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Abstract 

The purpose of this article is to analyze geometric features of Clairaut semi-invariant Riemannian submersions 

whose total manifolds are locally product Riemannian manifold and investigate fundamental results on such 

submersion. We also ensure an explicit example of Clairaut semi-invariant Riemannian submersion. 
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Total Manifoldu Yerel Çarpım Riemann Manifoldu Olan Clairaut Yarı-değişmez 

Submersiyonlar 

Öz 

Bu makalenin amacı, total manifoldu yerel bir Riemann manifoldu olan Clairaut yarı-değişmez Riemann 

submersiyonlarının geometrik özelliklerini analiz etmek ve böyle bir submersiyon ile ilgili temel sonuçları 

araştırmaktır. Ayrıca Clairaut yarı-değişmez Riemann submersiyona açık bir örnek verilmektedir. 

 

 

Anahtar Kelimeler: Riemann submersiyon, Clairaut submersiyon, Clairaut yarı-değişmez submersiyon, yerel 

çarpım Riemann manifold. 
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1. Introduction 

O’Neill [19] and Gray [9] defined Riemannian submersion between two Riemannian manifolds 

for the first time. In differential geometry, to equate geometric structures described on the above 

mentioned manifolds, Riemannian submersions are utilized broadly as differential maps. 

Riemannian submersions have important application areas in medical imaging, in robotics 

theory and Kaluza-Klein theory, and many more. We refer interested readers to [27] and 

reference therein for current progress and applications of Riemannian submersions. Afterwards, 

Watson [38] introduced almost Hermitian submersions and then Sahin [31] was presented the 

concept of Lagrangian submersion and anti-invariant submersions from almost Hermitian 

manifolds and this concept studied in [20, 32, 10, 5, 25, 14]. Şahin [28] generalized anti-

invariant submersions, showing the advantages of studying properties of the total manifold of 

semi-invariant submersions. and the same idea investigated by Ozdemir et al. [20] and [12]. 

After, some researchers study some different types of Riemannian submersions such as 

pointwise slant submersion [23, 3, 7, 17], generic submersion [24, 1, 26, 22], Lorentzian 

Clairaut submersions [2], slant submersion [8, 29, 16, 13, 15], semi-slant submersion [21], 

hemi-slant submersion [33]. 

Clairaut’s theorem [6], in the investigation of geodesic onto a surface of cycle (revolution), says 

that on the cycle surface 𝑀 for any geodesic 𝜍 (𝜍: 𝐼2 ⊂ R → 𝑀) the expression 𝑟sin𝜑 is constant 

along 𝜍, where the angle 𝜑(𝑝) is the angle between the meridian curve and 𝜍(𝑝), 𝑝 ∈ 𝐼2 ⊂ R. 

He also introduced and studied the theory of Riemannian submersions which content a 

generalization of Clairaut’s theorem. 

Clairaut anti-invariant submersions (CAIS) whose total manifold are paracosymplectic 

manifold are given in [11] with characterization theorems. CAIS’s whose total manifolds are 

Kenmotsu and Sasakian were given by Tastan and Gerdan [34] and in [35], the authors also 

investigated CAIS from cosymplectic manifolds. Lee et al. [18] considered CAIS whose total 

manifold is Kahler manifolds. Gupta et al. [39] investigated Clairaut semi-invariant submersion 

from Kähler  manifold. 

In this paper, we investigate Clairaut semi-invariant Riemannian submersion (CSIRS) from a 

locally product Riemannian manifold onto a Riemannian manifold. In Section 2, we give some 

expressions that we will need in the next subsequent section. In Section 3, we describe CSIRS 

from locally product Riemannian manifold onto a Riemannian manifold and study the geometry 

of leaves of distributions and we present an example of the CSIRS whose total manifolds are 

locally product Riemannian. 

2  Preliminaries 

2.1  Locally Product Riemannian Manifolds 

In this section, we give brief information for locally product Riemannian manifolds. 

Let 𝑀 be a smooth manifold of (𝑚 + 𝑛)-dimensional with a tensor field 𝑃 of type (1,1) such 

that 
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 𝑃2 = 𝐼, (𝑃 ≠ ±𝐼). (2.1) 

where 𝐼 is the identity morphism of tangent bundle 𝑇𝑀. If 𝑀 is equipped with the structure 𝑃, 

then (𝑀, 𝑃) is an almost product manifold. If an almost product manifold (𝑀, 𝑃) accepts a 

Riemannian metric 𝑔�̅� such that for all any 𝑈1, 𝑈2 ∈ 𝑇𝑀,  

 𝑔�̅�(𝑃𝑈1, 𝑃𝑈2) = 𝑔�̅�(𝑈1, 𝑈2) or 𝑔1(𝑃𝑈1, 𝑈2) = 𝑔�̅�(𝑈1, 𝑃𝑈2). (2.2) 

 Then, 𝑀 is called an almost product Riemannian manifold. An almost product Riemannian 

manifold 𝑀 is called a locally product Riemannian manifold if the equation hold 

 (∇𝑈1
𝑃)𝑈2 = ∇𝑈1

𝑃𝑈2 − 𝑃∇𝑈1
𝑈2 = 0, (2.3) 

where 𝑈1, 𝑈2 ∈ 𝑇𝑀 and ∇ is the Riemannian connection on 𝑀 [36]. 

