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Abstract: An element of a ring R is called nil-clean if it is the sum of an idempotent and a nilpotent element.
A ring is called nil-clean if each of its elements is nil-clean. S. Breaz et al. in [1] proved their main
result that the matrix ring Mn(F ) over a field F is nil-clean if and only if F ∼= F2, where F2 is the
field of two elements. M. T. Koşan et al. generalized this result to a division ring. In this paper, we
show that the n× n matrix ring over a principal ideal domain R is a nil-clean ring if and only if R is
isomorphic to F2. Also, we show that the same result is true for the 2×2 matrix ring over an integral
domain R. As a consequence, we show that for a commutative ring R, if M2(R) is a nil-clean ring,
then dimR = 0 and charR/J(R) = 2.
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1. Introduction

Throughout this paper, all rings are associative with identity. An element in a ring R is said to be
(strongly) clean if it is the sum of an idempotent and a unit element(and these commute ). A (strongly)
clean ring is one in which every element is (strongly) clean. Local rings are obviously strongly clean.
Strongly clean rings were introduced by Nicholson [8]. An element in a ring R is said to be (strongly)
nil-clean if it is the sum of an idempotent and a nilpotent element(and these commute). A (strongly)
nil-clean ring is one in which every element is (strongly) nil-clean. It is easy to see that every strongly
nil-clean element is strongly clean and that every nil-clean ring is clean ([3, Proposition 3.1.3]). Nil-clean
rings were extensively investigated by Diesl in [3] and [4]. S. Breaz et al. in [1] proved their main result
that the matrix ring Mn(F ) over a field F is nil-clean if and only if F ∼= F2, where F2 is the field of two
elements. M. T. Koşan et al. in [6], generalized this result to a division ring. That is, the matrix ring
Mn(D) over a division ring D is nil-clean if and only if D ∼= F2. We show that this is true for a principal
ideal domain (PID).
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Throughout this paper an integral domain is a commutative ring without zero divisors and the Jacobson
radical of a ring is denoted by J(R). We write Mn(R) for the n× n matrix ring over R, In for the n× n
identity matrix.

2. Main results

First, we recall from [5, Proposition VII.2.11 ], the following Proposition.

Proposition 2.1. If A is an n ×m matrix of rank r > 0 over a principal ideal domain R, then A is

equivalent to a matrix of the form
(

Lr 0
0 0

)
, where Lr is an r× r diagonal matrix with nonzero diagonal

entries d1, ..., dr such that d1 | ... | dr. The ideals (d1), ..., (dr) in R are uniquely determined by the
equivalence class of A.

Further, we use the following lemmas.

Lemma 2.2. (See [4, Proposition 3.14]) Let R be a nil-clean ring. Then the element 2 is (central)
nilpotent and, as such, is always contained in J(R).

Lemma 2.3. (See [9, Corollary 5]) Let A be an n×n idempotent matrix over a ring R. If A is equivalent
to a diagonal matrix, then A is similar to a diagonal matrix.

Next Lemmas are the main results of [1] and [6].

Lemma 2.4. (See [1, Theorem 3]) Let F be a field and let n ≥ 1. Then Mn(F ) is a nil-clean ring if and
only if F ∼= F2.

Lemma 2.5. (See [6, Theorem 3]) Let D be a division ring and let n ≥ 1. Then Mn(D) is a nil-clean
ring if and only if D ∼= F2.

Theorem 2.6. Let R be a principal ideal domain and let n ≥ 1. Then Mn(R) is a nil-clean ring if and
only if R ∼= F2.

Proof. If R ∼= F2, then by Lemma 2.4, Mn(R) is a nil-clean ring.
Now, assume that Mn(R) is a nil-clean ring. By Lemma 2.2, 2In is a nilpotent element. Thus 2 = 0 in
R, because R is an integral domain. Proof in the case n = 1 is obvious, so assume that n > 1. Take
a ∈ R \ {0, 1} and put

A =


a 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 = E +N,

where E is an idempotent element and N is a nilpotent element of Mn(R). By Proposition 2.1, E is
equivalent to a diagonal matrix. Thus by Lemma 2.3, E is similar to a diagonal matrix where it’s entries

are 0 and 1. Hence U−1EU =

(
Ik 0
0 0

)
, for some invertible matrix U = (uij) ∈Mn(R). Therefore

U−1AU =

(
Ik 0
0 0

)
+N ′, (1)

where N ′ = U−1NU is a nilpotent element. Since a is not nilpotent, hence U−1AU is not nilpotent, so
k ≥ 1. If k = n, then A = In+N is invertible, a contradiction because detA = 0. Thus 1 ≤ k < n. Since
In +N ′ is invertible, U(In +N ′) is invertible. We have

U(In +N ′) = U

(
Ik 0
0 0

)
+ UN ′ + U

(
0 0
0 In−k

)
= AU + U

(
0 0
0 In−k

)
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=


au11 . . . au1n

0 . . . 0
...

