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Abstract 

In this paper, we first introduced the steps that need to be taken to get the set-family 

that goes with a hoarded graph, as well as an example of how these steps could be 

used. Then, we explained what a topological hoarded graph is and showed when a 

set-family induced by a topological hoarded graph is a topology on a set. We also 

presented some useful facts about topological hoarded graphs. 
 

 
1. Introduction 

 

A subfamily 𝒮𝑋
(𝑛)

 (orshortly𝒮(𝑛)) of 𝑛-times-

iterated power set of a set 𝑋 is called a 𝑛-set-family 

on 𝑋. In particular, we use the convention that the 0-

set-family 𝒮(0) is a subset of 𝑋. We denote 𝑚-times 

generalized union of a family 𝒮(𝑛) by ∐ 𝒮(𝑛)𝑚 , that 

is, 

 

∐ 𝒮(𝑛)𝑚 = ⋃⋯⋃⏟  
𝑚 times

𝒮(𝑛) (1) 

 

where 1 ≤ 𝑚 ≤ 𝑛. For simplicity, we adopt 

the convention ⨆ ℱ(𝑛)0 = ℱ(𝑛). Let 𝐼 be a partially 

ordered set with the least element. An indexed family 
{𝐴𝑖|𝑖 ∈ 𝐼} whose the least-indexed element is empty, 

i.e., in which 𝐴𝑖0 = ∅ where 𝑖0 = min 𝐼 is said to be 

first-empty. We denote the set of all integers ≥ 𝑘 and 

≤ 𝑛 where 𝑘, 𝑛 ∈ ℤ by 𝐼𝑛
𝑘. 

Given a digraph 𝐺 = (𝑉, 𝐴). The sets of 

heads and tails of all arcs in 𝐺 is denoted by 𝑉ℎ(𝐺) 
and 𝑉𝑡(𝐺), respectively. Hence the set 𝑉(𝐺) of its all 

endpoints is union of 𝑉𝑡(𝐺) and 𝑉ℎ(𝐺). Furthermore, 

we denote the set of all heads of all 𝑣-tailed arcs in 𝐺 

by 𝑉ℎ(𝐺; 𝑣), or in short 𝑉ℎ(𝑣); and similarly the sets 

of all tails of all 𝑣-headed arcs in 𝐺 by 𝑉𝑡(𝐺; 𝑣), or in 

short 𝑉𝑡(𝑣). A path in 𝐺 whose the first and last 

vertices are in 𝑉′ and 𝑉′′, respectively, where 

𝑉′, 𝑉′′ ⊆ 𝑉, is denoted by 𝑝𝑉′→𝑉′′. Especially, we 

prefer to use the element of that set in the notation if 

𝑉′ or 𝑉′′ is a singleton, and the dot symbol is used 
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instead of unknown sets in the notation 𝑝𝑉′→𝑉′′. The 

set of last vertices of all directed paths 𝑝𝑣→𝑊 in 𝐺 

where 𝑊 ⊆ 𝑉 is denoted by 𝑉𝑙(𝑣 → 𝑊;𝐺), or in short 

𝑉𝑙(𝑣 → 𝑊), and similarly the set of first vertices of 

all directed paths 𝑝𝑊→𝑣 in 𝐺 by 𝑉𝑓(𝑊 → 𝑣;𝐺), or in 

short 𝑉𝑓(𝑊 → 𝑣). We prefer to use the notation 𝑉𝑙(𝑣) 

and 𝑉𝑓(𝑣) instead if 𝑊 is not particular. The length of 

a directed path in 𝐺 is the number of arcs on it. A 

directed path with length 𝑛 in 𝐺 is called a 𝑛-directed 

path. Let 𝐺[𝐺′] denote a subgraph 𝐺′ of 𝐺. Also, we 

denote a vertex-induced subgraph by 𝑉′ ⊆ 𝑉 of 𝐺 by 

𝐺[𝑉′,⋅], and denote an edge-induced subgraph by 

𝐴′ ⊆ 𝐴 of 𝐺 by 𝐺[⋅, 𝐴′] (for detailed information, see 

[1-3, 6-11]). The pair 𝑣, 𝑤 of vertices in 𝐺 is called 

semiconnected if 𝐺 contains a directed path from 𝑣 to 

𝑤 or vice versa; the pair is called non-semiconnected 

if they are not semiconnected (see [5]). 

