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Abstract
In this work, we discuss various types of I2-uniform convergence and equi-continuous for double sequences of
functions. Also, we introduce the concepts of I2-uniform convergence, I ∗

2 -uniform convergence, I2-uniformly
Cauchy sequences and I ∗

2 -uniformly Cauchy sequences for double sequences of functions in 2-normed spaces.
Then, we show the relationships between these new concepts.
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1. Introduction
Throughout the paper, N and R denote the set of all positive integers and the set of all real numbers, respectively. The concept
of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [15] and
Schoenberg [34].

The idea of I -convergence was introduced by Kostyrko et al. [27] as a generalization of statistical convergence which is
based on the structure of the ideal I of subset of N [15, 16]. Das et al. [8] introduced the concept of I -convergence of double
sequences in a metric space and studied some properties of this convergence. Gökhan et al. [20] introduced the notions of
pointwise and uniform statistical convergence of double sequences of real-valued functions. Gezer and Karakuş [19] investigated
I -pointwise and I -uniform convergence and I ∗-pointwise and I ∗-uniform convergence of function sequences. Also, they
examined the relationships between them. Baláz et al. [5] investigated I -convergence and I -continuity of real functions.
Balcerzak et al. [6] studied statistical convergence and ideal convergence for sequences of functions. Dündar and Altay [10, 11]
studied the concepts of I2-pointwise and I2-uniform convergence and I ∗

2 - pointwise and I ∗
2 -uniform convergence of double

sequences of functions and investigated some properties about them. Furthermore, Dündar [12] investigated some results of
I2-convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Gähler [17, 18] in the 1960’s. Since then, this concept has been
studied by many authors. Gürdal and Pehlivan [24] studied statistical convergence, statistical Cauchy sequence and investigated
some properties of statistical convergence in 2-normed spaces. Şahiner et al. [36] and Gürdal [26] studied I -convergence in
2-normed spaces. Gürdal and Açık [25] investigated I -Cauchy and I ∗-Cauchy sequences in 2-normed spaces. Sarabadan and
Talebi [32] presented various kinds of statistical convergence and I -convergence for sequences of functions with values in
2-normed spaces and also defined the notion of I -equistatistically convergence and study I -equistatistically convergence of
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sequences of functions. Recently, Savaş and Gürdal [33] concerned with I -convergence of sequences of functions in random
2-normed spaces and introduce the concepts of ideal uniform convergence and ideal pointwise convergence in the topology
induced by random 2-normed spaces, and gave some basic properties of these concepts. Arslan and Dündar [1, 2] investigated
the concepts of I -convergence, I ∗-convergence, I -Cauchy and I ∗-Cauchy sequences of functions in 2-normed spaces
and showed relationships between them. Yegül and Dündar [39] studied statistical convergence of sequence of functions in
2-normed spaces. Also, Dündar et al. [13] investigated I -uniform convergence of sequences of functions in 2-normed spaces.
Futhermore, a lot of development have been made in this area (see [7, 28, 29, 30, 35, 37]).

2. Definitions and Notations
Now, we recall the concept of 2-normed space, ideal convergence and some fundamental definitions and notations (See
[1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 19, 21, 22, 23, 24, 25, 26, 27, 31, 32, 36, 38]).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a function ∥·, ·∥ : X ×X → R which
satisfies the following statements:

(i) ∥x,y∥= 0 if and only if x and y are linearly dependent.

(ii) ∥x,y∥= ∥y,x∥.

(iii) ∥αx,y∥= |α|∥x,y∥, α ∈ R.

(iv) ∥x,y+ z∥ ≤ ∥x,y∥+∥x,z∥.

The pair (X ,∥·, ·∥) is then called a 2-normed space. As an example of a 2-normed space we may take X = R2 being equipped
with the 2-norm ∥x,y∥ := the area of the parallelogram based on the vectors x and y which may be given explicitly by the
formula

