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1. INTRODUCTION 

It is known that the most of the problems of stock control theory is often given by means of 

random walks or random walks with delaying barriers(see References Afanas’eva & 

Bulinska (1983), Khaniev & Ünver (1997), etc.). But, for the problem considered in this 

study,  one of the barriers is reflecting and the other one is delaying, and the process 

representing the quantity of the stock has been given by using a random walk and a renewal 

process. Such models were rarely considered in literature. The practical state of the problem 

mentioned above is as follows.    

Suppose that some quantity of a stock in a certain warehouse is increasing or decreasing in 

random discrete portions depending to the demands at discrete times. Then, it is possible to 

characterize the level of stock by a process called the semi-Markovian random walk process.  

The processes of this type have been widely studied in literature (see,for example References 
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Afanas’eva & Bulinska (1983), Gihman & Skorohod (1975) and Lotov (1991), etc.). But 

sometimes some problems occur in stock control theory such that in order to get an adequate 

solution we have to consider some processes which are more complex than semi-Markovian 

random walk processes. For example, if the borrowed quantity is demanded to be added to 

the warehouse immediately when the qunatity of demanded stock is more than the total 

quantity of stock in the warehouse then, it is possible to characterize the level of stock in the 

warehouse by a stochastic process called as semi-Markovian random walk processes with 

reflecting barrier. But for the model studied in this study an additional condition has been 

considered. Since the volume of warehouse is finite in real cases, the supply coming to the 

warehouse is stopped until the next demand when the warehouse becomes full. In order to 

characterize the quantity of stock in the warehouse under these conditions it is necessary to 

use a stochastic process called as semi-Markovian random walk process with two barriers in 

which  one of them is reflecting  and the other one is delaying. Note that semi-Markovian 

random walk processes with two barriers, namely reflecting and delaying, have not been 

considered enough in literature (see, for example References Lotov (1998); Maden (2001)).  

This type problems may ocur,  for example, in the control of military stocks, refinery stocks, 

reserve of oil wells, and etc.  

The Model.  Assume that we observe random motion of a particle, initially at the position 

𝑋0 ∈ [0, 𝛽], 𝛽 > 0, in a stripe bounded by two barriers; the one lying on the zero-level as 

reflecting and the other lying on 𝛽 -level as delaying. Furthermore,  assume that this motion 

proceeds according to the following rules: After staying at the position 𝑋0 for as much as 

random duration 𝜉1, the particle wants to reach the position 𝑋0 + 𝜂1. If  𝑋0 + 𝜂1 > 𝛽 then 

the particle will be kept at the position  𝑋1 = 𝛽   since there is delaying barrier at 𝛽 -level. If  

𝑋0 + 𝜂1 ∈ [0, 𝛽], then the particle will be at the position 𝑋1 = 𝑋0 + 𝜂1.  Since there is a 

reflecting barrier at zero-level, when 𝑋0 + 𝜂1 < 0 the particle will reflect from this barrier 

as long as |𝑋0 + 𝜂1|. In this case, if |𝑋0 + 𝜂1| ≤  𝛽 then the particle will be kept at the 

position  𝑋1 = |𝑋0 + 𝜂1| and if |𝑋0 + 𝜂1| > 𝛽 then the particle will be at the position 𝛽, so 

the position of the particle will be 𝑋1 = 𝑚𝑖𝑛{𝛽, |𝑋0 + 𝜂1|}. 

After staying at the position 𝑋1 for as much as random duration 𝜉2 again it will jump to the 

position 𝑋2 = 𝑚𝑖𝑛{𝛽, |𝑋1 + 𝜂2|}  according to the above mentioned rules. Thus at the end 

of n-th jump, the particle will be at the position 𝑋𝑛 = 𝑚𝑖𝑛{𝛽, |𝑋𝑛−1 + 𝜂𝑛|} , 𝑛 ≥ 1. 
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Fig. 1. A View of Semi-Markovian Random Walk Process with Reflecting Barrier  

on the Zero-level and Delaying Barrier on the )0(  -level 

 

 

2. CONSTRUCTION OF THE PROCESS 

Suppose {(𝜉𝑖, 𝜂𝑖)}, 𝑖 = 1,2,3, … is a sequence of identically and independently distributed 

pairs of random variables, defined in any probability space (𝛺, ℱ, 𝑃) such that 𝜉𝑖’s are 

positive valued, i.e., 𝑃{𝜉𝑖 > 0} = 1, 𝑖 = 1,2,3, ….  Also let us denote the distribution function 

of 𝜉1 and 𝜂1  

𝛷(𝑡) = 𝑃{𝜉1 < 𝑡}, Ϝ(𝑥) = 𝑃{𝜂1 < 𝑥}, 𝑡 ∈ ℝ+, 𝑥 ∈ ℝ , 

respectively. Before stating the corresponding process, let us construct the following 

sequences of random variables:   

