are linear, exponential, and s-shaped functions such as the logit and hyperbolic tangent or, in 

other words, sigmoid functions.  

In time series approach, the relationship between the output ((𝑦𝑡) and the inputs (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝) can be 

represented by Equation 12: 

𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑗𝑔 (𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑦𝑡−𝑖

𝑝

𝑖=1

)

𝑞

𝑗=1

+ 𝜀𝑡 (12) 

where 𝛼𝑗  (𝑗 = 0,1,2, … , 𝑞) and 𝛽𝑖𝑗  (𝑖 = 0,1,2, … , 𝑝; 𝑗 = 1,2, … , 𝑞) are the model parameters often called the 

connection weights; p is the number of input nodes and q is the number of hidden nodes. Logit activation function is 
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used to map the input values into the hidden layer and from the nodes of the hidden layer to the output, linear function 

is used as the series takes values on a continuous range. The logistic function is as given in equation 13. 

𝑔(𝑥) =
1

1 + 𝑒−𝑥 (13) 

Hence, the ANN model performs mapping from past observations (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝) to the future 𝑦𝑡, i.e., 

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝, 𝑤) + 𝜀𝑡 (14) 

If the lagged values of the time series are used as inputs to a neural network just as used lagged values in a linear 

autoregression model, it is called a neural network autoregression or NNAR model. In this paper, we only consider 

feed-forward networks based on 𝑁𝑁𝐴𝑅(𝑝, 𝑘) where 𝑝 indicates lagged inputs and 𝑘 nodes in the hidden layer [17].  

Neural network autoregression models were identified using “𝑛𝑛𝑒𝑡𝑎𝑟” function from “𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡” package in 𝑅 

produced by Hyndman [23]). This function automatically fits a neural network model to the given time series with 

lagged values of the series as inputs, so it is a nonlinear autoregressive model and that is why we considered this 

method as it ables to capture the non – linearity int the financial data.  

 

2.3. Forecasting accuracy metrics 

To compare the forecast methods and assess the accuracy of our out-of-sample forecasts against the reserved 

observed values in the evaluation sample termed as the test set, we use Root Mean Squared Forecast Error (RMSE) 

computed as:  

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑡+ℎ|𝑡 − 𝑦𝑡+ℎ)2𝑇

𝑡=1

𝑇
 (12) 

where �̂�𝑡+ℎ|𝑡 − 𝑦𝑡+ℎ states forecast error and training data given by {𝑦1, . . . , 𝑦𝑡} and the test data is given by 

{𝑦𝑡+1, 𝑦𝑡+2, . . . }.  

Root mean squared error (RMSE) is widely used in comparing forecast methods applied to an individual time 

series, or to numerous time series with the same units[17]. Since our time series data simulations are replicated based 

on the same data generation process, RMSE is an appropriate measure to compare predictive performance of the 

considered forecast methods.  

 

3. Data Generating Process 

In generating data, it is considered the following design of AR(2) process with autoregressive conditionally 

heteroscedastic errors ARCH(2), 

𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 (13) 

𝜀𝑡 = 𝜎𝑡𝑎𝑡 (14) 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2  (15) 

where 𝑎𝑡 is white noise for 𝜔, 𝛼1 and 𝛼2 are the parameters of the variance model. Substituting for 𝜎𝑡
2 we receive: 

𝜀𝑡 = 𝑎𝑡√𝜔 + 𝛼1𝜀𝑡−1
2 + 𝛼2𝜀𝑡−2

2  (16) 

with the help of equation (19), 𝐴𝑅(2) + 𝐴𝑅𝐶𝐻(2) process can be generated.  

The parameters of both AR part and ARCH part of the data generating process mentioned above were specified 

as: μ = 5, ϕ1 = 0.65, ϕ2 = 0.25, ω = 0.2, α1 = 0.45, α2 = 0.3. These values were chosen arbitrarily. The graphical 

visualization of the simulated data is shown in figure 2 for illustration purposes. 
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Figure 2. Illustration of simulated data structural break is placed 

To examine the effect of structural break location on forecasting accuracy, we first consider the case (case I) of 

forecasting with the stable data, i.e., before the structural break is placed. We then construct three unstable cases by 

allowing a one-time permanent structural break in the mean of the series in each case. The breaks were positioned at 

25%th observation termed as break at first quartile(Q1), 50%th observation as second quartile (Q2) and 75%th 

observation as third quartile (Q3) of the training sample (n). We let the structural break take the multiplicative form, 

which means that if the pre-break mean is 𝜇, then the post-break value is δ𝜇, where δ is a break size parameter. In 

each situation we considered three different break sizes namely break of small magnitude (δ = 3), medium break size 

(δ = 5) and large break size (δ = 10). For illustration purpose of the location of the structural break and break sizes 

see figure 3. 

