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ABSTRACT. In this work, we define a new class of hyper complex numbers whose components are higher order
Jacobsthal numbers, and call such numbers as the higher order Jacobsthal 2°-ions. We obtain some algebraic
properties of the higher order Jacobsthal 2°-ions such as recurrence relation, Binet-like formula, generating function,
exponential generating function, Vajda’s identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity.
Morever we derive the matrix representation of the higher order Jacobsthal 2¢-ions, and so prove Cassini’s identity
as a further type.
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1. INTRODUCTION

William Rowan Hamilton observed quaternions Q in 1843, which is a 22 = 4-dimensional algebra over R. Quater-
nions are associative, non-commutative and extension of complex numbers. John Graves introduced octonions O in
1843, which is a 23 = 8-dimensional algebra over R. Octonions are non-associative, non-commutative and extension of
quaternions. In 1845, Arthur Cayley discovered these algebras again, and called such numbers as Cayley numbers. The
Cayley-Dickson doubling process or the Cayley-Dickson process involves passing from R to C, from C to Q, and from
Q to Q. The sedenions S, which is a 2* = 16-dimensional algebra over R, are produced by the subsequent doubling
process applied to O. This doubling process can be extended beyond the sedenions to produce the 2°-ions.

The real hyper complex algebra HC (or 2°-ions) is a 2°-dimensional R-linear space with basis

{eo,e1,€2,...,ex_1}.

Here ey is called the unit, and ey, e, . . ., e3s_1 are called imaginaries. Many researchers have investigated the 2°-ions in
a wide range of fields, including coding theory, computer sciences, robotics, physics, navigation and many other areas.
For more information, see [1-5,9,11, 14].

The Jacobsthal and Jacobsthal-Lucas numbers are defined by the following recurrence relation for n > 2

Jo = It + 2050,
jn = jn—l + Zjn—z’
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where Jo = 0,J; = 1,jo = 2, and jo = 1, respectively [10]. The Binet’s formulas [10] for the Jacobsthal and
Jacobsthal-Lucas numbers are given as follows:

2” _ (_l)n
Jn = 5>
3
Jn=2"+(=D" (1.1)
Also for n € Z, we can give
-1 n+1 f

Many mathematicians have generalized Jacobsthal and Jacobsthal-Lucas numbers from ancient times to the present.
The higher order Jacobsthal numbers are one of these generalizations. In [16], Ozkan and Uysal defined the higher
order Jacobsthal numbers for r > 1 integer, as

Jnr B onr _ (_1)nr

Jn = = 7
. J, 25— (=1)

(1.3)

J,
Since J,, is divisible by J,, the ratio J—"r is an integer. Hence, all higher order Jacobsthal numbers J,(f) are integer. For
r

r = 1, the higher order Jacobsthal numbers J,(,l) become the known Jacobsthal numbers J,. We give the higher order
Jacobsthal numbers J,(f) for some n and r in Table 1.

TaBLE 1. The higher order Jacobsthal numbers J for some n and r.

JOTr=1]r=2]r=3 r=4 r=5
) 0 0 0
IO 1 1 1 1
IO 5 7 17 31
JOL 3 |21 | 5T 273 993
JOL s | 85 | 455 | 4369 31775
JOL 11| 341 | 3641 | 69905 | 1016801
JO | 21 | 1365 | 29127 | 1118481 | 32537631

Many scientists have studied quaternions, octonions, and sedenions whose components are Jacobsthal numbers.
Szynal-Liana and Wtoch [18] introduced the n-th Jacobsthal quaternions QJ,, as

QJn = JneO + -]n+lel + Jn+2e2 + Jn+3e3-

In [19], Torunbalci-Aydin and Yiice obtained some properties of Jacobsthal quaternions such as Binet-like formula and
Cassini’s identity. Then, Ozkan and Uysal [16] defined the higher order Jacobsthal quaternions as

(rn — g (r) (r) (r)
QJ) =Jeo+J, jex+J, ,ex+J ses,
and presented some identities related to these quaternions.