𝑇𝑛 = ∑ 𝜉𝑖

𝑛

𝑖=1

, 𝑌𝑛 = ∑ 𝜂𝑖

𝑛

𝑖=1

, 𝑛 ≥ 1, 𝑇0 = 𝑌0 = 0. 
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Then the processes {𝑇𝑛: 𝑛 ≥ 1} and {𝑌𝑛: 𝑛 ≥ 1} forms a renewal process and a random walk 

respectively. By using the random pairs (𝜉𝑖, 𝜂𝑖) we can construct the random walk process 

with two barriers in which the reflecting barrier is on the zero-level and the delaying barrier 

is on 0 -level as follows:  

  𝑋𝑛 = 𝑚𝑖𝑛{𝛽, |𝑋𝑛−1 + 𝜂𝑛|}, 𝑛 ≥ 1,  𝑧 = 𝑋0 ∈ [0, 𝛽],                                          (1) 

where 𝑧 is the initial position of the process. Now, let us construct the stochastic process  

𝑋(𝑡) which has the reflecting barrier from below and the delaying barrier from above and 

which represents the level of stock at the moment t:  

 𝑋(𝑡) = 𝑋𝑛,  if  𝑡 ∈ [𝑇𝑛, 𝑇𝑛+1).                                                                                             (2) 

This process  is called the semi-Markovian random walk with the reflecting barrier on the 

zero-level and the delaying barrier on 𝛽- level.  

 

3. THE LAPLACE TRANSFORM FOR THE ERGODIC DISTRIBUTION OF THE 

PROCESS 𝑿(𝒕)  

  In order to formulate the main results of this paper, let us state the following 

probability characteristics of random walk {𝑌𝑛: 𝑛 ≥ 1} and renewal process {𝑇𝑛: 𝑛 ≥ 1}: 

𝑎𝑛(𝑧, 𝑥) = 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛; 𝑧 + 𝑌𝑛 ∈ [0, 𝑥]}, 𝑛 ≥ 1, 

𝑐𝑛(𝑧, 𝑣) = 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛 − 1; 𝑧 + 𝑌𝑛 < 𝑣}, 𝑣 < 0, 𝑛 ≥ 1, 

𝐴(𝑧, 𝑥) = ∑ 𝑎𝑛(𝑧, 𝑥)∞
𝑛=0 ,    𝐶(𝑧, 𝑑𝑣) = ∑ 𝑐𝑛(𝑧, 𝑑𝑣)∞

𝑛=0 ,  

𝐴(𝑡, 𝑧, 𝑥) = ∑ 𝑎𝑛(𝑧, 𝑥)∞
𝑛=0 ∆𝛷𝑛(𝑡),   𝐶(𝑠, 𝑧, 𝑣) = ∑ 𝑐𝑛(𝑧, 𝑣)∞

𝑛=0 ∆𝛷𝑛(𝑠),  

𝐶(𝑑𝑠, 𝑧, 𝑑𝑣) = ∑ 𝑐𝑛(𝑧, 𝑑𝑣)∞
𝑛=0 𝑑𝛷𝑛(𝑠),  𝑐𝑛(𝑧, 𝑑𝑣) = 𝑑𝑣𝑐𝑛(𝑧, 𝑣),   

𝛷𝑛(𝑡) = 𝑃{𝑇𝑛 < 𝑡},  ∆𝛷𝑛(𝑡) = 𝛷𝑛(𝑡) − 𝛷𝑛+1(𝑡),  

where 𝑧 = 𝑋0 ∈ [0, 𝛽] 1  , 0 ,  nv  and 𝑎𝑛(𝑧, 𝑥) = 1, 𝑏𝑛(𝑧, 𝑣) = 0. 

For any function 𝑀(𝑡, 𝑧, 𝑥),  let us denote the Laplace transform and Laplace-Stieltjes 

transform of 𝑀(𝑡, 𝑧, 𝑥)  

�̃�(𝜆, 𝑧, 𝑥) = ∫ 𝑒−𝜆𝑡∞

0
𝑀(𝑡, 𝑧, 𝑥)𝑑𝑡 and  𝑀∗(𝜆, 𝑧, 𝑥) = ∫ 𝑒−𝜆𝑡∞

0
𝑑𝑡𝑀(𝑡, 𝑧, 𝑥) 
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with respect to 𝑡, respectively. Moreover, for any functions 𝑀1(𝑡, 𝑧, 𝑥)  and  𝑀2(𝑡, 𝑧, 𝑥),  the 

convolution product of  𝑀1(𝑡, 𝑧, 𝑥)  and  𝑀2(𝑡, 𝑧, 𝑥)   as follows: 

𝑀1(𝑡, 𝑧, 𝑥) ∗ 𝑀2(𝑡, 𝑧, 𝑥) = ∫ 𝑀2(𝑡 − 𝑠, 𝑧, 𝑥)
𝑡

0
𝑑𝑠𝑀1(𝑠, 𝑧, 𝑥)  

and  𝑘-times convolution product of 𝑀1(𝑡, 𝑧, 𝑥) with itself 

 [𝑀1(𝑡, 𝑧, 𝑥)]∗
𝑘 = 𝑀1(𝑡, 𝑧, 𝑥) ∗ [𝑀1(𝑡, 𝑧, 𝑥)]∗

𝑘−1.  