 

Figure 3. Illustration of break locations and break sizes of simulated data 

The total sample size, 𝑇 = 𝑛 + ℎ is 1000. To investigate if the choice of the horizon size has an impact on 

forecasting results, we reserve the first 990, 995 and 997 (n = 990, n = 994 and n = 997) observations as the training 

sample and the rest as the prediction sample (h = 10, h = 6 and h = 3) in three separate experiments in each case. The 

simulation process is conducted with 5000 times replications. The hyperparameter values of the ANN based on 

RMSE metric are given in Table 1.  

Table 1. Hyperparameter values 

Break Size No. of optimal lags (inputs) No. of hidden layers No. neurons in the hidden layer Model structure notation 

No break 4 1 3 NNAR (4,3) 

(δ) = 3 8 1 5 NNAR (8,5) 

(δ) = 5 9 1 5 NNAR (9,5) 

(δ) = 10 6 1 4 NNAR (6,4) 
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In each case, to evaluate and compare predictive performance, we generate forecasts using four methods: 

Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, ARIMA − ARCH, and Artificial 

Neural Network. Root mean squared forecast error (RMSE) is used to assess their predictive performance. 

 

4. Simulation Results 

Simulations results are presented in four cases. The first case is the stable data where there is no structural break 

while the other three cases are based on the break size and in each of them three break locations are considered.  

Case I: Forecasts stable simulated data 

Simulation results for the stable case are shown in Table 2. We can see from Table 2 that all the models are 

performing well when there is no structural break as the RMSE values are small. It can also be seen that the combined 

ARIMA and ARCH (ARCH) model outperforms all the classical ARIMA, Exponential Smoothing (Exp), and even 

the Artificial Neural Network (ANN) models across all considered test horizons. At the same time, ANN is the next 

best model. 

Table 2. RMSE values of stable simulated data 

Model h = 3 h = 6 h = 10 

ARCH 0.773 0.941 1.083 

ARIMA 0.791 0.975 1.147 

Exp 0.818 1.017 1.216 

ANN 0.785 0.961 1.108 

The ARIMA and exponential smoothing methods are less performing models in this case. This was expected 

because they failed to capture the nonlinearity of the process under consideration. RMSEs increase monotonically as 

the horizon size increases in all models.  

Case II: forecasts when break size (δ) = 3 

Simulation results for case II where the structural break size is relatively small (δ = 3) are reported in Table 3. It 

can be seen from the table that the RMSEs of all the models for all test horizons increased in comparison with RMSEs 

in Table 2 of stable data. It is also clear that ANN outperforms all the other models across all considered test horizons 

if the break is in the first quartile (Q1) or in the second quartile (Q2). ARIMA takes over the ANN when the structural 

break is in the third quartile (Q3). Moreover, RMSEs increase monotonically as the horizon size increases in all 

models. RMSEs also slightly increase as the break moves from Q1 through Q2 to Q3. 

Table 3. RMSE values when break size (δ) = 3 

B
re

a
k

 s
iz

e 
(δ

) 
=

 3
 

Structural Break at Q1 

Model/Horizon h = 3 h = 6 h = 10 

ARCH 2.411 2.990 3.559 

ARIMA 2.407 2.963 3.501 

Exp 2.460 3.058 3.654 

ANN 2.380 2.905 3.392 

Structural Break at Q2 

ARCH 2.419 3.010 3.597 

ARIMA 2.414 2.982 3.520 

Exp 2.465 3.060 3.661 

ANN 2.405 2.946 3.454 

Structural Break at Q3 

ARCH 2.461 3.106 3.786 

ARIMA 2.432 3.033 3.591 

Exp 2.459 3.104 3.693 

ANN 2.464 3.071 3.646 
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Case III: Forecasts when break size (δ) = 5 

Simulation results for case III where the structural break size is relatively medium (δ = 5) are presented in Table 

4.  