We introduced the notion of cumulative graph as a 

subclass of acyclic digraphs [4]. We recall that a 𝑛-

cumulative graph 𝐺 = (𝒱,𝒜,ℬ) with first-empty 

indexed families 𝒱 = {𝑉𝑖}𝑖∈𝐼𝑛0, 𝒜 = {𝐴𝑖}𝑖∈𝐼𝑛1 and ℬ =

{𝐵𝑖}𝑖∈𝐼𝑛1 is an acyclic digraph 𝐺 = (⋃𝒱 ,⋃(𝒜 ∪ ℬ)) 

satisfying the following : (𝑖) 𝑉𝑛 = 𝑉(𝐺[⋅, 𝐴𝑛]) ∪
𝑉𝑡(𝐺[⋅, 𝐵𝑛]), and for every integer 1 ≤ 𝑖 < 𝑛, 𝑉𝑖 =
𝑉(𝐺[⋅, 𝐴𝑖]) ∪ 𝑉𝑡(𝐺[⋅, 𝐵𝑖]) ∪ 𝑉ℎ(𝐺[⋅, 𝐵𝑖+1]), (𝑖𝑖) for 

every 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑤 ∈ 𝐴𝑖 and 𝑤𝑠 ∈ 𝐴𝑖 ⇒ 𝑣𝑠 ∉ 𝐴𝑖, 
(𝑖𝑖𝑖) for every 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑤 ∈ 𝐴𝑖 and 𝑤𝑠 ∈ 𝐵𝑖 ⇒ 

𝑣𝑠 ∉ 𝐵𝑖. 
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2. A Set-family Corresponding to A Hoarded 

Graph 

 

We introduced the definition of a cumulative graph in 

our previous paper [4]. The main motivation for this 

definition was to specify a particular class of graphs 

that would correspond to a 𝑛-set-family. It is natural 

to ask for which class of graphs there is a set-family 

corresponding to any graph of that class. To answer 

this question, we give the following definition. 

Definition 1. A 𝑛-hoarded graph 𝐺 = (𝒱,𝒜,ℬ) with 

pairwise disjoint families 𝒱 = {𝑉𝑖}𝑖∈𝐼𝑛1, 𝒜 = {𝐴𝑖}𝑖∈𝐼𝑛2 

and ℬ = {𝐵𝑖}𝑖∈𝐼𝑛2 is an acyclic digraph G =

(⋃𝒱,⋃(𝒜 ∪ ℬ)) which satisfies the following 

conditions: 

(1) For every 𝟐 ≤ 𝒊 ≤ 𝒏, the endpoints of every 

arc in 𝑨𝒊 belong to 𝑽𝒊 while tails of every arc in 𝑩𝒊 
belong to 𝑽𝒊 and the set of heads of all arcs in 𝑩𝒊 
equals to 𝑽𝒊−𝟏. 

(2) If a vertex in 𝑽𝒊 precedes that in 𝑽𝒋 on some 

directed path in 𝑮, then 𝒊 ≥ 𝒋. 
(3) If 𝒖𝟏𝒖𝟐…𝒖𝒎 with 𝒎 ≥ 𝟑 is a directed path in 

𝑮 every arc of which belongs to 𝑨𝒊 for some 𝟐 ≤
𝒊 ≤ 𝒏, then 𝒖𝟏𝒖𝒎 ∉ 𝑨𝒊. 
(4) For every 𝟐 ≤ 𝒊 ≤ 𝒏, 𝒗𝒘 ∈ 𝑨𝒊 and 𝒘𝒔 ∈ 𝑩𝒊 ⇒ 

𝒗𝒔 ∉ 𝑩𝒊. 
For every distinct pair 𝒖, 𝒗 of vertices in some 𝑽𝒊 with 

𝟏 ≤ 𝒊 ≤ 𝒏, there exists a vertex 𝒘 such that 𝒘 is the 

last vertex of some directed path with the first vertex 

𝒖 but not that of any directed path with the first vertex 

𝒗. 