2.2  Riemannian Submersions 

In this section, we recall the fundamental definitions and notions of a Riemannian submersion. 

Let (𝑀, 𝑔�̅�) and (𝑁, 𝑔�̅�) be Riemannian manifolds with dim(𝑁) < dim(𝑀).  A surjective 

mapping 𝐹: (𝑀, 𝑔�̅�) → (𝑁, 𝑔�̅�) is called a Riemannian submersion if it satisfies the following 

conditions: 

(i). The fibers 𝐹−1(𝑎) ∈ 𝑁, 𝑎 ∈ 𝑁, are 𝑘 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 Riemannian submanifolds of 

𝑁, where 𝑘 = dim(𝑀) − dim(𝑁).  

In which case, for a vector field 𝑋1 on 𝑀, if it is always tangent to fibers then it is called vertical 

and if it is always orthogonal to fibers then it is called horizontal. If a vector field 𝑋1 on 𝑀 is 

horizontal and 𝐹−related to a vector field 𝑋1∗
 on 𝑁, then it is called basic, i.e., for all , 𝑎 ∈ 𝑁, 

𝐹∗𝑋1a = 𝑋1∗
𝐹∗(𝑎), where 𝐹∗ is the derivative map of 𝐹. 

(ii). 𝐹∗𝑞 preserves the length of the horizontal vectors, i.e., for all 𝑞 ∈ 𝑀 and for any horizontal 

vectors 𝑋1,𝑌1 ∈ (ker𝐹∗)⊥ at 𝑞, 𝑔�̅�(𝑋1, 𝑌1) = 𝑔�̅�(𝐹∗𝑋1, 𝐹∗𝑌1). 

A Riemannian submersion 𝐹: (𝑀, 𝑔�̅�) → (𝑁, 𝑔�̅�) specifies two tensor fields 𝒯 and 𝒜 on 

𝑀 of types (1,2) for all 𝐸, 𝐺 ∈ 𝜒(𝑀), by the formulas [19]:  

 𝒯(𝐸, 𝐺) = 𝒯𝐸𝐺 = ℎ∇𝑣𝐸𝑣𝐺 + 𝑣∇𝑣𝐸ℎ𝐺, (2.4) 

 

 𝒜(𝐸, 𝐺) = 𝒜𝐸𝐺 = 𝑣∇ℎ𝐸ℎ𝐺 + ℎ∇ℎ𝐸𝑣𝐺, (2.5) 
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where, 𝑣 and ℎ are the projections on the vertical distribution and horizontal distribution, 

repectively. ∇ is the Levi-Civita connection of 𝑔�̅� 

Let 𝑋1, 𝑋2 be horizontal and 𝑈1, 𝑈2 be vertical vector fields on 𝑀, then we get  

 𝒜𝑋1
𝑋2 = −𝒜𝑋2

𝑋1 =
1

2
𝑣[𝑋1, 𝑋2], (2.6) 

 𝒯𝑈1
𝑈2 = 𝒯𝑈2

𝑈1. (2.7) 

From (2.4) and (2.5), we get 

 ∇𝑈1
𝑈2 = ∇̂𝑈1

𝑈2 + 𝒯𝑈1
𝑈2, (2.8) 

 ∇𝑈1
𝑋1 = ℎ∇𝑈1

𝑋1 + 𝒯𝑈1
𝑋1, (2.9) 

 ∇𝑋1
𝑈1 = 𝑣∇𝑋1

𝑈1 + 𝒜𝑋1
𝑈1, (2.10) 

 ∇𝑋1
𝑋2 = ℎ∇𝑋1

𝑋2 + 𝒜𝑋1
𝑋2, (2.11) 

for any 𝑋1, 𝑋2 ∈ Γ(ker𝐹∗)⊥and 𝑈1, 𝑈2 ∈ Γ(ker𝐹∗). Also, if 𝑋1 is basic then ℎ∇𝑈1
𝑋1 =

ℎ∇𝑋1
𝑈1 = 𝒜𝑋1

𝑈1. We say that (ker𝐹∗)⊥ is totally geodesic if and only if 𝒜 ≡ {0}. From (2.8), 

we can also see that on the fibers, 𝒯  take actions as the second fundamental form. 