Table 4. RMSE values when break Size (δ) = 5 

B
re

a
k

 s
iz

e 
(δ

) 
=

 5
 

Structural Break at Q1 

Model/Horizon h = 3 h = 6 h = 10 

ARCH 4.041 5.024 5.996 

ARIMA 4.008 4.941 5.841 

Exp 4.099 5.094 6.089 

ANN 3.966 4.830 5.661 

Structural Break at Q2 

ARCH 4.056 5.086 6.074 

ARIMA 4.036 5.032 5.944 

Exp 4.087 5.164 6.142 

ANN 4.042 5.016 5.859 

Structural Break at Q3 

ARCH 4.150 5.237 6.401 

ARIMA 4.080 5.095 6.035 

Exp 4.104 5.173 6.158 

  ANN 4.090 5.086 5.982 

RMSEs increase monotonically with the increase of break magnitude and horizon size in all models. RMSEs also 

marginally increase as the break moves from the first quartile through the second quartile to the third quartile. For 

horizons 6 and 10, ANN is shown to be the best choice wherever the break is located. But for horizon 3, ANN is best 

if the break is at Q1, while if the break is at Q2 and Q3, ARIMA gives better results than ANN.  

Case IV: Forecasts when break size (δ) = 10 

Simulation results for case IV where the structural break size is relatively large (δ = 10) are reported in Table 5. 

Same to Case II and III, RMSEs increase with the break size, horizon size, and the location of the structural break.  

Table 5. RMSE values when break size (δ) = 10 

B
re

a
k

 s
iz

e 
(δ

) 
=

 1
0
 

Structural Break at Q1 

Model/Horizon h = 3 h = 6 h = 10 

ARCH 8.101 10.086 12.047 

ARIMA 8.020 9.890 11.719 

Exp 8.177 10.181 12.171 

ANN 7.936 9.626 11.284 

Structural Break at Q2 

ARCH 8.179 10.272 12.290 

ARIMA 8.103 10.141 11.951 

Exp 8.211 10.358 12.318 

ANN 8.067 9.927 11.583 

Structural Break at Q3 

ARCH 8.504 11.137 13.465 

ARIMA 8.193 10.445 12.148 

Exp 8.228 10.640 12.365 

ANN 8.170 10.378 12.012 

On the other hand, regardless of the horizon size and the location of the break, ANN is the best performing model 

among the applied models when the break size is large (δ = 10). 
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Summary of the Simulation Results 

In the simulation part of this paper, we examined how the structural break affects forecasting accuracy. In doing 

so we investigated three different test locations (Q1, Q2, Q3) for the structural break, three break sizes (δ = 3, δ = 5, 

δ = 10), and three forecast horizons (h = 3, h = 6, h = 10). Root mean squared forecasting error (RMSE) is used for 

the comparison tool. It is found that:  

1. The results of the stable case give good guidance for researchers showing how is difficult to analyse financial 

and economic time series despite the non-existence of structural break in the series. Table 2 shows the 

performance of forecasting with stable data. According to the results in Table 2, the ARIMA and Exponential 

models are not performing well.  It can be explained by the fact that the data under study is generated from a 

nonlinear process. Since the asymmetry and nonlinearity properties exist naturally in financial and economic 

time series data regardless of the presence of structural break, it is proposed that ARIMA and Exponential 

Smoothing models should be used cautiously in nonlinear processes.   

2. For the case of a relatively small break magnitude (δ = 3), ANN is superior to all the other models across all 

considered test horizons if the break is in Q1 or Q2. ANN loses its dominance and ARIMA overtakes when 

the structural break is in Q3. The failure of ANN when the break size is too small and the structural break is 

in the third quartile can be explained as ANN models associated with the testing part of the series [24], the 

effect of structural break which is in the testing part may have further negative impact on the performance of 

ANN. This could be the first reason for this result. The shifting of the series because of the structural break in 

the last quartile, the nonlinear behaviour of economic time series could turn over to linear behaviour. Hence, 

ARIMA generates better performance than ANN, especially when the researchers deal with small size 

structural break. This could be the second reason for result 2.  