Also let us denote 

�̅�𝑓(𝑣,∗) = ∫ 𝑓(𝑥)
𝛽

0
𝑑𝑥𝑀(𝑣, 𝑥) and  �̿�𝑓(∗,∗) = ∫ 𝑓(𝑥)

𝛽

0
𝑑𝑥�̅�(∗, 𝑥). 

Now let us give the following lemma. 

 Theorem 3.1.  Let 𝜉1 and 𝜂1 are independent random variables in the initial squence 

of random pairs mentioned above. Then the process 𝑋(𝑡) is ergodic if the following 

conditions hold:  

i) 𝐸[𝜉1] < ∞, 

ii) 𝑃[𝜂1 > 0] > 0,   𝑃[𝜂1 < 0] > 0 

iii) 𝜂1 has a non-aritmetic distribution. 

 Proof: In order to prove that the process 𝑋(𝑡) is ergodic, it is sufficient to prove that 

the conditions of  “The ergodic theorem for processes with a discrete chance interference” 

(see Gihman and Skorohod (1973), p. 244) are satisfied. In accordance with this, firstly it is 

to necessary to construct a Markov chain and to prove that this chain is ergodic under the 

conditions of this theorem. For this aim, let us define the natural number valued randon 

variables 𝜗𝑛, 𝑛 ≥ 1, by the following recurrence formula 

 𝜗1 = 𝑚𝑖𝑛{𝑘 ≥ 1: 𝑋𝑘−1 + 𝜂𝑘 ≥ 𝛽},                                                                               (3) 

and 

  𝜗𝑛 = 𝑚𝑖𝑛{𝑘 ≥ 𝜗𝑛−1: 𝑋𝑘−1 + 𝜂𝑘 ≥ 𝛽} ,   𝑛 ≥ 2.                                                        (4) 
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Now, by using these random variables, we can define the random variables    𝛾𝑛𝛽  and    �̃�𝑛𝛽 , 

as follows: 

              𝛾𝑛𝛽 = ∑ 𝜉𝑖
𝜗1
𝑖=1  ,       �̃�𝑛𝛽 = ∑ 𝜉𝑖

𝜗𝑛+1
𝑖=1   ,   𝑛 ≥ 1,                                                          (5) 

 where   𝛾𝑛𝛽  and  �̃�𝑛𝛽 , 𝑛 ≥ 1, denotes the n-th falling moment into yhe delaying barrier and 

the n-th going out moment from the delaying barrier, respectively. Let us define 𝜒𝑛 as 

          𝜒𝑛 = 𝑋(�̃�𝑛𝛽 + 0), 𝑛 ≥ 1.                                                                                         (6) 

This chain is desired Markov chain. Then we can write the random variables  𝜒𝑛, 𝑛 ≥ 1, as 

folllows: 

 𝜒𝑛 = 𝑚𝑖𝑛{𝛽, |𝛽 + 𝜂𝜗𝑛+1|}, 𝑛 ≥ 1.   

 

   𝛽                                                    

                                     𝜒1 

 

                                                              

                                                                                       𝜒2 

                                                                                                                          𝜒3 

 0                 𝛾1𝛽              �̃�1𝛽                           𝛾2𝛽       �̃�2𝛽                    𝛾3𝛽          �̃�3𝛽       𝑡        

 

 

 

 

Fig.  2.   A View of the Markov Chain  𝜒𝑛  

This Markov chain is ergodic and has a stationary distribution function because of there are 

reflecting barrier on the zero-level and the delaying barrier on 𝛽- level and the random 

variable 𝜂1 which takes both negative and positive values is non-aritmetic (see Bonokov 
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(1972)). Let us denote by 𝜋(𝑥) the stationary distribution function. Then it is obvious that 

𝜋(𝑥) = 0 if 𝑥 ≤ 0 and 𝜋(𝑥) = 1 if 𝑥 > 𝛽. Therefore, we consider the case when 𝑥 ∈ (0, 𝛽].  