In the paper [4], we have shown the steps to obtain the 
(𝒏 + 𝟏)-cumulative graph induced by a 𝒏-set-family. 

Now we introduce the steps to be taken to get the 
(𝒏 − 𝟏)-set-family corresponding to a 𝒏-hoarded 

graph 𝑮 = (𝓥,𝓐,𝓑). 
Step 1 We set 𝓕 = 𝑽𝒏. 

Step 2 We perform the following steps from 𝒊 =
𝒏 to 𝒊 = 𝟐, 

Step 2.1 We substitute the set 𝒗 ∪ ⋃𝑽𝒉(𝑮[⋅
, 𝑨𝒊]; 𝒗) for each vertex 𝒗 occurring in 𝓕. 

Step 2.2 We substitute the set 𝑽𝒉(𝑮[⋅, 𝑩𝒊]; 𝒗) 
for each vertex 𝒗 occuring in 𝓕. 

After performing the above steps, the resulting 𝓕 is 

the set-family corresponding to the hoarded graph 𝑮. 

Example 2. Let 𝑮 = (𝓥,𝓐,𝓑) be a 𝟒-hoarded graph 

with 𝓥 = {𝑽𝒊}𝒊∈𝑰𝟒𝟏
, 𝓐 = {𝑨𝒊}𝒊∈𝑰𝟒𝟐

 and 𝓑 = {𝑩𝒊}𝒊∈𝑰𝟒𝟐
 

where 

𝑽𝟏 = {𝒗𝟏, … , 𝒗𝟔}, 𝑽𝟐 = {𝒗𝟕, … , 𝒗𝟏𝟎}, 
𝑽𝟑 = {𝒗𝟏𝟏, … , 𝒗𝟏𝟒}, 𝑽𝟒 = {𝒗𝟏𝟓, 𝒗𝟏𝟔, 𝒗𝟏𝟕}, 
𝑨𝟐 = {𝒗𝟖𝒗𝟕, 𝒗𝟗𝒗𝟕, 𝒗𝟏𝟎𝒗𝟖}, 
𝑨𝟑 = {𝒗𝟏𝟑𝒗𝟏𝟏, 𝒗𝟏𝟒𝒗𝟏𝟏, 𝒗𝟏𝟒𝒗𝟏𝟐}, 

𝑨𝟒 = {𝒗𝟏𝟔𝒗𝟏𝟓, 𝒗𝟏𝟕𝒗𝟏𝟔}, 
𝑩𝟐 = {𝒗𝟖𝒗𝟏, 𝒗𝟖𝒗𝟑, 𝒗𝟖𝒗𝟒, 𝒗𝟗𝒗𝟏, 𝒗𝟗𝒗𝟐,
       𝒗𝟗𝒗𝟑, 𝒗𝟗𝒗𝟔, 𝒗𝟏𝟎𝒗𝟓},

 

𝑩𝟑 = {𝒗𝟏𝟏𝒗𝟕, 𝒗𝟏𝟐𝒗𝟏𝟎, 𝒗𝟏𝟑𝒗𝟗, 𝒗𝟏𝟒𝒗𝟖}, 
𝑩𝟒 = {𝒗𝟏𝟔𝒗𝟏𝟏, 𝒗𝟏𝟔𝒗𝟏𝟑, 𝒗𝟏𝟕𝒗𝟏𝟐, 𝒗𝟏𝟕𝒗𝟏𝟒} 

as Figure 1. 

 

 

Figure 1. An example of a hoarded graph. 

 

We first set ℱ = 𝑉4 = {𝑣15, 𝑣16, 𝑣17}. For 𝑖 = 4, we 

write ℱ = {𝑣15, 𝑣16 ∪ 𝑣15, 𝑣17 ∪ 𝑣16 ∪ 𝑣15} since 

𝑉ℎ(𝐺[⋅, 𝐴4]; 𝑣15) = 𝑣15 ∪ ∅ = 𝑣15, 

𝑉ℎ(𝐺[⋅, 𝐴4]; 𝑣16) = 𝑣16 ∪⋃ {𝑣15} = 𝑣16 ∪ 𝑣15, 

𝑉ℎ(𝐺[⋅, 𝐴4]; 𝑣17) = 𝑣17 ∪⋃ {𝑣16}

= 𝑣17 ∪ 𝑣16 ∪ 𝑣15. 
And since 

𝑉ℎ(𝐺[⋅, 𝐵4]; 𝑣15) = ∅, 
𝑉ℎ(𝐺[⋅, 𝐵4]; 𝑣16) = {𝑣11, 𝑣13}, 
𝑉ℎ(𝐺[⋅, 𝐵4]; 𝑣17) = {𝑣12, 𝑣14}, 