Let 𝐹 be a surjective mapping between Riemannian manifolds 𝑀 and 𝑁. Then for 𝐸, 𝐹 ∈

Γ(𝑇𝑀) the second fundamental form of 𝐹 is described as 

 (∇𝐹∗)(𝐸, 𝐺) = ∇𝐸

𝐹
𝐹∗𝐺 − 𝐹∗(∇𝐸𝐺), (2.12) 

where ∇ is the Riemannian connection and ∇
𝐹
 is the pull-back connection. From [4], the second 

fundamental form is well-known to be symmetric. Besides, 𝐹 is called totally geodesic if 

(∇𝐹∗)(𝐸, 𝐺) = 0 for all 𝐸, 𝐹 ∈ Γ(𝑇𝑀). 

The fibers of 𝐹 is called totally umbilical if  

 𝒯𝑈1
𝑈2 = 𝑔�̅�(𝑈1, 𝑈2)𝐻, (2.13) 

for any 𝑈1, 𝑈2 ∈ Γ(ker𝐹∗), where 𝐻 stands for the mean curvature vector field of the fiber of 𝐹 

[20]. 

2.3  Semi-invariant Submersion 

In this section, we present results on the geometry of semi-invariant submersions from locally 

product Riemannian (l.p.R) manifolds. 
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Definition 1 [20] Let (M, gM̅, P) be a l.p.R manifold and (N, gN̅) be a Riemannian manifold. If 

there is a distribution D1 ⊂ kerF∗ such that 

 kerF∗ = D1 ⊕ D2, PD1 = D1, PD2 ⊂ (kerF∗)⊥, (2.14) 

then a Riemannian submersion F: (M, gM̅, P) → (N, gN̅) is named as semi-invariant submersion, 

where the orthogonal complement of D1 in kerF∗ is D2. In this case, the horizontal distribution 

(kerF∗)⊥ can be decomposed as 

 (kerF∗)⊥ = PD2 ⊕ η, (2.15) 

where the orthogonal complementary distribution of PD2 in (kerF∗)⊥ is η, and η is invariant 

with respect to P.  

Let 𝐹: (𝑀, 𝑔�̅�, 𝑃) → (𝑁, 𝑔�̅�) be a semi-invariant submersion from almost l.p.R 

manifold onto a Riemannian manifold. For any 𝑈1 ∈ Γ(ker𝐹∗), set 

 𝑃𝑈1 = 𝜙𝑈1 + 𝜔𝑈1, (2.16) 

where 𝜔𝑈1 ∈ Γ(ker𝐹∗)⊥ and 𝜙𝑈1 ∈ Γ(ker𝐹∗). Also, for 𝑋1 ∈ Γ(ker𝐹∗)⊥ we set, 

 𝑃𝑋1 = 𝐵𝑋1 + 𝐶𝑋1, (2.17) 

where 𝐶𝑋1 ∈ Γ(ker𝐹∗)⊥ and 𝐵𝑋1 ∈ Γ(ker𝐹∗). 

3  Main Theorem and Proof 

3.1 Clairaut Semi-invariant Submersion From Locally Product Riemannian Manifold 

In this part, we give new Clairaut conditions for semi-invariant submersion from l.p.R manifold. 

To this end, firstly we recall some basic auxiliary results. 

Definition 2 [6] Let F: (M, gM̅) → (N, gN̅) be a Riemannian submersion and ς a geodesic on M. 

If there exists a positive function r on M, such that the function (r ∘ ς)sinφ is constant, then F 

is named as a Clairaut submersion, where the angle between the horizontal space at ς(p) and 

ς̇(p) is φ(p), for any p ∈ I2.  

In [6], Bishop also introduced Clairaut submersion, and he gave the conditions a Riemannian 

submersion to be a clairaut submersion. 

Theorem 1 [6]Let F: (M, gM̅) → (N, gN̅) be a Riemannian submersion between two 

Riemannian manifolds with connected fibers. If each fiber is totally umbilical and has the mean 

curvature vector field H = −gradβ , then F is a Clairaut submersion with r = eβ , where 

according to gM̅, the gradient of the function β  is gradβ.  
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Herein, after giving several auxiliary results, we state new Clairaut conditions for semi-

invariant Riemannian submersions from l.p.R manifolds. 

Theorem 2 Let F: (M, gM̅, P) → (N, gN̅) be a semi-invariant Riemannian submersion from a 

l.p.R manifold onto a Riemannian manifold. If ς: I2 ⊂ R → M is a regular curve and the 

horizontal and vertical parts of the tangent vector field ς̇(p) of ς(p) are X1(p) and U1(p) 

respectively, then ς is a geodesic if and only if the equations satisfy along ς 

 v∇ς̇BX1 + v∇ς̇ϕU1 + (𝒯U1 + 𝒜X1
)CX1 + (𝒯U1 + 𝒜X1

)ωU1 = 0, (3.1) 

 h∇ς̇BX1 + h∇ς̇ωU1 + (𝒯U1 + 𝒜X1
)BX1 + (𝒯U1 + 𝒜X1

)ϕU1 = 0. (3.2) 

Proof. From (2.3), we get 

 ∇ς̇ς̇ = P(∇ς̇Pς̇). (3.3) 

Since ς̇ = U1(p) + X1(p), we can write 

 ∇ς̇ς̇ = P(∇U1(p)+X1(p)P(U1(p) + X1(p))) 

 = P(∇U1
PU1 + ∇U1

PX1 + ∇X1
PU1 + ∇X1

PX1). 