   𝜋(𝑥) = 𝑃{𝜒1 < 𝑥} = 𝑃{𝑚𝑖𝑛{𝛽, |𝛽 + 𝜂1|} < 𝑥}   

= 1 − 𝑃{𝑚𝑖𝑛{𝛽, |𝛽 + 𝜂1|} ≥ 𝑥} 

                                               = 1 − 𝑃{𝛽 ≥ 𝑥; |𝛽 + 𝜂1| ≥ 𝑥} 

                                               = 1 − 𝑃{𝛽 ≥ 𝑥 }𝑃{ |𝛽 + 𝜂1| ≥ 𝑥} 

= 1 − 𝜀(̅𝑥 − 𝛽)𝑃{ |𝛽 + 𝜂1| ≥ 𝑥} 

                                              = 1 − 𝜀(̅𝑥 − 𝛽)[1 − 𝑃{ |𝛽 + 𝜂1| < 𝑥}] 

                                             = 1 − 𝜀(̅𝑥 − 𝛽) + 𝜀(̅𝑥 − 𝛽)𝑃{ |𝛽 + 𝜂1| < 𝑥} 

                                             = 𝜀(𝑥 − 𝛽) + 𝜀(̅𝑥 − 𝛽)𝜀(𝑥)𝑃{−𝑥 < 𝛽 + 𝜂1 < 𝑥} 

                                             = 𝜀(𝑥 − 𝛽) + 𝜀(̅𝑥 − 𝛽)𝜀(𝑥)[𝐹(−𝛽 + 𝑥) − 𝐹(−𝛽 − 𝑥)],       (7) 

where 

  𝜀(𝑢) = {
1, 𝑢 ≥ 0
0, 𝑢 < 0

   and   𝜀(̅𝑢) = 1 − 𝜀(𝑢).                                                          (8) 

Consequently, under the assumptions of the theorem, the first condition of of  “The ergodic 

theorem for processes with a discrete chance interference” satisfies. Now, let us prove that 

the second condition of it satisfies. Note that tis is equivalent to show that the expected value 

of random variable  �̃�1𝛽 is finite, that is, 𝐸[�̃�1𝛽] < ∞. For this aim let us give the following 

lemma without proof. 

Lemma 3.1[7]. If  𝐸[𝜉1] < ∞,  𝑃[𝜂1 > 0] > 0 and 𝑃[𝜂1 < 0] > 0, then there exists 

numbers  𝛼 ∈ (0,1] and  𝑇𝛼 < ∞ such that 

      Sup
0≤𝑧≤𝛽

𝑃𝑧 {𝛾1𝛽 ≥ 𝑇𝛼} ≤ 𝛼 < 1.                                                                                        (9) 

 Now, we can show that the expected value of random variable  𝛾1𝛽 is finite, that is 

𝐸[𝛾1𝛽] < ∞. 

 Lemma 3.2. If the conditions of lemma 3.1. hold, then 𝐸[𝛾1𝛽] < ∞. 

 Proof: Under the conditions of lemma 3.1., we can write 
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 𝑃𝑧{𝛾1𝛽 ≥ 2. 𝑇𝛼} = ∫ 𝑃𝑧{𝛾1𝛽 ≥ 𝑇𝛼; 𝑋(𝑇𝛼) ∈ 𝑑𝑣}
𝛽

0
 

                           = ∫ 𝑃𝑧{𝛾1𝛽 ≥ 𝑇𝛼; 𝑋(𝑇𝛼) ∈ 𝑑𝑣}
𝛽

0
𝑃𝑣{𝛾1𝛽 ≥ 𝑇𝛼} 

                  ≤ 𝛼 ∫ 𝑃𝑧{𝛾1𝛽 ≥ 𝑇𝛼; 𝑋(𝑇𝛼) ∈ 𝑑𝑣}
𝛽

0
  

                                   = 𝛼𝑃𝑣{𝛾1𝛽 ≥ 𝑇𝛼}        

                                    ≤ 𝛼2.                                                                                                   (10) 

In order to show that 𝑃𝑧{𝛾1𝛽 ≥ 𝑛. 𝑇𝛼} ≤ 𝛼𝑛 for every  𝑛 ≥ 1 and 𝑧 ∈ [0, 𝛽], we can use the 

method of mathematical induction.  Now, assume that it is true for  𝑛 = 𝑘, that is, 

𝑃𝑧{𝛾1𝛽 ≥ 𝑘. 𝑇𝛼} ≤ 𝛼𝑘 and show that it is true for  𝑛 = 𝑘 + 1. In this case, we have 

 𝑃𝑧{𝛾1𝛽 ≥ (𝑘 + 1)𝑇𝛼} = 𝑃𝑧{𝛾1𝛽 ≥ 𝑘. 𝑇𝛼 + 𝑇𝛼} 

                                    = ∫ 𝑃𝑧{𝛾1𝛽 ≥ 𝑘. 𝑇𝛼 + 𝑇𝛼; 𝑋(𝑇𝛼) ∈ 𝑑𝑣}
𝛽

0
 

                                    = ∫ 𝑃𝑧{𝛾1𝛽 ≥ 𝑘. 𝑇𝛼; 𝑋𝑘. (𝑇𝛼) ∈ 𝑑𝑣}
𝛽

0
𝑃𝑣{𝛾1𝛽 ≥ 𝑇𝛼} 

                                    ≤ 𝛼 ∫ 𝑃𝑧{𝛾1𝛽 ≥ 𝑘. 𝑇𝛼; 𝑋(𝑘. 𝑇𝛼) ∈ 𝑑𝑣}
𝛽

0
 

                                  = 𝛼𝑃𝑧{𝛾1𝛽 ≥ 𝑘. 𝑇𝛼} 

                                   ≤ 𝛼𝑘+1.                                                                                          (11) 