∥x,y∥= |x1y2 − x2y1|; x = (x1,x2),y = (y1,y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 ≤ d < ∞.
A sequence (xn) in 2-normed space (X ,∥·, ·∥) is said to be convergent to L in X if lim

n→∞
∥xn −L,y∥= 0, for every y ∈ X . In

such a case, we write lim
n→∞

xn = L and call L the limit of (xn).
Let X ̸= /0. A class I of subsets of X is said to be an ideal in X provided:
(i) /0 ∈ I , (ii) A,B ∈ I implies A∪B ∈ I , (iii) A ∈ I , B ⊂ A implies B ∈ I .
I is called a nontrivial ideal if X ̸∈ I . A nontrivial ideal I in X is called admissible if {x} ∈ I , for each x ∈ X .
Throughout the paper, we let I ⊂ 2N be an admissible ideal.
Let I f be the family of all finite subsets of N. Then, I f is an admissible ideal in N and I f convergence is the usual

convergence.
Throughout the paper we take I2 as a nontrivial admissible ideal in N×N.
A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i} belong to I2 for each i ∈ N.
It is evident that a strongly admissible ideal is admissible also.
I 0

2 = {A ⊂N×N : (∃m(A) ∈N)(i, j ≥ m(A)⇒ (i, j) ̸∈ A)}. Then I 0
2 is a nontrivial strongly admissible ideal and clearly

an ideal I2 is strongly admissible if and only if I 0
2 ⊂ I2.

We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint
sets {A1,A2, ...} belonging to I2, there exists a countable family of sets {B1,B2, ...} such that A j∆B j ∈ I 0

2 , i.e., A j∆B j is
included in the finite union of rows and columns in N×N for each j ∈ N and B =

⋃
∞
j=1 B j ∈ I2 (hence B j ∈ I2 for each

j ∈ N).
Let X ̸= /0. A non empty class F of subsets of X is said to be a filter in X provided:
(i) /0 ̸∈ F , (ii) A,B ∈ F implies A∩B ∈ F , (iii) A ∈ F , A ⊂ B implies B ∈ F .
If I is a nontrivial ideal in X , X ̸= /0, then the class

F (I ) = {M ⊂ X : (∃A ∈ I )(M = X\A)}

is a filter on X , called the filter associated with I .
A sequence (xn) in 2-normed space (X ,∥·, ·∥) is said to be I -convergent to L ∈ X , if for each ε > 0 and each nonzero

z ∈ X , A(ε,z) = {n ∈ N : ∥xn −L,z∥ ≥ ε} ∈ I . In this case, we write I − lim
n→∞

∥xn −L,z∥= 0 or I − lim
n→∞

∥xn,z∥= ∥L,z∥.
A sequence (xn) in 2-normed space (X ,∥·, ·∥) is said to be I ∗-convergent to L ∈ X if and only if there exists a set M ∈ F ,

M = {m1 < m2 < · · ·< mk < · · ·} such that lim
k→∞

∥xmk −L,z∥= 0, for each nonzero z ∈ X .
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Throughout the paper, we let X and Y be two 2-normed spaces, { fn}n∈N and {gn}n∈N be two sequences of functions and
f ,g be two functions from X to Y .

The sequence { fn}n∈N is equi-continuous on X if

(∀z ∈ X)(∀ε > 0)(∃δ > 0)(∀x,x0 ∈ X)∥x− x0,z∥X < δ ⇒∥ fn(x)− fn(x0)∥∞ < ε.

The sequence { fn} is said to be I -uniformly convergent to f (on X) if and only if

(∀z ∈ Y )(∀ε > 0)(∃M ∈ I )(∀n ∈ N\M)(∀x ∈ X)∥ fn(x)− f (x),z∥Y ≤ ε.

We write fn

∥.,.∥Y
⇒ I f .

The sequence of functions { fn} is said to be I ∗-uniformly convergent to f on X , if for every ε > 0 there exists a set
K ∈ F (I ) (N\K ∈ I ) and ∃n0 = n0(ε) ∈ K such that for all n ≥ n0, n ∈ K and for each nonzero z ∈ Y, ∥ fn(x)− f (x),z∥< ε,

for each x ∈ X and in this case, we write fn

∥.,.∥Y
⇒ I ∗ f .

{ fn} is said to be I -uniformly Cauchy if for every ε > 0 there exists s = s(ε) ∈ N such that for each nonzero z ∈ Y,

{n ∈ N : ∥ fn(x)− fs(x),z∥ ≥ ε} ∈ I , f or each x ∈ X . (2.1)

The sequence of functions { fn} is said to be I ∗-uniformly Cauchy sequence, if there exist a set M ∈ F (I ),M = {m1 <
m2 < ... <mk < ...}⊂N such that for every ε > 0 there is an k0 = k0(ε) such that for each nonzero z∈Y, ∥ fmk(x)− fmp(x),z∥<
ε, for each x ∈ X and for all k, p > k0.