...
...

0 . . . 0

+


0 . . . 0 u1(k+1) . . . u1n

0 . . . 0 u2(k+1) . . . u2n

...
...

...
...

...
0 . . . 0 un(k+1) . . . unn



=


au11 . . . au1k (1 + a)u1(k+1) . . . (1 + a)u1n

0 . . . 0 u2(k+1) . . . u2n

...
...

...
...

...
...

0 . . . 0 un(k+1) . . . unn

 .

We imply that k = 1 and u11 6= 0. Thus

U(In +N ′) =


au11 (1 + a)u12 . . . (1 + a)u1n

0 u22 . . . u2n

...
...

...
...

0 un2 . . . unn

 .

Put

U1 :=

 u22 . . . u2n

...
...

...
un2 . . . unn

 .

Since det(U(In + N ′)) = au11 detU1, U1 is invertible in Mn−1(R) and u11 is invertible in R, hence (1)
implies that (

a 0
0 0

)
U = U

(
1 0
0 0

)
+ UN ′.

This implies that (
u−111 0
0 U−11

)(
a 0
0 0

)(
u11 0
0 U1

)(
u−111 0
0 U−11

)
U

=

(
u−111 0
0 U−11

)
U

(
1 0
0 0

)
+

(
u−111 0
0 U−11

)
UN ′,

i.e., (
a 0
0 0

)
V = V

(
1 0
0 0

)
+ V N ′, (2)

where V =

(
u−111 0
0 U−11

)
U =

(
1 X
Y In−1

)
. Let V −1 =

(
c X ′

Y ′ C1

)
. From V V −1 = V −1V = In, it

follows that

1 = c+XY ′ = c+X ′Y

In−1 = Y X ′ + C1 = Y ′X + C1

0 = X ′ +XC1 = cX +X ′
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0 = cY + Y ′ = Y ′ + C1Y.

Since 2 = 0 in R (by Lemma 2.2, and since R is an integral domain) hence, we have 1 = −1 in R,
so c = −c. Therefore X ′ = −cX = cX, Y ′ = cY and C1 = In−1 + Y X ′ = In−1 + cY X. Also,
1 = c+XY ′ = c+ cXY = c(1 +XY ), so c is a unit element of R and

XY = 1 + c−1. (3)

Hence V −1 =

(
c cX
cY In−1 + cY X

)
. If XY = 0, then c = 1 and V −1 =

(
1 X
Y In−1 + Y X

)
. Then by

(2),

N
′′
:= V NV −1 =

(
a 0
0 0

)
+ V

(
1 0
0 0

)
V −1 =

(
1 + a X
Y Y X

)
,

and, for k ≥ 1,

N
′′k+1

=

(
(1 + a)k+1 (1 + a)k+1X
(1 + a)k+1Y (1 + a)k+1Y X

)
6= 0 (as (1 + a) 6= 0). This is a contradiction because N

′′
is a

nilpotent matrix. Therefore XY 6= 0. From (2) it follows that(
1 X
0 In−1

)(
a 0
0 0

)(
1 X
0 In−1

)(
1 X
0 In−1

)
V

=

(
1 X
0 In−1

)
V

(
1 0
0 0

)
+

(
1 X
0 In−1

)
V N ′,

i.e., (
a X
0 0

)
P = P

(
1 0
0 0

)
+ PN ′, (4)

where

P =

(
1 X
0 In−1

)
V =

(
1 X
0 In−1

)(
1 X
Y In−1

)

=

(
1 +XY X +X

Y In−1

)
.

Since 2 = 0 in R, hence X + X = 2X = 0. Also by (3), we have XY − 1 = XY + 1 = c−1. Hence

P =

(
c−1 0
Y In−1

)
and P−1 =

(
c 0
cY In−1

)
. It follows from (4) that

4 := PNP−1 =

(
a aX
0 0

)
+ P

(
1 0
0 0

)
P−1 =

(
1 + a aX
cY 0

)
.