we get ℱ = {∅, {𝑣11, 𝑣13}, {𝑣11, 𝑣12, 𝑣13, 𝑣14}}. Then 

by performing Step 2 for 𝑛 = 3, we get 

𝑉ℎ(𝐺[⋅, 𝐴3]; 𝑣11) = 𝑣11 ∪ ∅ = 𝑣11, 
𝑉ℎ(𝐺[⋅, 𝐴3]; 𝑣12) = 𝑣12 ∪ ∅ = 𝑣12, 

𝑉ℎ(𝐺[⋅, 𝐴3]; 𝑣13) = 𝑣13 ∪⋃ {𝑣11} = 𝑣13 ∪ 𝑣11, 

𝑉ℎ(𝐺[⋅, 𝐴3]; 𝑣14) = 𝑣14 ∪⋃ {𝑣11, 𝑣12}

= 𝑣14 ∪ 𝑣12 ∪ 𝑣11. 
So, we obtain 

ℱ = {∅, {𝑣11, 𝑣13 ∪ 𝑣11}, 
   {𝑣11, 𝑣12, 𝑣13 ∪ 𝑣11, 𝑣14 ∪ 𝑣12 ∪ 𝑣11}}. 

Then we write 

𝑉ℎ(𝐺[⋅, 𝐵3]; 𝑣11) = {𝑣7}, 
𝑉ℎ(𝐺[⋅, 𝐵3]; 𝑣12) = {𝑣10}, 
𝑉ℎ(𝐺[⋅, 𝐵3]; 𝑣13) = {𝑣9}, 
𝑉ℎ(𝐺[⋅, 𝐵3]; 𝑣14) = {𝑣8} 
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which yield 

ℱ = {∅, {{𝑣7}, {𝑣7, 𝑣9}}, 

   {{𝑣7}, {𝑣10}, {𝑣7, 𝑣9}, {𝑣7, 𝑣8, 𝑣10}}} 

Continuing Step 2, we rewrite 

ℱ = {∅, {{𝑣7}, {𝑣7, 𝑣9 ∪ 𝑣7}}, {{𝑣7}, {𝑣10 ∪ 𝑣8 ∪ 𝑣7}, 

   {𝑣7, 𝑣9 ∪ 𝑣7}, {𝑣7, 𝑣8 ∪ 𝑣7, 𝑣10 ∪ 𝑣8 ∪ 𝑣7}}} 

because 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣7) = 𝑣7 ∪ ∅ = 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣8) = 𝑣8 ∪⋃ {𝑣7} = 𝑣8 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣9) = 𝑣9 ∪⋃ {𝑣7} = 𝑣9 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣10) = 𝑣10 ∪⋃ {𝑣8} = 𝑣10 ∪ 𝑣8 ∪ 𝑣7. 

In the sequel, we find as 

𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣7) = ∅, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣8) = {𝑣1, 𝑣3, 𝑣4}, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣9) = {𝑣1, 𝑣2, 𝑣3, 𝑣6}, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣10) = {𝑣5} 

and hence we finally get 

 ℱ = {∅, {{∅}, {∅, {𝑣1, 𝑣2, 𝑣3, 𝑣6}}} , 

{{∅}, {{𝑣1, 𝑣3, 𝑣4, 𝑣5}}, {∅, {𝑣1, 𝑣2, 𝑣3, 𝑣6}}, 

{∅, {𝑣1, 𝑣3, 𝑣4}, {𝑣1, 𝑣3, 𝑣4, 𝑣5}}}}. 