Throughout the paper, we let I2 ⊂ 2N×N be a strongly admissible ideal, X and Y be two 2-normed spaces, { fmn}(m,n)∈N×N,
{gmn}(m,n)∈N×N and {hmn}(m,n)∈N×N be three double sequences of functions, f , g and k be three functions from X to Y .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be convergent (pointwise) to f if, for each
point x ∈ X and every ε > 0, there exists a positive integer k0 = k0(x,ε) such that for all m,n≥ k0 implies ∥ fmn(x)− f (x),z∥< ε ,

for every z ∈ Y . In this case we write fmn
∥.,.∥Y→ f .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be uniformly convergent to f if, for every
ε > 0 there exists a positive integer k0 = k0(ε) such that for all m,n ≥ k0 implies ∥ fmn(x)− f (x),z∥< ε , for all x ∈ X and every

z ∈ Y . In this case we write fmn

∥.,.∥Y
⇒ f .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be I2-convergent (pointwise sense) to f if,
for each x ∈ X and every ε > 0, A(ε,z) = {(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε} ∈ I2, for each nonzero z ∈ Y .

This can be expressed by the formula

(∀z ∈ Y ) (∀x ∈ X) (∀ε > 0) (∃H ∈ I2) (∀(m,n) ̸∈ H) ∥ fmn(x)− f (x),z∥< ε.

In this case, we write I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ or fmn
∥.,.∥Y−→I2 f .

The double sequence of functions { fmn} in 2-normed space (X ,∥., .∥) is said to be I ∗
2 -convergent (pointwise sense) to f ,

if there exists a set M ∈ F (I2) (i.e.,H = N×N\M ∈ I2) such that for each x ∈ X , each nonzero z ∈ Y and all (m,n) ∈ M

lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ and we write I ∗
2 − lim

m,n→∞
∥ fmn(x),z∥= ∥ f (x),z∥ or fmn

∥.,.∥Y−→I ∗
2

f .

A double sequence of functions { fmn} is said to be I2-Cauchy sequence, if for every ∀ε > 0 and each x ∈ X there exist
s = s(ε,x), t = t(ε,x) ∈ N such that

{(m,n) ∈ N×N : ∥ fmn(x)− fst(x),z∥ ≥ ε} ∈ I2,

for each nonzero z ∈ Y.
A double sequence of functions { fmn} is said to be I ∗

2 - Cauchy sequence, if there exists a set M ∈ F (I2) (i.e.,H =
N×N \M ∈ I2) and for every ε > 0 and each x ∈ X , k0 = k0(ε,x) ∈ N such that for all (m,n),(s, t) ∈ M and each z ∈ Y
∥ fmn(x)− fst(x),z∥< ε, whenever m,n,s, t > k0. In this case, we write lim

m,n,s,t→∞
∥ fmn(x)− fst(x),z∥= 0.

Now we begin with quoting the lemmas due to Yegül and Dündar [40, 41, 42] which are needed throughout the paper.

Lemma 2.1 ([41]). For each x ∈ X and each nonzero z ∈ Y,

I ∗
2 − lim

m,n→∞
∥ fmn(x),z∥= ∥ f (x),z∥ implies I2 − lim

m,n→∞
∥ fmn(x),z∥= ∥ f (x),z∥.
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Lemma 2.2 ([41]). Let I ⊂ 2N×N be an admissible ideal having the property (AP2). For each x ∈ X and each nonzero z ∈ Y,

I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥ implies I ∗
2 − lim

m,n→∞
∥ fmn(x),z∥= ∥ f (x),z∥.

Lemma 2.3 ([42]). If { fmn} is I2-convergent if and only if it is { fmn} is I2-Cauchy double sequence in 2-normed spaces.

Lemma 2.4 ([40]). Let D be a compact subset of X and f and fmn, (m,n = 1,2, ...), be continuous functions on D. Then,

fmn

∥.,.∥Y
⇒ f on D if and only if lim

m,n→∞
cmn = 0, where cmn = max

x∈D
∥ fmn(x)− f (x),z∥.