If Q is an n× n matrix, then we will write Q in block form Q =

(
Q11 Q12

Q21 Q22

)
, where Q11, Q12, Q21, Q22

have size 1× 1, 1× (n− 1), (n− 1)× 1 and (n− 1)× (n− 1), respectively. For k ≥ 1 we have

4k+1 = 4k4 =

(
(4k)11 (4)k12
(4k)21 (4k)22

)(
1 + a aX
cY 0

)

=

(
(4k)11(1 + a) + (4)k12cY a(4k)11X
(4k)21(1 + a) + (4k)22cY a(4k)21X

)
. (5)
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An easy induction shows that there exist ak, bk, ck ∈ R such that for k ≥ 1 we have

(4k)12 = bkX, (4k)21 = ckY, (4k)22 = akY X. (6)

Since 4 is a nilpotent matrix and 421 = cY 6= 0, there exists a positive integer s such that (4s+1)21 = 0
but (4s)21 6= 0. Then by (5) and (6),

4s+1 =

(
(4s+1)11 (4s+1)12

0 csaY X

)
,

where csa 6= 0. For r ∈ R, it is easily seen that rY X = 0 if and only if r = 0. We have (4s+1)k22 =
(csa)

k(XY )k−1Y X. Since csa 6= 0 and XY 6= 0, hence (4s+1)k22 6= 0, for k ≥ 2. It is a contradiction
because 4 is nilpotent.

Theorem 2.7. Let R be an integral domain . If Mn(R) is a nil-clean ring, then R is a field.

Proof. Let Q be the field of fractions of R and 0 6= a ∈ R. We know that aIn is nil-clean. So,
aIn = E + N with E idempotent and N nilpotent. We have In = a−1E + a−1N , in Mn(Q) . Thus
a−1E ( and consequently E) is invertible in Mn(Q). Since E is idempotent, so E = In. Therefore aIn is
invertible, hence R is a field.

Lemma 2.8. Let R be an integral domain and 0, I2 6= A ∈ M2(R). Then A is idempotent if and only if
rank(A) = 1 and tr(A) = 1.

Proof. By [2, Lemma 1.5].

Lemma 2.9. Let R be an integral domain. If A ∈Mn(R) be a nilpotent matrix, then det(A) = 0.

Proof. Let A be a nonzero nilpotent matrix. Thus there exists some k ∈ N such that Ak = 0. Thus
adj(A)Ak = 0. Hence det(A)Ak−1 = 0. So det(A) adj(A)Ak−1 = 0. Therefore (det(A))2Ak−2 = 0.
Continuing this process we have (det(A))k−1A = 0. Since R is an integral domain and A 6= 0, hence
det(A) = 0

Theorem 2.10. Let R be an integral domain. Then M2(R) is a nil-clean ring if and only if R ∼= F2.

Proof. ⇐=)This is by Theorem 2.6.

=⇒) Assume that R is not isomorphic to F2. So, there exists a ∈ R \ {0, 1}. Put A =

(
a 0
0 0

)
= E+N ,

where E is idempotent and N is a nilpotent matrix. If E = I2, then A is invertible, a contradiction.

If E = 0, then A is nilpotent. Hence a = 0, a contradiction. So by Lemma 2.8, E =

(
e b
c 1− e

)
,

where e, b, c ∈ R and e(1 − e) = bc. Hence N =

(
n −b
−c −(1− e)

)
, for some n ∈ R. By Lemma 2.9,

−n(1 − e) = bc. Therefore e(1 − e) = −n(1 − e). If e 6= 1, then e = −n. So N = −E, a contradiction.
Thus e = 1 and bc = 0. Hence b = 0 or c = 0. We consider two cases.
Case 1) Let b = 0. So N =

(
n 0
0 0

)
. Since N is nilpotent, hence there exists a positive integer k such

that nk = 0. So n = 0. Therefore a = 1.
Case 2) Let c = 0. Thus N =

(
n −b
0 0

)
. Since N is nilpotent, hence there exists a positive integer k

such that nk = 0. So n = 0. Therefore a = 1.

Let R be a commutative ring with identity. By a chain of prime ideals of R we mean a finite strictly
increasing sequence of prime ideals of R of the type Po $ P1 $ P2 $ ... $ Pn. The integer n is called the
length of the chain.
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Definition 2.11. The Krull dimension of R is the supremum of all lengths of chains of prime ideals of
R. Krull dimension of R is denoted by dimR.

Corollary 2.12. Let R be a commutative ring. If M2(R) is a nil-clean ring, then dimR = 0 and
charR/J(R) = 2.

Proof. Let P be a prime ideal of R. We have M2(R/P ) = M2(R)/M2(P ) is nil-clean. Hence by
Theorem 2.10, R/P ∼= F2. So P is a maximal ideal of R and 2 ∈ J(R). Therefore charR/J(R) = 2.

Remark 2.13. Note that all of these results can also be obtained as some consequences of [7, Theorem
6.1].

Acknowledgment: The authors are grateful to the referees’ invaluable comments, which helped to
improve our study.
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