3. In the case of comparatively medium break size (δ = 5) in Table 4, ANN is the best for horizons (h = 6) and (h 

= 10) wherever the break is located. For horizon (h = 3), ANN is still the best if the break is at Q1, while 

ARIMA gives better results than ANN if the break is at Q2 and Q3. Although ANN models are associated with 

the testing part of the series, it is not affected by the location of the structural break especially for Q3 which 

its size is 5. On the contrary the case of breaks size 3, ANN recovers itself in the long-term horizon. On the 

other hand, ARIMA is a univariate model and is also known as a method that gives very successful results in 

short-term forecasts [24]. ARIMA models need the stability of the data as it requires basic statistical properties 

such as mean, variance, covariance, or autocorrelation to be constant over time periods [25]. So, the behavior 

of the financial time series may change around the statistical properties (mean, variance etc.) because of the 

larger break size of series. Therefore, the performance of ARIMA for the long-term horizons is not good as 

the short-term horizon in the presence of structural breaks.  This could mean that ANN gives better results for 

the longer horizons, but ARIMA’s performance is getting worse as break size and horizon increase. From the 

point of economical view, making forecast for the long term is more valuable but riskier. This is because the 

economic time series data has dynamic properties and may have been affected by sudden changes, so the 

researcher must keep in mind those bad events.  As a result, researchers should prefer ANN for the larger size 

structural break in the series.  

4. In the case of a relatively large break size (δ = 10), regardless of the horizon size and the location of the break, 

ANN is the best-performing model among the applied models. The results for largest break size (δ = 10) 

supported the interpretations of relatively smaller break size (δ = 5). 

5. RMSEs increase with horizon length, break size, and the break location moving from the first quartile, second 

quartile to the third quartile of the data. All the models have the smallest RMSEs when the horizon is short (h 

= 3), the break size is small (δ = 3) and the break is located at the beginning of the training set (Q1). The largest 

RMSEs are found when the horizon is long (h = 10), the break size is large (δ = 10) and the break locates close 

to the end of the training set (Q3). 

Our proposal here is:  

When the break size is 3 (δ=3, around the mean) and in the last quartile, ARIMA, which is a mean-based method, 

should be preferred in comparison with ANN. When the break size is medium as (δ=5), and the break locates in Q2 

and Q3, ARIMA should be used for the short-term horizons. Except conditions which ARIMA is performing well, 

we propose using the ANN in any other case. 
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5. Empirical Applications 

In addition to the simulation evidence, we applied our considered methods to forecast the daily Turkish Lira 

against US Dollar (USD - TL) exchange rate and Brent oil prices. We selected these two financial data because they 

exhibit typical structural breaks we are going to investigate in this study. We extracted data by windowing according 

to the time periods where structural breaks were found. It is extracted in such a way that the break location fits the 

interested test locations (Q1, Q2, Q3) in line with the simulations section.  

Both Brent Oil Prices and the Turkish Lira - US Dollar exchange rate experienced sudden shocks and fluctuations 

in recent years, making it challenging to forecast their future values. The Close prices of Brent Oil ranging from 

(20.09.2017 – 13.12.2019) are accessed through the quantmod package in R. There is a sharp jump peaking on 

October 3, 2018, which can be considered a change point that suddenly reverses from the rapid rise, or as a reflection 

of economic practice. The close prices of the USD - TL exchange rate in the range (9.02.2017 – 26.02.2020) are 

extracted from Yahoo Finance. Likewise, in the USD - TL exchange rate data, there is a change point on August 10, 

2018, due to the crisis and depreciation of the Turkish Lira against the US Dollar. To be consistent with what we 

have done in the simulations section, we drew three windows of size 400 each for Brent Oil and three windows of 

size 500 each for TL – USD to represent the three structural break test locations (Q1, Q2, Q3) as illustrated in figure 

4. 

  

Figure 4. Brent oil prices and TL – USD exchange rate 

The left part of figure 4 illustrates Brent Oil Prices while the right part shows the TL – USD exchange rates. While 

both data sets exhibit at least one structural break in each case, crude oil prices show much volatility greater than the 

exchange rate. 