Thus, we get  𝑃𝑧{𝛾1𝛽 ≥ 𝑛. 𝑇𝛼} ≤ 𝛼𝑛 for every  𝑛 ≥ 1 and 𝑧 ∈ [0, 𝛽].  On the other hand, we 

can write 

               𝐸𝑧[𝛾1𝛽] = ∫ 𝑃𝑧
∞

0
{𝛾1𝛽 ≥ 𝑡}𝑑𝑡 = ∑ ∫ 𝑃𝑧

𝑛𝑇𝛼

(𝑛−1)𝑇𝛼
{𝛾1𝛽 ≥ 𝑡}𝑑𝑡∞

𝑛=1       

                             ≤ ∑ ∫ 𝑃𝑧
𝑛𝑇𝛼

(𝑛−1)𝑇𝛼
{𝛾1𝛽 ≥ (𝑛 − 1)𝑇𝛼}𝑑𝑡∞

𝑛=1     

                    = ∑ 𝑇𝛼. 𝑃𝑧{𝛾1𝛽 ≥ (𝑛 − 1)𝑇𝛼}∞
𝑛=1  

                            = 𝑇𝛼 ∑ 𝑃𝑧{𝛾1𝛽 ≥ 𝑘𝑇𝛼}∞
𝑘=0  

                    ≤ 𝑇𝛼 ∑ 𝛼𝑘∞
𝑘=0  

       =
1

1−𝛼
𝑇𝛼.                                                                                                           (12) 



S. Maden 

251 

 

Thus we get  𝐸𝑧[𝛾1𝛽] < ∞ for every 𝑧 ∈ [0, 𝛽] because of 𝛼 ∈ (0,1] and  𝑇𝛼 < ∞.  Also, we 

can write  

    𝐸[𝛾1𝛽] = ∫ 𝐸𝑧[𝛾1𝛽]
𝛽

0
𝑑𝜋(𝑧).  

In this case, we have  

         𝐸[𝛾1𝛽] ≤
1

1−𝛼
𝑇𝛼 ∫ 𝑑𝜋(𝑧)

𝛽

0
=

1

1−𝛼
𝑇𝛼 < ∞, 

which completes the proof. 

 Now, we can show that the expected value of random variable  �̃�1𝛽 is finite, that is 

𝐸[�̃�1𝛽] < ∞.  By the definitions of random variables  𝛾1𝛽  and  �̃�1𝛽, we can write 

 �̃�1𝛽 = ∑ 𝜉𝑖
𝜗1+1
𝑖=1 =  ∑ 𝜉𝑖

𝜗1
𝑖=1 + 𝜉𝜗1+1 = 𝛾1𝛽 + 𝜉𝜗1+1. 

Thus, we have     

 𝐸[�̃�1𝛽] = 𝐸[𝛾1𝛽] + 𝐸[𝜉𝜗1+1] = 𝐸[𝛾1𝛽] + 𝐸[𝜉1] < ∞.       

So, under the assumptions of the theorem, the both of conditions of  “The ergodic theorem 

for processes with a discrete chance interference” satisfy. That is, the process 𝑋(𝑡) is ergodic.                                                                 

  Theorem 3.2. Under the conditions of Lemma 3.1., the following statement is true for 

the ergodic distribution of the process 𝑋(𝑡):  

    lim
𝑇→∞

1

𝑇
∫ 𝑓(𝑋(𝑡))

𝑇

0
𝑑𝑡 =

�̿�𝑓(∗,∗)

�̅�𝑓(∗,∞)
                                                                                   (13) 

where 

 �̿�𝑓(∗,∗) = �̿�𝑓(∗,∗) + ∫ 𝐶̅(∗, 𝑑𝑣1)�̅�𝑓(|𝑣1|,∗)
0

−𝛽
 

               + ∑ ∫ …
0

−𝛽
(𝑛) …∞

𝑛=2 ∫ 𝐶̅(∗, 𝑑𝑣1) ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)�̅�𝑓(|𝑣𝑛|,∗)𝑛
𝑖=2

0

−𝛽
,         (14) 

 �̅�𝑓(∗, ∞) = �̿�𝑓(∗, ∞) + ∫ 𝐶̅(∗, 𝑑𝑣1)�̅�𝑓(|𝑣1|, ∞)
0

−𝛽
 

                  + ∑ ∫ …
0

−𝛽
(𝑛) …∞

𝑛=2 ∫ 𝐶̅(∗, 𝑑𝑣1) ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)�̅�𝑓(|𝑣𝑛|, ∞)𝑛
𝑖=2