3. Main Results
In this paper, we define concepts of I2-uniform convergence, I ∗

2 -uniform convergence, I2-uniformly Cauchy and I ∗
2 -

uniformly Cauchy sequence of functions and investigate relationships between them and some properties such as continuity in
2-normed spaces.

Definition 3.1. The double sequence { fmn} is said to be I2-uniformly convergent to f (on X) if for every ε > 0 and each
nonzero z ∈ Y,

{(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε} ∈ I2, for each x ∈ X .

This can be written by the formula

(∀z ∈ Y )(∀ε > 0)(∃M ∈ I2)(∀m,n ∈ N\M)(∀x ∈ X)∥ fmn(x)− f (x),z∥Y ≤ ε.

We write fmn

∥.,.∥Y
⇒ I2

f .

Theorem 3.2. For each x ∈ X and each nonzero z ∈ Y ,

fmn

∥.,.∥Y
⇒ f implies fmn

∥.,.∥Y
⇒ I2

f .

Proof. Let ε > 0 be given. Since

lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥

for each x ∈ X and each nonzero z ∈ Y , therefore, there exists a positive integer k0 = k0(ε) such that ∥ fmn(x)− f (x),z∥< ε ,
whenever m,n ≥ k0. This implies that for each nonzero z ∈ Y ,

A(ε,z) = {(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥< ε}
⊂ ((N×{1,2, ..,(k0 −1)})∪ ({1,2, ..,(k0 −1)}×N)) .

Since I2 be a strongly admissible ideal, therefore

((N×{1,2, ..,(k0 −1)})∪ ({1,2, ..,(k0 −1)}×N)) ∈ I2.

Hence, it is clear that A(ε,z) ∈ I2 and consequently we have

fmn

∥.,.∥Y
⇒ I2

f .

Theorem 3.3. Let D be a compact subset of X and f , { fmn}, m,n = 1,2, ... be continuous functions on D. Then,

fmn

∥.,.∥Y
⇒ I2

f

on D if and only if for each nonzero z ∈ Y,

I2 − lim
m,n→∞

∥cmn(x),z∥= 0,

where

cmn = max
x∈D

∥ fmn(x)− f (x),z∥.
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Proof. Assume that fmn

∥.,.∥Y
⇒ I2

f on D. Since f and { fmn} be continuous functions on D, so ( fmn(x)− f (x)) is continuous on
D, for each m,n ∈ N. By I2−uniform convergence, for every ε > 0 and each nonzero z ∈ Y{

(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε

2

}
∈ I2,

for each x ∈ D. Hence, for every ε > 0 and each nonzero z ∈ Y , it is clear that

cmn = max
x∈D

∥ fmn(x)− f (x),z∥ ≥ ∥ fmn(x)− f (x),z∥ ≥ ε

2
,

for each x ∈ D. Thus, we have

I2 − lim
m,n→∞

cmn = 0.

Now, conversely, suppose that I2 − lim
m,n→∞

cmn = 0. For every ε > 0 and each nonzero z ∈ Y, we let following sets

A(ε) = {(m,n) ∈ N×N : max
x∈D

∥ fmn(x)− f (x),z∥ ≥ ε}

and

B(ε) = {(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε},

for each x ∈ D. Since I2− lim
m,n→∞

cmn = 0, then A(ε)∈I2. Now, we let (m,n)∈ Ac(ε). Since for every ε > 0 and each nonzero

z ∈ Y,

∥ fmn(x)− f (x),z∥ ≤ max
x∈D

∥ fmn(x)− f (x),z∥< ε,

for each x ∈ D, then (m,n) ∈ Bc(ε) and so, Ac(ε)⊂ Bc(ε). Hence, we have B(ε)⊂ A(ε) and so, B(ε) ∈ I2. This proves the
theorem.

Definition 3.4. The sequence of functions { fmn} is said to be I ∗
2 -uniformly convergent to f on X, if for every ε > 0 there exists

a set K ∈F (I2) (i.e., N×N\K ∈I2) and ∃n0 = n0(ε) ∈ K such that for all m,n ≥ n0, (m,n) ∈ K and for each nonzero z ∈Y,

∥ fmn(x)− f (x),z∥< ε,

for each x ∈ X and in this case, we write fmn

∥.,.∥Y
⇒ I ∗

2
f .

