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elements are nil-clean

Research Article

Somayeh Hadjirezaei, Somayeh Karimzadeh

Abstract: An element of a ring R is called nil-clean if it is the sum of an idempotent and a nilpotent element.
A ring is called nil-clean if each of its elements is nil-clean. S. Breaz et al. in [1] proved their main
result that the matrix ring M, (F') over a field F is nil-clean if and only if F = Fo, where 5 is the
field of two elements. M. T. Kosan et al. generalized this result to a division ring. In this paper, we
show that the n X n matrix ring over a principal ideal domain R is a nil-clean ring if and only if R is
isomorphic to Fa. Also, we show that the same result is true for the 2 X 2 matrix ring over an integral
domain R. As a consequence, we show that for a commutative ring R, if Mz(R) is a nil-clean ring,
then dimR = 0 and charR/J(R) = 2.

2010 MSC: 15A23, 15B33, 16S50

Keywords: Nil-clean matrix, Idempotent matrix, Nilpotent matrix, Principal ideal domain

1. Introduction

Throughout this paper, all rings are associative with identity. An element in a ring R is said to be
(strongly) clean if it is the sum of an idempotent and a unit element(and these commute ). A (strongly)
clean ring is one in which every element is (strongly) clean. Local rings are obviously strongly clean.
Strongly clean rings were introduced by Nicholson [8]. An element in a ring R is said to be (strongly)
nil-clean if it is the sum of an idempotent and a nilpotent element(and these commute). A (strongly)
nil-clean ring is one in which every element is (strongly) nil-clean. It is easy to see that every strongly
nil-clean element is strongly clean and that every nil-clean ring is clean (|3, Proposition 3.1.3|). Nil-clean
rings were extensively investigated by Diesl in [3] and [4]. S. Breaz et al. in [1] proved their main result
that the matrix ring M, (F') over a field F is nil-clean if and only if F' = Fy, where Fs is the field of two
elements. M. T. Kosan et al. in [6], generalized this result to a division ring. That is, the matrix ring
M, (D) over a division ring D is nil-clean if and only if D = Fy. We show that this is true for a principal
ideal domain (PID).
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Throughout this paper an integral domain is a commutative ring without zero divisors and the Jacobson
radical of a ring is denoted by J(R). We write M, (R) for the n x n matrix ring over R, I,, for the n x n
identity matrix.

2. Main results

First, we recall from [5, Proposition VII.2.11 |, the following Proposition.
Proposition 2.1. If A is an n X m matriz of rank r > 0 over a principal ideal domain R, then A is

OT g , where L, is an r x r diagonal matriz with nonzero diagonal
entries dy, ...,dy such that dy | ... | dr. The ideals (dy),...,(d;) in R are uniquely determined by the
equivalence class of A.

equivalent to a matrix of the form (

Further, we use the following lemmas.

Lemma 2.2. (See [4, Proposition 3.14]) Let R be a nil-clean ring. Then the element 2 is (central)
nilpotent and, as such, is always contained in J(R).

Lemma 2.3. (See [9, Corollary 5]) Let A be an n x n idempotent matriz over a ring R. If A is equivalent
to a diagonal matrix, then A is similar to a diagonal matriz.

Next Lemmas are the main results of [1] and [6].

Lemma 2.4. (See [1, Theorem 3]) Let F be a field and let n > 1. Then M, (F) is a nil-clean ring if and
only if F = Fs.

Lemma 2.5. (See [6, Theorem 3]) Let D be a division ring and let n > 1. Then M, (D) is a nil-clean
ring if and only if D = Fs.

Theorem 2.6. Let R be a principal ideal domain and let n > 1. Then M, (R) is a nil-clean ring if and
only if R = Fs.

Proof. If R 2Ty, then by Lemma 2.4, M, (R) is a nil-clean ring.

Now, assume that M, (R) is a nil-clean ring. By Lemma 2.2, 21,, is a nilpotent element. Thus 2 = 0 in
R, because R is an integral domain. Proof in the case n = 1 is obvious, so assume that n > 1. Take
a € R\{0,1} and put

a0 ...0
00...0

A=| . . . . |=E+N,
00...0

where F is an idempotent element and N is a nilpotent element of M, (R). By Proposition 2.1, F is
equivalent to a diagonal matrix. Thus by Lemma 2.3, E is similar to a diagonal matrix where it’s entries

are 0 and 1. Hence U'EU = ( I(;C g ), for some invertible matrix U = (u;;) € M, (R). Therefore

o= (g ) 4. ®

where N’ = U7!NU is a nilpotent element. Since a is not nilpotent, hence U=t AU is not nilpotent, so
k> 1. If k = n, then A = I,, + N is invertible, a contradiction because det A = 0. Thus 1 < k£ < n. Since
I, + N’ is invertible, U(I,, + N’) is invertible. We have