0

−𝛽
.    (15) 
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 Proof: Since the process of 𝑋(𝑡) is ergodic the following expression is true for any 

measurable and bounded function 𝑓(𝑥) by  “The ergodic theorem for processes with a 

discrete chance interference” (see Gihman and Skorohod [4], p. 244) are satisfied:   

             lim
𝑇→∞

1

𝑇
∫ 𝑓(𝑋(𝑡))

𝑇

0
𝑑𝑡 = [∫ ∫ ∫ 𝑓(𝑥)

𝛽

𝑥=0
𝑃𝑧{�̃�1𝛽 ≥ 𝑡; 𝑋(𝑡) ∈ 𝑑𝑥}

𝑡∞

𝑡=0

𝛽

𝑧=0
𝑑𝑡𝜋(𝑑𝑧)] 

                                               × [∫ ∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡}
𝑡∞

𝑡=0

𝛽

𝑧=0
𝑑𝑡𝜋(𝑑𝑧)]

−1

.                                           (16) 

Our aim in this section is to express the nominator and denominator of (16) by means of the 

probability characteristics  of  random walk {𝑌𝑛: 𝑛 ≥ 1} and renewal process {𝑇𝑛: 𝑛 ≥ 1}. 

Let us denote 

 𝑅(𝑡, 𝑧, 𝑥) = 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝑋(𝑡) < 𝑥} 

and 

  𝑟𝑛(𝑡, 𝑧, 𝑥) = 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝜐0(𝑡) = 𝑛; 𝑋(𝑡) < 𝑥}, 𝑛 ≥ 0.     

Let us denote by  𝜐0(𝑡) the number of reflection moments of the process 𝑋(𝑡) into the 

interval [0, 𝑡].  According to the total probability formula we have 

           𝑅(𝑡, 𝑧, 𝑥) = 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝑋(𝑡) < 𝑥} 

                           = ∑ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡; 𝜐0(𝑡) = 𝑛;  𝑋(𝑡) < 𝑥}∞
𝑛=0 = ∑  𝑟𝑛(𝑡, 𝑧, 𝑥)∞

𝑛=0                  (17) 

Now, we expres each 𝑟𝑛(𝑡, 𝑧, 𝑥) given in (17) by the probability characteristics of both {𝑌𝑛} 

and {𝑇𝑛}, seperately. For 𝑛 = 0, we have          

 𝑟0(𝑡, 𝑧, 𝑥) = 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝜐0(𝑡) = 0; 𝑋(𝑡) < 𝑥} 

                          = ∑ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝜐0(𝑡) = 0; 𝑋(𝑡) < 𝑥; 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛+1}∞
𝑛=0  

                          = ∑ 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛; 𝑧 + 𝑌𝑛 ∈ [0, 𝑥]}∞
𝑛=0 𝑃{𝑇𝑛 ≤ 𝑡 < 𝑇𝑛+1} 

                          = ∑ 𝑎𝑛(𝑧, 𝑥)∞
𝑛=0 ∆𝛷𝑛(𝑡) 

= 𝐴(𝑡, 𝑧, 𝑥)    

From this, we can write 

  𝑟0̃(𝜆, 𝑧, 𝑥) = �̃�(𝜆, 𝑧, 𝑥).                                                                                         (18) 

 Now, we also calculate the conditional distribution  𝑟1(𝑡, 𝑧, 𝑥) in order to give a general 

formula for 𝑟𝑛(𝑡, 𝑧, 𝑥),  𝑛 ≥ 0,  



S. Maden 

253 

 

 𝑟1(𝑡, 𝑧, 𝑥) = 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝜐0(𝑡) = 1; 𝑋(𝑡) < 𝑥} 

 = ∑ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝜐0(𝑡) = 1; 𝑋(𝑡) < 𝑥; 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛+1}∞
𝑛=0  

 = ∑ ∑ ∫ 𝑃𝑧{𝛾 ≥ 𝑡: 𝜐0(𝑡) = 1; 𝑋(𝑡) < 𝑥; 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛+1; 𝑇𝑖 ∈ 𝑑𝑠}
𝑡

0
𝑛
𝑖=1

∞
𝑛=0  

 = ∑ ∑ ∫ ∫ 𝑃{𝑧 + 𝑌𝑗 ∈ [0, 𝛽]; 1 ≤ 𝑗 ≤ 𝑖 − 1; 𝑧 + 𝑌𝑖 ∈ 𝑑𝑣; 𝑇𝑖 ∈ 𝑑𝑠}
𝑡

0

0

−𝛽
𝑛
𝑖=1

∞
𝑛=0  

  𝘹 𝑃{|𝑣| + 𝑌𝑗 ∈ [0, 𝛽]; 1 ≤ 𝑗 ≤ 𝑛 − 𝑖; |𝑣| + 𝑌𝑛−𝑖 < 𝑥}∆𝛷𝑛−𝑖(𝑡 − 𝑠) 