Theorem 3.5. Let { fmn} be a sequence of continuous functions and f be function from X to Y . If fmn

∥.,.∥Y
⇒ I ∗

2
f , then f is

continuous on X.

Proof. Assume fmn

∥.,.∥Y
⇒ I ∗

2
f on X . Then, for every ε > 0, there exists a set K ∈ F (I2) (i.e., H = N×N \K ∈ I2) and

k0 = k0(ε), l0 = l0(ε) ∈ N such that

∥ fmn(x)− f (x),z∥< ε

3
, (m,n ∈ K)

for each nonzero z ∈Y , each x ∈ X and all m > k0,n > l0. Now, we let x0 ∈ X is arbitrary. Since { fk0l0} is continuous at x0 ∈ X ,
there is a δ > 0 such that for each nonzero z ∈ Y,

∥x− x0,z∥< δ

implies

∥ fk0l0(x)− fk0l0(x0),z∥<
ε

3
.

Then, for all x ∈ X for which ∥x− x0,z∥< δ , we have

∥ f (x)− f (x0),z∥ ≤ ∥ f (x)− fk0l0(x0),z∥+∥ fk0l0(x)− fk0l0(x0),z∥
+ ∥ fk0l0(x)− f (x0),z∥

<
ε

3
+

ε

3
+

ε

3
= ε,

for each nonzero z ∈ Y. Since x0 ∈ X is arbitrary, f is continuous on X .
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Theorem 3.6. Let I ⊂ 2N×N be a strongly admissible ideal with the property (AP2), D be a compact subset of X and { fmn}
be a sequence of continuous function on D. Assume that { fmn} be monotonic decreasing on D, i.e.,

f(m+1),(n+1)(x)≤ fmn(x),(m,n = 1,2, ...)

for every x ∈ D, f is continuous and for each nonzero z ∈ Y ,

I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥

on D. Then,

fmn

∥.,.∥Y
⇒ I2

f

on D.

Proof. Let

gmn = fmn − f (3.1)

be a sequence of functions on D. Since { fmn} is continuous and monotonic decreasing and f is continuous on D, then {gmn} is
continuous and monotonic decreasing on D. Since

I2 − lim
m,n→∞

∥ fmn(x),z∥= ∥ f (x),z∥,

for each x ∈ D and nonzero z ∈ Y , then by (3.1),

I2 − lim
m,n→∞

∥gmn(x),z∥= 0

on D and since I2 satisfies the condition (AP2) then, by Lemma 2.2, for each nonzero z ∈ Y, we have

I ∗
2 − lim

m,n→∞
∥gmn(x),z∥= 0,

for each x ∈ D. Hence, for every ε > 0 and each x ∈ D there exists Kx ∈ F (I2) such that

0 ≤ gn(x)<
ε

2
, ((m,n),(m(x) = m(x,ε),n(x) = n(x,ε)) ∈ Kx)

for m ≥ m(x) and n ≥ n(x), (m,n) ∈ Kx. Since {gmn} is continuous at x ∈ D, for every ε > 0 there exists an open set A(x) which
contains x such that for each nonzero z ∈ Y ,

∥gm(x)n(x)(t)−gm(x)n(x)(x),z∥ ≤
ε

2
,

for all t ∈ A(x). Then, for every ε > 0, by monotonicity for each nonzero z ∈ Y , we have

0 ≤ gmn(x)≤ gmn(t)≤ gm(x)n(x)(t) = gm(x)n(x)(t)−gm(x)n(x)(x)+gm(x)n(x)(x)

≤ ∥gm(x)n(x)(t)−gm(x)n(x)(x),z∥+gm(x)n(x)(x)

for every t ∈ A(x) and for all m ≥ m(x) , n ≥ n(x) and for each x ∈ D. Since D ⊂
⋃

x∈D
A(x) and D is a compact set, by the Heine-

Borel theorem D has a finite open covering such that

D ⊂ A(x1)∪A(x2)∪A(x3)...∪A(xi).

Now, let

K = Kx1 ∩Kx2 ∩Kx3 ∩ ...∩Kxi

and define

M = max{m(x1),m(x2),m(x3), ...,m(xi)},
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N = max{n(x1),n(x2),n(x3), ...,n(xi)}.