Using (2.16) and (2.17), we get 

 ∇ς̇ς̇ = P(∇U1
(ϕU1 + ωU1) + ∇U1

(BX1 + CX1) (3.4) 

 +∇X1
(ϕU1 + ωU1) + ∇X1

(BX1 + CX1)) 

 = P(∇U1
ϕU1 + ∇U1

ωU1 + ∇U1
BX1 

 +∇U1
CX1 + ∇X1

ϕU1 + ∇X1
ωU1 + ∇X1

BX1 + ∇X1
CX1). 

Using (2.8)-(2.11), by direct computations, we have 

 ∇�̇�𝜍̇ = 𝑃(𝒯𝑈1
𝜙𝑈1 + 𝑣∇𝑈1

𝜙𝑈1 + 𝒯𝑈1
𝜔𝑈1 + ℎ∇𝑈1

𝜔𝑈1 + 𝒜𝑋1
𝜙𝑈1 + 𝑣∇𝑋1

𝜙𝑈1 

 +ℎ∇𝑋1
𝜔𝑈1 + 𝒜𝑋1

𝜔𝑈1 + 𝒯𝑈1𝐵𝑋1 + 𝑣∇𝑈1
𝐵𝑋1 + 𝒯𝑈1𝐶𝑋1 + ℎ∇𝑈1

𝐶𝑋1 

 +𝒜𝑋1
𝐵𝑋1 + 𝑣∇𝑋1

𝐵𝑋1 + ℎ∇𝑋1
𝐶𝑋1 + 𝒜𝑋1

𝐶𝑋1) 

 = 𝑃(𝑣∇�̇�𝐵𝑋1 + 𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐶𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜔𝑈1 

 +ℎ∇�̇�𝐵𝑋1 + ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1). 

By separating the vertical and horizontal parts of this equation, then we obtain 
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 𝑣𝑃∇�̇�𝜍̇ = 𝑣∇�̇�𝐵𝑋1 + 𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐶𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜔𝑈1, (3.5) 

 ℎ𝑃∇�̇�𝜍̇ = ℎ∇�̇�𝐵𝑋1 + ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1. (3.6) 

Hence the theorem is proved.  

Theorem 3 Let F be a semi-invariant Riemannian submersion from a l.p.R manifold (M, gM̅, P) 

onto a Riemannian manifold (N, gN̅) and let ς: I2 ⊂ R → M be a regular curve and the horizontal 

and vertical parts of the tangent vector field ς̇(p) of ς(p) respectively are X1(p) and U1(p). 

Then F is a Clairaut submersion with r = eβ if and only if along ς, the equation is obtained as 

 −‖U1‖2gM̅(gradβ, X1) = gM̅(v∇ς̇ϕU1 + (𝒯U1 + 𝒜X1
)CX1 

 +(𝒯U1 + 𝒜X1
)ωU1, BX1) 

 +gM̅(h∇ς̇ωU1 + (𝒯U1 + 𝒜X1
)BX1 

 +(𝒯U1 + 𝒜X1
)ϕU1, CX1). 

Proof. Let 𝜍(𝑝) be a geodesic on 𝑀, 𝑈1(𝑝) = 𝑣𝜍̇(𝑝) and 𝑋1(𝑝) = ℎ𝜍̇(𝑝). Let √𝑘 be constant 

speed of 𝜍 on 𝑀 that is, 𝑘 = 𝑔�̅�(𝜍̇(𝑝), 𝜍̇(𝑝)) = ‖𝜍̇(𝑝)‖2. Hence we conclude that, 

 𝑔�̅�(𝑈1(𝑝), 𝑈1(𝑝)) = 𝑘sin2𝜑(𝑝), (3.7) 

 𝑔�̅�(𝑋1(𝑝), 𝑋1(𝑝)) = 𝑘cos2𝜑(𝑝), (3.8) 

where 𝜑(𝑝) denotes the angle between 𝜍̇(𝑝) and the horizontal space at 𝜍(𝑝). Differentiating 

(3.7), we have 

 
𝑑

𝑑𝑝
𝑔�̅�(𝑋1(𝑝), 𝑋1(𝑝)) = 2𝑔�̅�(∇�̇�(𝑝)𝑋1(𝑝), 𝑋1(𝑝)) = −2𝑘cos𝜑(𝑝)sin𝜑(𝑝)

𝑑𝜑

𝑑𝑝
. (3.9) 

Using (2.2), we get 

 
𝑑

𝑑𝑝
𝑔�̅�(𝑋1(𝑝), 𝑋1(𝑝)) =

𝑑

𝑑𝑝
𝑔�̅�(𝑃𝑋1(𝑝), 𝑃𝑋1(𝑝)). 