 = ∑ ∑ ∫ ∫ 𝑐𝑖(𝑧, 𝑑𝑣)𝑑𝛷𝑖(𝑠)𝑎𝑛−𝑖(|𝑣|, 𝑥)∆𝛷𝑛−𝑖(𝑡 − 𝑠)
𝑡

0

0

−𝛽
𝑛
𝑖=1

∞
𝑛=0  

 = ∫ ∫ ∑ 𝑐𝑖(𝑧, 𝑑𝑣)𝑑𝛷𝑖(𝑠) ∑ 𝑎𝑛−𝑖(|𝑣|, 𝑥)∆𝛷𝑛−𝑖(𝑡 − 𝑠)∞
𝑛=𝑖

∞
𝑖=1

𝑡

0

0

−𝛽
 

 = ∫ ∫ 𝐶(𝑑𝑠, 𝑧, 𝑑𝑣)
𝑡

0

0

−𝛽
𝐴(𝑡 − 𝑠, |𝑣|, 𝑥) 

                        = ∫ 𝐴(𝑡, |𝑣|, 𝑥) ∗ 𝐶(𝑡, 𝑧, 𝑑𝑣)
0

−𝛽
                                                                          

As such,  

 𝑟1̃(𝑡, 𝑧, 𝑥) = ∫ �̃�(𝜆, |𝑣|, 𝑥)𝐶∗(𝜆, 𝑧, 𝑑𝑣)
0

−𝛽
                                                (19) 

is obtained. Analogously, it is possible to prove that 

𝑟�̃�(𝑡, 𝑧, 𝑥) = ∫ … (𝑛) …
0

−𝛽
∫ ∏ 𝐶∗(𝜆, |𝑣𝑖−1|, 𝑑𝑣𝑖)�̃�(𝜆, |𝑣𝑛|, 𝑥)𝑛

𝑖=1
0

−𝛽
,                     (20) 

for 𝑛 ≥ 1; |𝑣0| = 𝑧 ∈ [0, 𝛽].  

Substituting all of these expressions in the formula for �̃�(𝜆, 𝑧, 𝑥) given above, we have 

  �̃�(𝜆, 𝑧, 𝑥) = �̃�(𝜆, 𝑧, 𝑥) + ∑ ∫ …
0

−𝛽
∞
𝑛=1 ∫ ∏ 𝐶∗(𝜆, |𝑣𝑖−1|, 𝑥)�̃�(𝜆, |𝑣𝑛|, 𝑥)𝑛

𝑖=1
0

−𝛽
       (21) 

as asserted. Thus, we expressed �̃�(𝜆, 𝑧, 𝑥),  the Laplace transform of 𝑅(𝑡, 𝑧, 𝑥), by the 

probability characteristics of random walk {𝑌𝑛: 𝑛 ≥ 1} and renewal process {𝑇𝑛: 𝑛 ≥ 1}.  

 This result is very important in theory, but it is not so important in practice because of 

these formulas are very difficult and complex. Specially, it is very difficult to calculate the 

inverse of the Laplace transform. In this case, we must notice that when 𝜆 tends towards zero 

(𝜆 → 0) with helping �̃�(𝜆, 𝑧, 𝑥) we can calculate the limit value of  𝑅(𝑡, 𝑧, 𝑥) when 𝑡 → ∞. 

For this, it is enough to consider the Tauber’s Theorem, see (Feller 1968).  In this case, we 

can write 
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            ∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝑋(𝑡) < 𝑥}
∞

0
𝑑𝑡 = �̃�(𝜆, 𝑧, 𝑥)|

𝜆=0
= �̃�(0, 𝑧, 𝑥) 

                           = �̃�(0, 𝑧, 𝑥) + ∑ ∫ …
0

−𝛽
∞
𝑛=1 (𝑛) … ∫ ∏ 𝐶∗(0, |𝑣𝑖−1|, 𝑥)�̃�(0, |𝑣𝑛|, 𝑥)𝑛

𝑖=1
0

−𝛽
. 