W (I, 0 , 0 0\ 0 0
WQ+N)_U<O0>+UN+U<O%%>_AU+U<0%%)
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auil ... QUip 0 ... 0 Urrg1) --- Uin
0 0 0...0 u2(k+1) e U2p
= + .o . .
0 0 0...0 Up(k4+1) -+ Unn
auiy ... aury (1+a)uigyry - (1+a)ui,
0 ce 0 u2(k+1) e U2n,
0 ce 0 un(k+1) e Unn

We imply that k£ =1 and w17 # 0. Thus
aul (1+a)u12 (1—|—a)u1n
0 U2 . U2n,

0 Un2 ... Unn

Put

U22 ... U2p
U1 =

Up2 ... Unpn

Since det(U(I,, + N')) = auyy det Uy, Uy is invertible in M,,_;(R) and w1 is invertible in R, hence (1)

implies that
a 0 _ 10 y
(O O)U_U<0 0>+UN.

ufll 0 a 0 uip O ufll 0 U
0o U ! 00 0 U 0o Ut

—1 -1
_fuy O 10 u;; O /
_(0 U;1>U<00 o v ) UV

This implies that

ie.,
a 0 10 ,
<00>VV(00>+VN, (2)
1 /
_fu;p O . 1 X 1 c X 1 t—1vs .
WhereV( 0 U1_1>U(Yln_1)'LetV <Y’ C, . From VV= = V=V = I,, it

follows that

l=c+XY' =c+ XY

I, 1=YX'+Ci=Y'X+C,

0=X+XC,=cX+X

93
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O=cY +Y' =Y +CY.
Since 2 = 0 in R (by Lemma 2.2, and since R is an integral domain) hence, we have 1 = —1 in R,
so ¢ = —c. Therefore X' = —cX = cX,)Y =c¢Y and C) = [,,_1 +YX' = I,_1 +cYX. Also,
l=c+ XY =c+cXY =c¢(1+ XY), so cis a unit element of R and
XY =1+c" (3)

c cX
cY I,_1+cYX

"o v (a0 10\, 1 (l4a X
N :=VNV —(OO)+V(OO)V _( v YX),

Hence V-1 = (
(2),

1 X
— _ -1 _
). IfXY =0,thenc=1and V7' = (Y Inl—i—YX)' Then by

and, for k > 1,

nk+1 (14 a)Pt (14 a)kttX - _— "
N = ( 1+ a1y (14 a1y X # 0 (as (1 +a) # 0). This is a contradiction because N is a

nilpotent matrix. Therefore XY # 0. From (2) it follows that
1 X a 0 1 X 1 X v
0 I, 00 0 I, 0 I,
(1 X 10 1 X ,
(ol )vlon) (onl )

(8§>P:P<ég)+PM, (4)

1 X 1 X 1 X
(ot ) (onl) (v il

C(14XY X+ X
= (' ,

ie.,

where

Infl

Since 2 = 0 in R, hence X + X = 2X = 0. Also by (3), we have XY —1 = XY + 1 = ¢~!. Hence

clt o 1 c 0
P = ( Y I, ) and P7' = & I, ) It follows from (4) that

. 1 [ a aX 10 1 _(1+a aX
A :=PNP —(0 O)—l—P(OO)P _<CY N
Q1 Q12

If @ is an n X n matrix, then we will write @ in block form Q = ( O Qoo ), where Q11, Q12, @21, Q22

have size 1 x 1, 1 x (n—1), (n—1) x 1 and (n — 1) x (n — 1), respectively. For k > 1 we have

st oras (@ Q) (M3 7)

_ ( (Ak)ll(]. + a) + (A)IfQCY G(Ak)llX >
o (Ak)Ql(l + CL) + (Ak’)QQCY G(Ak)ng :
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An easy induction shows that there exist ay, by, cx € R such that for £k > 1 we have
(Ak)lg = ka, (Ak)gl = CkY, (Ak)gg = akYX (6)

Since A is a nilpotent matrix and Ay = cY # 0, there exists a positive integer s such that (AsT1)y; =0
but (A®)a1 # 0. Then by (5) and (6),

As+1 _ (AS—H)H (AS—H)IQ
0 csaY X ’

where csa # 0. For v € R, it is easily seen that 7YX = 0 if and only if 7 = 0. We have (AsT1H)%, =
(csa)®*(XY)*~1Y' X. Since csa # 0 and XY # 0, hence (ASFt1)k, £ 0, for k > 2. It is a contradiction
because A is nilpotent. O

Theorem 2.7. Let R be an integral domain . If M, (R) is a nil-clean ring, then R is a field.

Proof. Let @ be the field of fractions of R and 0 # a € R. We know that al, is nil-clean. So,
al, = E + N with E idempotent and N nilpotent. We have I, = a 'E +a ' N, in M,(Q) . Thus
a!'E (‘and consequently E) is invertible in M, (Q). Since E is idempotent, so E = I,,. Therefore al,, is
invertible, hence R is a field. O

Lemma 2.8. Let R be an integral domain and 0,15 # A € My(R). Then A is idempotent if and only if
rank(A4) =1 and tr(A) = 1.