From (2.3) and (2.17), we have  

 
𝑑

𝑑𝑝
𝑔�̅�(𝑋1(𝑝), 𝑋1(𝑝)) = 2𝑔�̅�(∇�̇�𝑋1, 𝑋1) 

 = 2𝑔�̅�(𝑃∇�̇�𝑋1, 𝑃𝑋1) 

 = 2𝑔�̅�(∇�̇�𝑃𝑋1, 𝑃𝑋1) 

 = 2𝑔�̅�(∇�̇�𝐵𝑋1 + ∇�̇�𝐶𝑋1, 𝑃𝑋1) 
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 = 2𝑔1(∇𝑈1+𝑋1
𝐵𝑋1 + ∇𝑈1+𝑋1

𝐶𝑋1, 𝐵𝑋1 + 𝐶𝑋1) 

 = 2𝑔�̅�(∇𝑈1
𝐵𝑋1 + ∇𝑋1

𝐵𝑋1 + ∇𝑈1
𝐶𝑋1 + ∇𝑋1

𝐶𝑋1, 𝐵𝑋1 + 𝐶𝑋1). 

Since 𝐹 is a semi-invariant submersion and using equations (2.8)-(2.11), we obtain 

 
𝑑

𝑑𝑝
𝑔�̅�(𝑋1(𝑝), 𝑋1(𝑝) = 2𝑔�̅�(𝑣∇�̇�𝐵𝑋1, 𝐵𝑋1) + 2𝑔�̅�(ℎ∇�̇�𝐶𝑋1, 𝐶𝑋1). 

From (3.5) and (3.6), we get 

 
𝑑

𝑑𝑝
𝑔�̅�(𝑋1(𝑝), 𝑋1(𝑝) = −2𝑔�̅�(𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1

)𝐶𝑋1 + (𝒯𝑈1 +

𝒜𝑋1
)𝜔𝑈1, 𝐵𝑋1) 

 −2𝑔�̅�(ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1, 𝐶𝑋1). 

From (3.9), we have 

 𝑔�̅�(𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐶𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜔𝑈1, 𝐵𝑋1) (3.10) 

 +𝑔�̅�(ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1, 𝐶𝑋1) 

 = 𝑘cos𝜑(𝑝)sin𝜑(𝑝)
𝑑𝜑

𝑑𝑝
. 

Now, 𝐹 is a CSIRS with 𝑟 = 𝑒𝛽 if and only if 
𝑑

𝑑𝑝
((𝑟 ∘ 𝜍)sin𝜑(𝑝)) = 0. Therefore 

 
𝑑

𝑑𝑝
((𝑒𝛽 ∘ 𝜍)sin𝜑(𝑝)) = 0 ⟺ (𝑒𝛽 ∘ 𝜍)(

𝑑𝛽

𝑑𝑝
𝜍̇(𝑝)sin𝜑(𝑝) + cos𝜑(𝑝)

𝑑𝜑

𝑑𝑝
) = 0. 

Since 𝑟 is a positive function, then  

 
𝑑𝛽

𝑑𝑝
𝜍̇(𝑝)sin𝜑 + cos𝜑

𝑑𝜑

𝑑𝑝
= 0. (3.11) 

By multiplying (3.11) with non-zero factor 𝑘sin𝜑, then we obtain  

 −
𝑑𝛽

𝑑𝑝
𝜍̇(𝑝)𝑘sin2𝜑 = 𝑘cos𝜑sin𝜑

𝑑𝜑

𝑑𝑝
. (3.12) 

Since the right-hand sides of equations (3.10) and (3.12) are equal, 

 𝑔�̅�(𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐶𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜔𝑈1, 𝐵𝑋1) 

 +𝑔�̅�(ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1, 𝐶𝑋1) 

 = −
𝑑𝛽

𝑑𝑝
𝜍̇(𝑝)𝑘sin2𝜑. 
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From (3.7), we get 

 𝑔�̅�(𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐶𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜔𝑈1, 𝐵𝑋1) 

 +𝑔�̅�(ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1, 𝐶𝑋1) 

 = −
𝑑𝛽

𝑑𝑝
𝜍̇(𝑝)𝑔�̅�(𝑈1, 𝑈1). 

Thus, we have 

 𝑔�̅�(𝑣∇�̇�𝜙𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐶𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜔𝑈1, 𝐵𝑋1) 

 +𝑔�̅�(ℎ∇�̇�𝜔𝑈1 + (𝒯𝑈1 + 𝒜𝑋1
)𝐵𝑋1 + (𝒯𝑈1 + 𝒜𝑋1

)𝜙𝑈1, 𝐶𝑋1) 

 = −‖𝑈1‖2𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑋1). 