Since for every Kxi belong to F (I2), we have K ∈ F (I2). Then, when all (m,n)≥ (M,N)

0 ≤ gmn(t)< ε, (m,n) ∈ K,

for every t ∈ A(x). So

gmn

∥.,.∥Y
⇒ I ∗

2
0,

on D. Since I is an admissible ideal

gn

∥.,.∥Y
⇒ I2

0

on D and by (3.1) we have

fn

∥.,.∥Y
⇒ I2

f

on D.

Definition 3.7. The sequence { fmn}n∈N is equi-continuous on X if

(∀z ∈ X)(∀ε > 0)(∃δ > 0)(∀x,x0 ∈ X)∥x− x0,z∥X < δ ⇒∥ fmn(x)− fmn(x0),z∥∞ < ε.

Theorem 3.8. Let I ⊂ 2N×N be a strongly admissible ideal, X and Y be two 2-normed spaces with dimY < ∞. Assume that

fmn
∥.,.∥Y−→I2 f on X, where fmn : X → Y, m,n ∈ N are equi-continuous on X and f : X → Y, then f is continuous on X . If X is

compact then, we have fn

∥.,.∥Y
⇒ I2

f on X.

Proof. First we will prove that f is continuous on X . Let x0 ∈ X and ε > 0. By the equi-continuity of fmn’s there exists δ > 0
and for each nonzero z ∈ Y such that

∥ fmn(x)− fmn(x0),z∥<
ε

3

for every m,n ∈ N, x ∈ Bδ (x0) (Bδ (x0) stands for an open ball in X with center x0 and radius δ .) Since fmn

∥.,.∥Y
⇒ I2

f . The set

{
(m,n) ∈ N×N : ∥ fmn(x0)− f (x0),z∥ ≥

ε

3

}
∪
{
(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥ ≥ ε

3

}
is in I2 and is different from N×N. Hence, for each nonzero z ∈ Y, there exists (m,n) ∈ N×N such that

∥ fmn(x0)− f (x0),z∥<
ε

3
and ∥ fmn(x)− f (x),z∥< ε

3
.

Thus, for each nonzero z ∈ Y we have

∥ f (x0)− f (x),z∥ ≤ ∥ f (x0)− fmn(x0),z∥+∥ fmn(x0)− fmn(x),z∥+∥ fmn(x)− f (x),z∥

<
ε

3
+

ε

3
+

ε

3
= ε

so f is continuous on X . We assume that X is compact. Let ε > 0. Since X is compact, it follows that f is uniformly continuous
and fmn’s are equi-uniformly continuous on X. So, pick δ > 0 such that for any x,x

′ ∈ X with

∥x− x
′
,z∥< δ ,

then, by equi-uniformly and uniformly continuous for each nonzero z ∈ Y, we have

∥ fmn(x)− fmn(x′),z∥<
ε

3
and ∥ f (x)− f (x′),z∥< ε

3
.
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By the compactness of X, we can choose a finite subcover

Bx1(δ ),Bx2(δ ),Bx3(δ ), ...,Bxk(δ )

from the cover {Bx(δ )}x∈X of X . Using fmn

∥.,.∥Y
⇒ I2

f pick a set M ∈ I2 such that for each nonzero z ∈ Y,

∥ fmn(xi)− f (xi),z∥<
ε

3
, i ∈ {1,2, ...,k},

for all m,n ̸∈ M. Let m,n ̸∈ M and x ∈ X . Thus, x ∈ Bxi(δ ) for since i ∈ {1,2, ...,k}. Hence, for each nonzero z ∈ Y we have

∥ fmn(x)− f (x),z∥ ≤ ∥ fmn(x)− fmn(xi),z∥+∥ fmn(xi)− f (xi),z∥+∥ f (xi)− f (x),z∥

<
ε

3
+

ε

3
+

ε

3
= ε

and so fmn

∥.,.∥Y
⇒ I2

f on X .

Definition 3.9. { fmn} is said to be I2-uniformly Cauchy if for every ε > 0 there exists s = s(ε) ∈N, t = t(ε) ∈N such that for
each nonzero z ∈ Y,

{(m,n) ∈ N×N : ∥ fmn(x)− fst(x),z∥ ≥ ε} ∈ I2, f or each x ∈ X . (3.2)

Now, we give I2-Cauchy criteria for I2-uniformly convergence in 2-normed space.