 

Structural Break Testing 

Prior to fitting and forecasting with the models under consideration, we first check the presence of structural 

breaks in our data and estimate the break date. Bai and Perron test [14] made possible to estimate the break date and 

the intercept of each segment and that is done with the help of the R function breakpoints from the strucchange 

package. Table 6 shows the estimated break date, segments, and intercepts in both brent oil and USD – TL exchange 

rate data. The presence of structural break is also tested using Chow test and CUSUM test and the results are presented 

in Table 7. 

Table 6. Break dates and segmentation using Bai and Perron test 

Data Break Date Segment Intercept 

USD - TL Exchange Rate 10/7/2018 
09/02/2017 - 10/07/2018 3.817 

11/07/2018 - 26/02/2020 5.696 

Brent Oil Prices 9/11/2018 
20/09/2017 - 09/11/2018 70.519 

12/11/2018 - 13/12/2019 63.525 
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Table 7. Significance of the structural break 

Data Test Statistic P-value 

USD - TL Exchange Rate 
Chow (supF) test 39.661 8.774e-08 

CUSUM Test 13.185 2.2e-16 

Brent Oil Prices 
Chow (supF) test 22.098 0.0004 

CUSUM Test 5.4359 2.2e-16 

The test statistics and p-values results of Chow test and CUSUM test in Table 7 show that there is significant 

structural break. As can be seen in Table 6, USD - TL Exchange Rate contain structural break in 10/7/2018 and 

estimated intercept in the segment of 9/2/2017 - 10/7/2018 is 3.817 while the segment 11/7/2018 - 26/2/2020 should 

have 5.696 as intercept. Brent Oil Prices also contain structural break at 9/11/2018. The estimated intercepts for 

20/9/2017 - 9/11/2018 and 12/11/2018 - 13/12/2019 segments are 70.519 and 63.525 respectively. 

Forecasts Accuracy Evaluation in Empirical Analysis 

Like simulations, we employed the four forecasting methods we used in simulated data and then forecasted out–

of–sample and calculated root mean squared error (RMSE). We also chose evaluation sample sizes same as those in 

simulations (h = 3, h = 6, h = 10). The smaller the value of RMSE for a given method compared to the other methods 

the better that method is performing. The empirical results of both considered data are presented in Table 8 side by 

side. 

Table 8. RMSE values of empirical analysis 

Brent Crude Oil Price  USD - TL Exchange Rate 

Structural Break at Q1  Structural Break at Q1 

Model/Horizon h = 3 h = 6 h = 10  Model/Horizon h = 3 h = 6 h = 10 

ARCH 0.2573 0.8358 1.1164  ARCH 0.0256 0.0635 0.0725 

ARIMA 0.3074 1.1437 1.5038  ARIMA 0.0314 0.0653 0.079 

EXP 0.3072 1.1440 1.5034  EXP 0.0272 0.0625 0.0733 

ANN 0.2342 0.816 1.017  ANN 0.0259 0.0511 0.0571 

Structural Break at Q2  Structural Break at Q2 

ARCH 0.4911 1.3326 1.9648  ARCH 0.0370 0.0919 0.1165 

ARIMA 0.5308 1.4246 1.9287  ARIMA 0.0335 0.0892 0.1255 

EXP 0.4434 1.2377 1.9873  EXP 0.0388 0.0910 0.1176 

ANN 0.347 1.1628 1.9339  ANN 0.0282 0.0708 0.0739 

Structural Break at Q3  Structural Break at Q3 

ARCH 1.3475 2.2675 2.4315  ARCH 0.0341 0.1509 0.1693 

ARIMA 1.6042 2.1624 2.2808  ARIMA 0.0379 0.1008 0.132 

EXP 1.3213 2.2603 2.2804  EXP 0.0813 0.1045 0.1333 

ANN 1.3109 2.1177 2.1115  ANN 0.0295 0.0994 0.0887 

i. Brent oil price continuously fluctuates, causing instability in the economy. Oil prices' sudden ups and downs 

have direct or indirect impacts on economics since they produce specific issues in global economics. Due to 

this rapid variability, predicting oil prices has global importance; however, the bevahiour of brent oil prices is 

unstable and difficult to predict. Among the considered model for Brent Oil Prices, ANN outperforms the 

others, including the ARCH model, in all horizons, no matter where the break locates (Q1, Q2, Q3). Even 

though Oil prices are much more volatile, ANN is more resilient to variance heterogeneity and structural break 

than the other forecasting techniques in consideration. Imbalanced data, which has nonlinear trend, changeable 

cyclical fluctuations, and high volatility, is a big issue in time series analysis. It should also be noted that the 

existence of high volatility may mask the effect of structural break on the performance as well. ANN should 

be the first preferable methodology for complex economical or financial data.  