Since 
𝑑𝛽

𝑑𝑝
𝜍(𝑝) = 𝜍̇[𝛽](𝑝) = 𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝜍̇(𝑝)) = 𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑈1(𝑝) + 𝑋1(𝑝)) =

𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑋1). Hence the theorem is proved.  

Theorem 4 Let F be a semi-invariant Riemannian submersion from a l.p.R manifold (M, gM̅, P) 

onto a Riemannian manifold (N, gN̅) with r = eβ. The following equation is provided as:  

gM̅(∇̂U1
ϕU2 + v∇U1

ωU2, BX1) + gM̅(𝒜ωU2
U1 + h∇U1

ϕU2, CX1)

= −gM̅(U1, U2)gM̅(gradβ, X1), 

for X1 ∈ Γ(η) and U1, U2 ∈ Γ(D2) such that ωU2 is basic.  

 

Proof. From (2.13) and Theorem 1, we get  

 𝒯U1
U2 = −gM̅(U1, U2)gradβ, (3.13) 

where U1, U2 ∈ Γ(D2). If inner product is applied to in (3.13) with X1 ∈ Γ(η), then we have 

 gM̅(𝒯U1
U2, X1) = −gM̅(U1, U2)gM̅(gradβ, X1). 

Let X1 ∈ Γ(η) and U1, U2 ∈ Γ(D2), then using (2.1), (2.2) and (2.3), we have  

 𝑔�̅�(∇𝑈1
𝑃𝑈2, 𝑃𝑋1) = 𝑔�̅�(∇𝑈1

𝑈2, 𝑋1). (3.14) 

Using (2.8) in (3.14), we get 

 𝑔�̅�(𝒯𝑈1
𝑈2, 𝑋1) = 𝑔�̅�(∇𝑈1

𝑈2, 𝑋1). 
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Therefore, we have 

 𝑔�̅�(∇𝑈1
𝑃𝑈2, 𝑃𝑋1) = −𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑋1). 

Using (2.4),(2.5),(2.8)-(2.10),(2.16) and (2.17), we have 

 𝑔�̅�(∇̂𝑈1
𝜙𝑈2, 𝐵𝑋1) + 𝑔�̅�(ℎ∇𝑈1

𝜙𝑈2, 𝐶𝑋1) 

 +𝑔�̅�(𝑣∇𝑈1
𝜔𝑈2, 𝐵𝑋1) + 𝑔�̅�(ℎ∇𝑈1

𝜔𝑈2, 𝐶𝑋1) 

 = −𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑋1). 

Since 𝜔𝑈2 is basic, so ℎ∇𝑈1
𝜔𝑈2 = 𝒜𝜔𝑈2

𝑈1, Thus we have 

 𝑔�̅�(∇̂𝑈1
𝜙𝑈2 + 𝑣∇𝑈1

𝜔𝑈2, 𝐵𝑋1) 

 +𝑔�̅�(𝒜𝜔𝑈2
𝑈1 + ℎ∇𝑈1

𝜙𝑈2, 𝐶𝑋1) 

 = −𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑋1). 

  

Theorem 5 Let F be a CSIRS from a l.p.R manifold (M, gM̅, P) onto a Riemannian manifold 

(N, gN̅) with r = eβ. Then either β is constant on P(D2) or the fibres of F are 1-dimensional.  

 

Proof. Let F be a CSIRS. For U1, U2 ∈ Γ(D2), taking inner product in (3.13) with PX1, then we 

have 

 𝑔�̅�(𝒯𝑈1
𝑈2, 𝑃𝑋1) = −𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑋1), (3.15) 

for all 𝑋1 ∈ Γ(𝐷2). In (3.15), using (2.2), (2.3) and (2.8) we acquire 

 𝑔�̅�(∇𝑈1
𝑃𝑈2, 𝑋1) = −𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑋1). 

Utilizing (2.9) and (3.15) in this equation, we obtain 

 𝑔�̅�(𝑈1, 𝑃𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑋1) = 𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑋1). 

Taking 𝑃𝑈2 = 𝑋1 and 𝑈2 = 𝑃𝑋1, we obtain 

 𝑔�̅�(𝑈1, 𝑋1)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈2) = 𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑋1). (3.16) 

Taking 𝑋1 = 𝑈1 and replacement the role of 𝑈1 and 𝑈2, then we have 

 𝑔�̅�(𝑈2, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈1) = 𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈2). (3.17) 
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Now, just taking 𝑋1 = 𝑈1 in (3.16), we get 

 𝑔�̅�(𝑈1, 𝑈1)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈2) = 𝑔�̅�(𝑈1, 𝑈2)𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈1). (3.18) 

From (3.17) and (3.18), we obtain 

 𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈1) =
(𝑔�̅̅̅�(𝑈1,𝑈2))

2

‖𝑈1‖2.‖𝑈2‖2
𝑔�̅�(𝑔𝑟𝑎𝑑𝛽, 𝑃𝑈1). 