 

3. Topological Hoarded Graphs 

 

We first introduce the definition of topological 

hoarded graph: 

 

Definition 3. A 2-hoarded graph 𝐺 = (𝒱,𝒜,ℬ) with 

𝒱 = {𝑉1, 𝑉2}, 𝒜 = {𝐴2} and ℬ = {𝐵2} is called a 

topological hoarded graph and denoted by 𝐺 =
(𝑉1, 𝑉2, 𝐴2, 𝐵2) if it satisfies the following conditions: 

(1) There exists a vertex in 𝑉2 that is the tail of no arc 

in 𝐺. 

(2) For every vertex 𝑣 in 𝑉1, there exists a vertex 𝑢 ∈
𝑉2 in which a directed path from itself to 𝑣 exists. 

(3) For any subset 𝑆 of mutually two non-

semiconnected vertices in 𝑉2, there exists a vertex 𝑣 

in 𝑉2 such that 𝐺 contains a dipath from 𝑣 to 𝑠 for each 

vertex 𝑠 ∈ 𝑆. 

For any non-semiconnected pair 𝑢, 𝑤 of vertices in 𝑉2, 
if 𝐺 contains pairs of directed paths with the first 

vertices 𝑢,𝑤 and the same last vertices in 𝑉1, then 

there exists a vertex 𝑣 ∈ 𝑉2 such that 𝐺 contains pairs 

of 𝑣-headed arcs with the tails 𝑢,𝑤 on these directed 

paths. 

 

Theorem 4. If 𝐺 = (𝑋, 𝑌, 𝐴, 𝐵) be a topological 

hoarded graph, then 𝑋 equipped with the 1-set-family 

𝜏 corresponding to 𝐺 is a topological space. 

Proof. Let us first show that 𝜏 contains the empty set. 

From Definition 3(3), there exists a vertex 𝑦 in 𝑌 such 

that 𝑦 is not the tail of any arc in 𝐺. When we first 

perform Step 1 to obtain 1-set-family 𝜏 corresponding 

to 𝐺, we get 𝜏 = 𝑌. In Step 2.1, we write 

𝑦 ∪⋃ 𝑉ℎ(𝐺[⋅, 𝐴]; 𝑦) = 𝑦 ∪ ∅ = 𝑦 

instead of 𝑦 in 𝜏 since 𝑦 is not the tail of any arc in 𝐺. 

In Step 2.2, since 𝑦 is not the tail of any arc in 𝐺, we 

replace 𝑦 in 𝜏 with 

𝑉ℎ(𝐺[⋅, 𝐵]; 𝑦) = ∅ 

which means that 𝜏 contains ∅. 

Now we show that 𝜏 contains the set 𝑋. Assume that 

𝑋 ∉ 𝜏. It implies that 𝑋 ≠ 𝑉ℎ(𝐺[⋅, 𝐵]; 𝑦) for every 

occurrence 𝑦 in 𝜏 obtained by applying Step 2.1. Then 

for every occurrence 𝑦 in 𝜏 obtained by applying Step 

2.1, there exists a point 𝑥 ∈ 𝑋 such that 𝑥 ∉
𝑉ℎ(𝐺[⋅, 𝐵]; 𝑦) which contradicts Definition 3(3). So 

𝑋 ∈ 𝜏. 
Given a subfamily {𝑈𝑖}𝑖∈𝐼 of 𝜏. Let’s show that 𝜏 
contains ⋃𝑖∈𝐼 𝑈𝑖. If 𝑈𝑖0 = 𝑋 for a particular 𝑖0 ∈ 𝐼, 

then ⋃𝑖∈𝐼 𝑈𝑖 = 𝑋 ∈ 𝜏. If there exists a subset 𝐽 ⊆ 𝐼 
such that there exists an index 𝑗 ∈ 𝐽 such that 𝑈𝑖 ⊆ 𝑈𝑗 