Proof. By [2, Lemma 1.5]. O

Lemma 2.9. Let R be an integral domain. If A € M,,(R) be a nilpotent matriz, then det(A) = 0.

Proof. Let A be a nonzero nilpotent matrix. Thus there exists some k € N such that A* = 0. Thus
adj(A)A* = 0. Hence det(A)A*~! = 0. So det(A)adj(A)A*~! = 0. Therefore (det(A))24*~2 = 0.
Continuing this process we have (det(A4))*~'A = 0. Since R is an integral domain and A # 0, hence
det(4) =0 O

Theorem 2.10. Let R be an integral domain. Then Ma(R) is a nil-clean ring if and only if R = F.

Proof. <=)This is by Theorem 2.6.

a 0
00
where F is idempotent and N is a nilpotent matrix. If £ = I3, then A is invertible, a contradiction.

=) Assume that R is not isomorphic to Fa. So, there exists a € R\ {0,1}. Put A = =FE+ N,

If E = 0, then A is nilpotent. Hence a = 0, a contradiction. So by Lemma 2.8, F = <i 1 i . ),

where e,b,c € R and e(1 — e) = be. Hence N = (_nc _(;E ¢) ), for some n € R. By Lemma 2.9,
—n(l — e) = be. Therefore e(1 —e) = —n(l —e). If e # 1, then e = —n. So N = —E, a contradiction.
Thus e = 1 and bc = 0. Hence b =0 or ¢ = 0. We consider two cases.

n 0
Case 1) Let b= 0. SON—(0 0

that n* = 0. So n = 0. Therefore a = 1.

. Since N is nilpotent, hence there exists a positive integer k such

Case 2) Let ¢ = 0. Thus N = ( g _Ob . Since N is nilpotent, hence there exists a positive integer k
such that n* = 0. So n = 0. Therefore a = 1. O

Let R be a commutative ring with identity. By a chain of prime ideals of R we mean a finite strictly
increasing sequence of prime ideals of R of the type P, G P1 G P» & ... & P,,. The integer n is called the
length of the chain.
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Definition 2.11. The Krull dimension of R is the supremum of all lengths of chains of prime ideals of
R. Krull dimension of R is denoted by dimR.

Corollary 2.12. Let R be a commutative ring. If Ma(R) is a nil-clean ring, then dimR = 0 and
charR/J(R) = 2.

Proof. Let P be a prime ideal of R. We have My(R/P) = My(R)/Mz(P) is nil-clean. Hence by
Theorem 2.10, R/P = Fy. So P is a maximal ideal of R and 2 € J(R). Therefore charR/J(R) =2. O

Remark 2.13. Note that all of these results can also be obtained as some consequences of [7, Theorem
6.1].

Acknowledgment: The authors are grateful to the referees’ invaluable comments, which helped to
improve our study.

References

[1] S. Breaz, G. Calugareanu, P. Danchev, T. Micu, Nil-clean matrix rings, Linear Algebra Appl. 439(10)
(2013) 3115-3119.

[2] J. Chen, X. Yang, Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra.
34(10) (2006) 3659-3674.

[3] A. J. Diesl, Classes of strongly clean rings, Ph. D. thesis, University of California, Berkeley, 2006.

[4] A. J. Diesl, Nil clean rings, J. Algebra. 383 (2013) 197-211.

[5] T. W. Hungerford, Algebra, Springer-Verlag, 1980.

[6] M.T. Kosan, T. K. Lee, Y. Zhou, When is every matrix over a division ring a sum of an idempotent
and a nilpotent?, Linear Algebra Appl. 450 (2014) 7-12.

[7] T. Kosan, Z. Wang, Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra. 220(2)
(2016) 633-646.

[8] W. K. Nicholson, Strongly clean rings and Fitting’s lemma, Comm. Algebra. 27(8) (1999) 3583-3592.

[9] G. Song, X. Guo, Diagonability of idempotent matrices over noncommutative rings, Linear Algebra
Appl. 297(1-3) (1999) 1-7.


http://dx.doi.org/10.1016/j.laa.2013.08.027
http://dx.doi.org/10.1016/j.laa.2013.08.027
http://dx.doi.org/10.1080/00927870600860791
http://dx.doi.org/10.1080/00927870600860791
http://search.proquest.com/docview/305347901?accountid=17384
http://dx.doi.org/10.1016/j.jalgebra.2013.02.020
http://dx.doi.org/10.1016/j.laa.2014.02.047
http://dx.doi.org/10.1016/j.laa.2014.02.047
http://dx.doi.org/10.1016/j.jpaa.2015.07.009
http://dx.doi.org/10.1016/j.jpaa.2015.07.009
http://dx.doi.org/10.1080/00927879908826649
http://dx.doi.org/10.1016/S0024-3795(99)00059-2
http://dx.doi.org/10.1016/S0024-3795(99)00059-2

	Introduction
	Main results
	References