From the condition of equality in the Schwarz inequality, if 𝑔𝑟𝑎𝑑𝛽 ∈ Γ(𝑃𝐷2), then it means 

that the claim of Theorem (5) is satisfied.  

Lastly, we give an example of a CSIRS from a l.p.R manifold. 

3.2 Example 

Let M given by 

 𝑀 = {(𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6) ∈ ℝ6: (𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6) ≠ 0, 𝑢1 ≠ 0}. 

We describe the Riemannian metric 𝑔�̅� on 𝑀 as 

𝑔�̅� = 3𝑒−2𝑢1𝑑𝑢1
2 + 3𝑒−2𝑢1𝑑𝑢2

2 + 𝑒−2𝑢1𝑑𝑢3
2 + 𝑒−2𝑢1𝑑𝑢4

2 + 𝑒−2𝑢1𝑑𝑢5
2 + 3𝑒−2𝑢1𝑑𝑢6

2. 

We take the product structure (𝑃, 𝑔�̅�) on 𝑀 as 𝑃(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) = (−𝑏, −𝑎, 𝑑, 𝑐, −𝑓, −𝑒). Let 

𝑁 = {(𝑣1, 𝑣2, 𝑣3) ∈ ℝ3} be a Riemannian manifold with Riemannian metric 𝑔�̅� on 𝑁 given by  

 𝑔�̅� = 𝑒−2𝑢1𝑑𝑣1
2 + 𝑒−2𝑢1𝑑𝑣2

2 + 𝑒−2𝑢1𝑑𝑣3
2. 

A 𝑃 −basis can be given by  

{𝑒1 = 𝑒𝑢1
𝜕

𝜕𝑢1
, 𝑒2 = 𝑒𝑢1

𝜕

𝜕𝑢2
, 𝑒3 = 𝑒𝑢1

𝜕

𝜕𝑢3
, 𝑒4 = 𝑒𝑢1

𝜕

𝜕𝑢4
, 𝑒5 = 𝑒𝑢1

𝜕

𝜕𝑢5
, 𝑒6 = 𝑒𝑢1

𝜕

𝜕𝑢6
}, 

on 𝑇𝑞𝑀 and  

 {𝑒1
∗ =

𝜕

𝜕𝑦1
, 𝑒2

∗ =
𝜕

𝜕𝑦2
, 𝑒3

∗ =
𝜕

𝜕𝑦3
}, 

on 𝑇𝐹(𝑞)𝑁 for all 𝑞 ∈ 𝑀 . Now, we assume a map 𝐹: (𝑀, 𝑃, 𝑔�̅�) → (𝑁, 𝑔�̅�) by 

 𝐹(𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6) = (𝑢1 − 𝑢3, 𝑢2 − 𝑢4, 𝑢5 + 𝑢6). 

Then, we have 

 ker𝐹∗ = 𝑝𝑝𝑎𝑛{𝑈1 = 𝑒1 + 𝑒3, 𝑈2 = 𝑒2 + 𝑒4, 𝑈3 = 𝑒5 − 𝑒6}, 
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 (ker𝐹∗)⊥ = 𝑝𝑝𝑎𝑛{𝑋1 = 𝑒1 − 𝑒3, 𝑋2 = 𝑒2 − 𝑒4, 𝑋3 = 𝑒5 + 𝑒6}. 

Hence it is easy to see that 

 𝑔�̅�(𝑋𝑖, 𝑋𝑖) = 𝑔�̅�(𝐹∗(𝑋𝑖), 𝐹∗(𝑋𝑖)) = 4, 

 

 𝑔�̅�(𝑃𝑈1, 𝑃𝑈1) = 𝑔�̅�(𝐹∗(𝑃𝑈1), 𝐹∗(𝑃𝑈1)) = 4, 

 𝑔�̅�(𝑃𝑈2, 𝑃𝑈2) = 𝑔�̅�(𝐹∗(𝑃𝑈2), 𝐹∗(𝑃𝑈2)) = 4, 

for 𝑖 = 1,2,3.Thus 𝐹 is a Riemannian submersion. On the other hand, we obtain 

 𝑃𝑈1 = −𝑋2, 𝑃𝑈2 = −𝑋1, 𝑃𝑈3 = 𝑈3, 

where 𝑃 is the product structure of ℝ6. Therefore 𝐹 is a semi-invariant Riemannian submersion 

with  

 𝐷1 = 〈𝑈3 = 𝑒5 − 𝑒6〉, 

 𝐷2 = 〈𝑈1 = 𝑒1 + 𝑒3, 𝑈2 = 𝑒2 + 𝑒4〉, 

such that ker𝐹∗ = 𝐷1 ⊕ 𝐷2. Next, we will look for a smooth function 𝛽 on 𝑀 satisfying 𝑇𝑈𝑈 =