Now, we calculate the values of �̃�(0, 𝑧, 𝑥) and 𝐶∗(0, 𝑧, 𝑑𝑣): 

    �̃�(0, 𝑧, 𝑥) =    lim
𝜆→0

∫ 𝐴(𝑡, 𝑧, 𝑥) 𝑒−𝜆𝑡∞

0
𝑑𝑡 

                             = lim
𝜆→0

∫ ∑ 𝑎𝑛(𝑧, 𝑥)∞
𝑛=0 ∆𝛷𝑛(𝑡)

∞

0
 𝑒−𝜆𝑡dt  

                             = ∑ 𝑎𝑛(𝑧, 𝑥)∞
𝑛=0 𝐸[𝜉1] 

                             = 𝐴(𝑧, 𝑥)𝐸[𝜉1] 

and 

  𝐶∗(0, 𝑧, 𝑑𝑣) =    lim
𝜆→0

𝐶∗(𝜆, 𝑧, 𝑑𝑣) 

                      = lim
𝜆→0

∫  𝑒−𝜆𝑡∞

0
∑ 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛 − 1; 𝑧 + 𝑌𝑛 ∈ 𝑑𝑣}∞

𝑛=1 𝑑𝛷𝑛(𝑡)  

                      = ∑ 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛 − 1; 𝑧 + 𝑌𝑛 ∈ 𝑑𝑣}∞
𝑛=1 lim

𝜆→0
∫  𝑒−𝜆𝑡∞

0
𝑑𝛷𝑛(𝑡) 

                      = ∑ 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛 − 1; 𝑧 + 𝑌𝑛 ∈ 𝑑𝑣}∞
𝑛=0  

                      = 𝐶(𝑧, 𝑑𝑣). 

Thus, we can write 

                 ∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡: 𝑋(𝑡) < 𝑥}
∞

0
𝑑𝑡 = 𝐴(𝑧, 𝑥)𝐸[𝜉1] 

                                     +𝐸[𝜉1] ∑ ∫ …
0

−𝛽
∞
𝑛=1 (𝑛) … ∫ ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)𝐴(|𝑣𝑛|, 𝑥)𝑛

𝑖=1
0

−𝛽
. 

By limiting as 𝑥 → ∞, we have 

             ∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡}
∞

0
𝑑𝑡 = 𝐴(𝑧, ∞)𝐸[𝜉1] 

                                     +𝐸[𝜉1] ∑ ∫ …
0

−𝛽
∞
𝑛=1 (𝑛) … ∫ ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)𝐴(|𝑣𝑛|, ∞),𝑛

𝑖=1
0

−𝛽
 

where 

                𝐴(𝑧; ∞) = 𝐴(𝑧) = ∑ 𝑃{𝑧 + 𝑌𝑖 ∈ [0, 𝛽]; 1 ≤ 𝑖 ≤ 𝑛}∞
𝑛=1 . 

On the other hand, we can write 
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       ∫ (∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡}
∞

0
𝑑𝑡)

∞

0
𝑑𝜋(𝑧) = 𝐸[𝜉1]�̅�(∗, ∞) +  𝐸[𝜉1] ∫ 𝐶̅(∗, 𝑑𝑣1)𝐴(|𝑣1|, ∞)

0

−𝛽
 

                                +𝐸[𝜉1] ∑ ∫ …
0

−𝛽
∞
𝑛=1 (𝑛) … ∫ 𝐶̅(∗, 𝑑𝑣1) ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)𝐴(|𝑣𝑛|, ∞)𝑛

𝑖=2
0

−𝛽
 

                               = 𝐸[𝜉1]�̅�(∗, ∞). 

Analogously, we have 

 ∫ (∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡; 𝑋(𝑡) < 𝑥}
∞

0
𝑑𝑡)

∞

0
𝑑𝜋(𝑧) = 𝐸[𝜉1]�̅�(∗, 𝑥)             

                              + 𝐸[𝜉1] ∫ 𝐶̅(∗, 𝑑𝑣1)𝐴(|𝑣1|, 𝑥)
0

−𝛽
 

                              +𝐸[𝜉1] ∑ ∫ …
0

−𝛽
∞
𝑛=1 (𝑛) … ∫ 𝐶̅(∗, 𝑑𝑣1) ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)𝐴(|𝑣𝑛|, 𝑥)𝑛

𝑖=2
0

−𝛽
. 

From this, we get 

           ∫ ∫ (∫ 𝑃𝑧{�̃�1𝛽 ≥ 𝑡; 𝑋(𝑡) ∈ 𝑑𝑥}
∞

0
𝑑𝑡)

∞

0
𝑑𝜋(𝑧)

𝛽

0
= 𝐸[𝜉1]�̿�𝑓(∗,∗)             

                              + 𝐸[𝜉1] ∫ 𝐶̅(∗, 𝑑𝑣1)�̅�𝑓(|𝑣1|,∗)
0

−𝛽
 

                              +𝐸[𝜉1] ∑ ∫ …
0

−𝛽
∞
𝑛=1 (𝑛) … ∫ 𝐶̅(∗, 𝑑𝑣1) ∏ 𝐶(|𝑣𝑖−1|, 𝑑𝑣𝑖)�̅�𝑓(|𝑣𝑛|,∗)𝑛

𝑖=2
0

−𝛽
 

                             = 𝐸[𝜉1]�̿�𝑓(∗,∗). 

Thus, by considering that 𝐸[𝜉1] < ∞, the proof is completed. 
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