for every 𝑖 ∈ 𝐼\𝐽, then ⋃𝑖∈𝐼 𝑈𝑖 = ⋃𝑖∈𝐽 𝑈𝑖. In such a 

case, we show that ⋃𝑖∈𝐽 𝑈𝑖. In that case, {𝑈𝑖}𝑖∈𝐽 is a 

subfamily of 𝜏 such that 𝑈𝑖 is neither a subset nor a 

superset 𝑈𝑗 for every distinct indices 𝑖, 𝑗 ∈ 𝐽. For each 

𝑖 ∈ 𝐽, 𝑈𝑖 corresponding some vertex 𝑣𝑖 ∈ 𝑌 is 

obtained by performing Step 2.1 and Step 2.2. From 

Definition 3(3), there exists a vertex 𝑤 in 𝑌 such that 

𝐺 contains a dipath from 𝑤 to 𝑣𝑖 for every 𝑖 ∈ 𝐽. Just 

after applying Step 2.1 and Step 2.2, we obtain a set, 

say 𝑊, that corresponds 𝑤 ∈ 𝑌. Furthermore, 

⋃𝑖∈𝐽 𝑈𝑖 = 𝑊 ∈ 𝜏. 

Let 𝑈 and 𝑉 be members of 𝜏. Finally, if we show that 

𝑈 ∩ 𝑉 ∈ 𝜏, then we complete the proof. If 𝑈 does not 

intersect 𝑉, then 𝑈 ∩ 𝑉 = ∅ ∈ 𝜏. If 𝑈 ⊆ 𝑉 or 𝑉 ⊆ 𝑈, 

then it is clear that 𝑈 ∩ 𝑉 = 𝑈 ∈ 𝜏 or 𝑈 ∩ 𝑉 = 𝑉 ∈ 𝜏. 
In the other case, 𝑈 and 𝑉 corresponding some 

vertices 𝑢, 𝑣 ∈ 𝑌, respectively, are obtained by 

performing Step 2.1 and Step 2.2. Since 𝑈 ∩ 𝑉 ≠ ∅ 

and 𝑈 ⊆ 𝑉 and 𝑉 ⊆ 𝑈, 𝐺 contains pair of directed 

paths with the first vertices 𝑢, 𝑣 and the same last 

vertex 𝑤𝑝 in 𝑋 that corresponds to each point 𝑝 ∈ 𝑈 ∩

𝑉. From Definition 3(3), there exists a vertex 𝑤 in 𝑌 

such that 𝐺 contains pairs of 𝑤𝑝-headed arcs with the 

tails 𝑢, 𝑣 on these directed paths. Just after performing 

Step 2.1 and Step 2.2, we obtain a set, say 𝑊, that 

corresponds 𝑤 ∈ 𝑌. Furthermore, 𝑈 ∩ 𝑉 = 𝑊 ∈ 𝜏. 
 

Example 5. Let 𝐺 = (𝑋, 𝑌, 𝐴, 𝐵) be a topological 

hoarded graph where 
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𝑋 = {𝑣1, … , 𝑣6}, 𝑌 = {𝑣7, … , 𝑣19}, 
𝐴 = {𝑣8𝑣7, 𝑣9𝑣7, 𝑣10𝑣8, 𝑣10𝑣9, 𝑣11𝑣9, 𝑣12𝑣9,𝑣13𝑣10, 
   𝑣13𝑣11, 𝑣14𝑣10, 𝑣14𝑣12, 𝑣15𝑣11, 𝑣15𝑣12, 𝑣16𝑣13, 
   𝑣16𝑣14, 𝑣16𝑣15, 𝑣17𝑣14, 𝑣18𝑣16, 𝑣18𝑣17, 𝑣19𝑣18}, 
𝐵 = {𝑣8𝑣1, 𝑣9𝑣2, 𝑣11𝑣3, 𝑣12𝑣5, 𝑣17𝑣6, 𝑣19𝑣4} 
as Figure 5. 

 

 

Figure 2. An example of a topological hoarded graph. 