Theorem 3.10. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property (AP2) and let { fmn} be a sequence of
bounded function on X. Then, { fmn} is I2-uniformly convergent if and only if it is I2-uniformly Cauchy sequence on X .

Proof. Assume that { fmn} I2-uniformly convergent to a function f defined on X . Let ε > 0. Then, for each nonzero z ∈ Y , we
have {

(m,n) ∈ N×N : ∥ fmn(x)− f (x),z∥< ε

2

}
̸∈ I2

for each x ∈ X . We can select an m(ε),n(ε) ∈ N such that for each nonzero z ∈ Y,{
(m,n) ∈ N×N : ∥ fm(ε)n(ε)(x)− f (x),z∥< ε

2

}
̸∈ I2,

for each x ∈ X . The triangle inequality yields that for each nonzero z ∈ Y

{(m,n) ∈ N×N : ∥ fmn(x)− fm(ε)n(ε)(x),z∥< ε} ̸∈ I2,

for each x ∈ X . Since ε is arbitrary, { fmn} is I2-uniformly Cauchy on X .
Conversely, assume that { fmn} is I2-uniformly Cauchy on X . Let x ∈ X be fixed. By (3.2) for every ε > 0 there is an

s = s(ε) and t = t(ε) ∈ N such that for each nonzero z ∈ Y,

{(m,n) ∈ N×N : ∥ fmn(x)− fst(x),z∥< ε} ̸∈ I2.

Hence, { fmn} is I2-Cauchy, so by Lemma 2.3 we have that { fmn} is I2-convergent to f .Then, fmn
∥.,.∥Y−→I2 f on X .

Now we shall show that this convergence must be uniform. Note that since I2 satisfy the condition (AP2), by (3.2) there is
a K ̸∈ I2 such that for each nonzero z ∈ Y,

∥ fmn(x)− fst(x),z∥< ε, ((m,n),(s, t) ∈ K) (3.3)

for all m,n,s, t ≥ N and N = N(ε) ∈ N and for each x ∈ X . By (3.3) for s, t → ∞ and each nonzero z ∈ Y,

∥ fmn(x)− f (x),z∥< ε, ((m,n) ∈ K)

for all n,m > N and each x ∈ X . This shows that

fmn

∥.,.∥Y
⇒ I ∗

2
f

on X . Since I2 ⊂ 2N×N is a strongly admissible ideal we have

fmn

∥.,.∥Y
⇒ I2

f

on X .
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Definition 3.11. Let I2 ⊂ 2N×N be a strongly admissible ideal and { fmn} be a double sequence of function on X. { fmn} is
said to be I ∗

2 -uniformly Cauchy sequence, if there exist a set K ∈ F (I2),(i.e.,H = N×N\K ∈ I2), for every ε > 0 and
each x ∈ X, k0 = k0(ε,x) such that for all ((m,n),(s, t)) ∈ K and each nonzero z ∈ Y,

∥ fmn(x)− fst(x),z∥< ε,

whenever m,n,s, t,> k0. In this case, we write

lim
m,n,s,t→∞

∥ fmn(x)− fst(x),z∥= 0.

Theorem 3.12. If { fmn} is a I ∗
2 -uniformly Cauchy sequence then it is I2-uniformly Cauchy sequence in 2-normed spaces.

Proof. Let { fmn} be a I ∗
2 -uniformly Cauchy sequence in 2-normed spaces then, by definition there exists the set K ∈

F (I2),(i.e.,H = N×N\K ∈ I2) such that for every ε > 0 and for each nonzero z ∈ Y, k0 = k0(ε) and ((m,n),(s, t)) ∈ K

∥ fmn(x)− fst(x),z∥< ε,

for each x ∈ X and m,n,s, t > k0. Let N = N(ε,z). Then for ε > 0 and for each nonzero z ∈ Y, we have

∥ fmn(x)− fN(x),z∥< ε,

for each x ∈ X and m,n > k0. Now put H = N×N\K. It is clear that H ∈ I2 and

A(ε,z) = {n ∈ N : ∥ fmn(x)− fN(x)∥ ≥ ε} ⊂ H ∪K.

Since I2 is an admissible ideal then H ∪K ∈ I2. Hence, for every ε > 0 we find N = N(ε,z) such that A(ε,z) ∈ I2, i.e.,
{ fmn} is I2-uniformly Cauchy sequence.
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