−𝑔�̅�(𝑈, 𝑈)𝑔𝑟𝑎𝑑𝛽, for all 𝑈 ∈ Γ(ker𝐹∗). We can simply calculate that 

 ∇𝑒1
𝑒1 = 0, ∇𝑒1

𝑒3 = 0, ∇𝑒3
𝑒1 = −𝑒2𝑢1

𝜕

𝜕𝑢3
, ∇𝑒3

𝑒3 =
𝑒2𝑢1

3

𝜕

𝜕𝑢1
+ 𝑒2𝑢1

𝜕

𝜕𝑢3
, 

 ∇𝑒2
𝑒2 = 𝑒2𝑢1

𝜕

𝜕𝑢1
, ∇𝑒2

𝑒4 = 0, ∇𝑒4
𝑒2 = 0, ∇𝑒4

𝑒4 =
𝑒2𝑢1

3

𝜕

𝜕𝑢1
, 

 ∇𝑒5
𝑒5 =

𝑒2𝑢1

3

𝜕

𝜕𝑢1
, ∇𝑒5

𝑒6 = 0, ∇𝑒6
𝑒5 = 0, ∇𝑒6

𝑒6 = 𝑒2𝑢1
𝜕

𝜕𝑢1
 

Hence, we have 

 ∇𝑈1
𝑈1 = 𝑒2𝑢1

1

3

𝜕

𝜕𝑢1
, ∇𝑈2

𝑈2 =
4

3
𝑒2𝑢1

𝜕

𝜕𝑢1
, ∇𝑈3

𝑈3 =
4

3
𝑒2𝑢1

𝜕

𝜕𝑢1
, 

 ∇𝑈1
𝑈2 = ∇𝑈1

𝑈3 = ∇𝑈2
𝑈3 = 0. 

Now, if we take 𝑈 = 𝜆1𝑈1 + 𝜆2𝑈2 + 𝜆3𝑈3, for 𝜆1, 𝜆2, 𝜆3 ∈ ℝ then 

 𝑇𝑈𝑈 = 𝜆1
2𝑇𝑈1

𝑈1 + 𝜆2
2𝑇𝑈2

𝑈2 + 𝜆3
2𝑇𝑈3

𝑈3 

 +2𝜆1𝜆2𝑇𝑈1
𝑈2 + 2𝜆1𝜆3𝑇𝑈1

𝑈3 + 2𝜆2𝜆3𝑇𝑈2
𝑈3. 

From (2.8)-(2.10), by direct calculations, we have 
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 𝑇𝑈𝑈 = (𝜆1
2 + 4𝜆2

2 + 4𝜆3
2)

1

3
𝑒2𝑢1

𝜕

𝜕𝑢1
. 

Since 𝑈 = 𝜆1𝑈1 + 𝜆2𝑈2 + 𝜆3𝑈3, then by direct calculations, we obtain  

 𝑔�̅�(𝑈, 𝑈) = 4(𝜆1
2 + 𝜆2

2 + 𝜆3
2). 

Moreover, for any smooth function 𝛽 on ℝ6, the gradient of 𝛽 with respect to the metric 𝑔�̅� is 

given by  

 ∇𝛽 = ∑6
𝑖,𝑗=1 𝑔�̅�

𝑖𝑗 𝜕𝛽

𝜕𝑢𝑖

𝜕

𝜕𝑢𝑗
 

 =
𝑒2𝑢1

3

𝜕𝛽

𝜕𝑢1

𝜕

𝜕𝑢1
+

𝑒2𝑢1

3

𝜕𝛽

𝜕𝑢2

𝜕

𝜕𝑢2
+ 𝑒2𝑢1

𝜕𝛽

𝜕𝑢3

𝜕

𝜕𝑢3
 

 +𝑒2𝑢1
𝜕𝛽

𝜕𝑢4

𝜕

𝜕𝑢4
+ 𝑒2𝑢1

𝜕𝛽

𝜕𝑢5

𝜕

𝜕𝑢5
+ 𝑒2𝑢1

𝜕𝛽

𝜕𝑢6

𝜕

𝜕𝑢6
. 

Hence ∇𝛽 = −
𝜆1

2+4𝜆2
2+4𝜆3

2

4(𝜆1
2+𝜆2

2+𝜆3
2)

𝑒2𝑢1

3

𝜕

𝜕𝑢1
 for the function 𝛽 = −

𝜆1
2+4𝜆2

2+4𝜆3
2

4(𝜆1
2+𝜆2

2+𝜆3
2)

𝑢1. Therefore, it can be 

seen that 𝑇𝑈𝑈 = −𝑔�̅�(𝑈, 𝑈)𝑔𝑟𝑎𝑑𝛽. Hence 𝐹 is a CSIRS. 

4 Conclusion 

In this paper, we tried to study Clairaut semi-invariant Riemannian submersions whose total 

manifolds are locally product Riemannian manifold and we investigated the various 

fundamental geometric properties on the fibers and distributions of these submersions. As  

future research, we plan to focus on studying Clairaut’s semi-invariant Riemannian 

submersions between different kinds of the manifolds. 
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