 

Indeed, it can be easily verified that 𝐺 satisfies the 

conditions in Definition 3. We first set ℱ = 𝑌 =
{𝑣7, … , 𝑣19}. For 𝑖 = 2, we write 

ℱ = {𝑣7, 𝑣8 ∪ 𝑣7, 𝑣9 ∪ 𝑣7, 𝑣10 ∪⋯∪ 𝑣7, 
   𝑣11 ∪ 𝑣9 ∪ 𝑣7, 𝑣12 ∪ 𝑣9 ∪ 𝑣7, 
   𝑣13 ∪ 𝑣11 ∪⋯∪ 𝑣7, 
   𝑣14 ∪ 𝑣12 ∪ 𝑣10 ∪⋯∪ 𝑣7, 
   𝑣15 ∪ 𝑣12 ∪ 𝑣11 ∪ 𝑣9 ∪ 𝑣7, 
   𝑣16 ∪⋯∪ 𝑣7, 
   𝑣17 ∪ 𝑣14 ∪ 𝑣12 ∪ 𝑣10 ∪⋯∪ 𝑣7, 
   𝑣18 ∪⋯∪ 𝑣7, 𝑣19 ∪⋯∪ 𝑣7} 

since 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣7) = 𝑣7 ∪ ∅ = 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣8) = 𝑣8 ∪⋃ {𝑣7} = 𝑣8 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣9) = 𝑣9 ∪⋃ {𝑣7} = 𝑣9 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣10) = 𝑣10 ∪⋃ {𝑣8, 𝑣9}

= 𝑣10 ∪⋯∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣11) = 𝑣11 ∪⋃ {𝑣9} = 𝑣11 ∪ 𝑣9 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣12) = 𝑣12 ∪⋃ {𝑣9} = 𝑣12 ∪ 𝑣9 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣13) = 𝑣13 ∪⋃ {𝑣10, 𝑣11}

= 𝑣13 ∪ 𝑣11 ∪ 𝑣10 ∪ 𝑣9 ∪ 𝑣8 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣14) = 𝑣14 ∪⋃ {𝑣10, 𝑣12}

= 𝑣14 ∪ 𝑣12 ∪ 𝑣10 ∪ 𝑣9 ∪ 𝑣8 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣15) = 𝑣15 ∪⋃ {𝑣11, 𝑣12}

= 𝑣15 ∪ 𝑣12 ∪ 𝑣11 ∪ 𝑣9 ∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣16) = 𝑣16 ∪⋃ {𝑣13, 𝑣14, 𝑣15}

= 𝑣16 ∪⋯∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣17) = 𝑣17 ∪⋃ {𝑣14}

= 𝑣17 ∪ 𝑣14 ∪ 𝑣12 ∪ 𝑣10 ∪ 𝑣9 ∪ 𝑣8
∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣18) = 𝑣18 ∪⋃ {𝑣16, 𝑣17}

= 𝑣18 ∪⋯∪ 𝑣7, 

𝑉ℎ(𝐺[⋅, 𝐴2]; 𝑣19) = 𝑣19 ∪⋃ {𝑣18}

= 𝑣19 ∪⋯∪ 𝑣7. 
 And since 

𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣7) = ∅, 𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣14) = ∅, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣8) = {𝑣1}, 𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣15) = ∅, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣9) = {𝑣2}, 𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣16) = ∅, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣10) = ∅,𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣17) = {𝑣6}, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣11) = {𝑣3}, 𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣18) = ∅, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣12) = {𝑣5}, 𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣19) = {𝑣4}, 
𝑉ℎ(𝐺[⋅, 𝐵2]; 𝑣13) = ∅, 

we get 

ℱ = {∅, {𝑣1}, {𝑣2}, {𝑣1, 𝑣2}, {𝑣2, 𝑣3}, {𝑣2, 𝑣5}, 
   {𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣5}, {𝑣2, 𝑣3, 𝑣5}, 
   {𝑣1, 𝑣2, 𝑣3, 𝑣5}, {𝑣1, 𝑣2, 𝑣5, 𝑣6}, 

   {𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6}, {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}} 

which can easily be proved to be a topology on 𝑋. 

 

4. Conclusion and Suggestions 

 

We first give a concept of a 𝑛-hoarded graph to which 

there exists a (𝑛 − 1)-set family corresponding. We 

present the steps to be performed to get the 

corresponding set-family, and we have shown the 

results of these steps in an example. We then 

introduced the concept of a topological hoarded 

graph. Above all, we show that 𝑋 equipped with the 

1-set-family 𝜏 corresponding to a topological hoarded 

graph 𝐺 = (𝑋, 𝑌, 𝐴, 𝐵) is a topological space. And 

finally, we have confirmed this fact with an example.
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