ii. After 2017, there is a rapid fluctuation in Turkish Lira value against Dollar. The Turkish US Dollar – Turkish 

Lira exchange rate series has more statistically stable properties in comparison with brent oil price series. The 

series has trend component and less volatility. In this sense, the location of the structural break is important 

for the data. If the structural break is in Q1, the series seems more volatile than the structural break in Q2 and 

Q3. For USD - TL exchange rate, ANN still gives the smallest RMSEs in all the cases except the short horizon 

(h = 3) when the break is in Q1. In this case, the ARCH model takes the lead. Hence, the ARCH model may 
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be preferred for short–term forecasts of less volatile data when the break is at the very beginning of the training 

set (Q1). The reason could be that the variance spectrum of the data is broadened because of the location and 

size of the structural break, and the volatility becomes more effective. Therefore, the ARCH model in Q1 for 

the short-term horizon generates less RMSE compared to ANN.   

iii. All models taken into account here are affected by the location of the break as RMSEs are smallest when the 

break locates at Q1 and largest when the break is in Q3. This result is true for exchange rate and oil price data 

and all applied horizons. 

iv. For Crude oil prices data, which is relatively more volatile, RMSEs increase faster as the break location 

progresses from Q2 to Q3 than its progress from Q1 to Q2 for short horizons (h = 3, h = 6), and it is the opposite 

for long horizons (h = 10). This is true for all models used here. 

v. For the exchange rate data, which is relatively less volatile, the only agreement between the models is that 

RMSEs increase as the break location moves from Q1 to Q2, which is not the case in Q3. There is no 

considerable agreement between the used models regarding the speed of RMSEs increase.  

Our suggestion is:  

For the imbalanced and complex economic and financial data, ANN should be preferred in any case regardless of 

location and size of the break. The dynamical behaviour of the series before or after structural break does not affect 

the success of ANN. In fact, just in the Q1 case, which is covered by the training set, structural break has caused high 

volatility, affecting ANN negatively in this case. If structural break causes volatility in economic data or the structural 

break and volatility overlapped in time and the break is in the first quartile, ARCH model should be used.  

 

6. Conclusion 

The aim of this paper was to answer the question of how a structural break affects forecasting performance. More 

specifically, we are interested in the impact of break location and break size on the predictive performance of 

competing methods (ARIMA, Exponential, ARIMA - ARCH and Artificial Neural Network) in various simulation 

cases. Last, we applied the above techniques to forecasting daily close prices of brent oil and TL – USD exchange 

rates out – of – sample and compare the performance of the applied models.  

The study found that apart from the impact of structural break on the forecasting accuracy, break location and 

break size have implications on prediction. This result is found both in simulations and empirical analysis. 

Forecasting error increases with the increase of break magnitude and the location of the structural break. The error is 

minimum when the break is in the first quartile, it is more when the break is in the second quartile, and it is the most 

when break locates in the third quartile.  

Comparing the competing models, ARCH model is the best performing model in the absence of structural break 

while ANN is the next in performance. For the cases of the various structural break sizes and break locations, ANN 

outperforms all the other models with the exception of few places. ANN also shown superiority in the empirical 

analysis in most of the cases under investigation. Hence, while structural break affects the performance of all the 

examined models, ANN is the most resilient for the breaks and instability of the parameters.  

The authors would suggest based on the findings of this study that other sophisticated forecasting methods such 

as deep learning and forecast combination methods should be used to study deeply the impact of the structural break 

on forecasting accuracy. More specifically, the effect gets worse when the break is in the third quartile of the sample, 

and it is recommended that this area to be scrutinized intensely. 
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