Cimen and 1pek [6,7] defined the n-th Jacobsthal octonions QOJ, and the n-th Jacobsthal sedenions SJ,, as

0J, = 27: Juri€i,
i=0

15
SJn = Z Jusi€i,
=0

and they obtained a wide range of identities for these sequences. After, Gocen and Soykan [8] defined the Horadam
2%-ions, and investigated some properties of these sequences. They are a generalization of Jacobsthal quaternions,
octonions and sedenions.

Many researchers have recently focused on higher order numbers. For example, Ozvatan [17] introduced the higher
order Fibonacci numbers. In [13], Kizilateg and Kone have studied higher order Fibonacci quaternions. Furthermore,
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they [12] have introduced higher order Fibonacci hyper complex numbers which were defined by using the higher order
Fibonacci numbers. Then, they obtained Vajda’s identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity
by Binet-like formula. With the help of the matrix representation of the higher order Fibonacci hyper complex numbers,
they proved the another form of Cassini’s identity. In [16,20], Ozkan and Uysal defined higher order Jacobsthal and
Jacobsthal-Lucas numbers, and higher order Jacobsthal and Jacobsthal-Lucas quaternions, respectively, and gaved
some algebraic properties of these numbers. Then, Ozimamoglu [15] defined higher order Pell numbers, and higher
order Pell hyper complex numbers and presented some properties related to these hyper complex numbers.

In light of the previous recent studies, we introduce a new family of Jacobsthal 2°-ions, and give their properties
This family is a generalization of the higher order Jacobsthal numbers J,(,r), and call such numbers as the higher order
Jacobsthal 2%-ions HCJ”. We obtain recurrence relation, Binet-like formula, generating function, exponential gener-
ating function, Vajda’s identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity for HCJ. We define
two new matrices T and J. By these matrices, we find a matrix whose entries are higher order Jacobsthal 2*-ions
and generate the Cassini’s identity.

2. HIGHER ORDER JACOBSTHAL 2°-IONS

In this part, we define the higher order Jacobsthal 2°-ions and obtain several other new identities for them. Through-
out this paper, we take
2-1
2= Z 2e; = ey +2'er +2% ey + -+ 2 Wy,
i=0
2°-1
(-1 = Z(—l)"'ei =eg+(=1)Ver + (=D ez + -+ (=D Vep_4.
i=0

Definition 2.1. The higher order Jacobsthal hyper complex numbers IHICJ,(f) (or higher order Jacobsthal 2°-ions) are
defined by

2°-1
HCJD = > J0e = JDeo + U en + I er + -+ I, exny,
i=0

where J,(,r) is the n-th higher order Jacobsthal number.

Now we can present some special situations of HCJ{” in Definition 2.1 as follows:

(1) For s = 0, we have the known higher order Jacobsthal numbers J,(f) [16].
(2) For s = 1, we have the higher order Jacobsthal complex numbers CJ,(Z).
(3) For s = 2, we have the higher order Jacobsthal quaternions Q],(,r) [16], [19].
(4) For s = 3, we have the higher order Jacobsthal octonions (O)J,(f).
(5) For s = 4, we have the higher order Jacobsthal sedenions SJ,(f).
(6) For s = 0 and r = 1, we have the known Jacobsthal numbers J, [10].
(7) For s = 1 and r = 1, we have the Jacobsthal complex numbers CJ,,.
(8) For s =2 and r = 1, we have the Jacobsthal quaternions QJ, [18].
(9) For s = 3 and r = 1, we have the Jacobsthal octonions QJ,, [6].
(10) For s = 4 and r = 1, we have the Jacobsthal sedenions SJ, [7].

The conjugate of the higher order Jacobsthal 2°-ions HCJ is
201

(HCID) = JVeq— > I e = JDey— IV e = = IV, _exa. 2.1)

n+i
i=1

Proposition 2.2. For the higher order Jacobsthal 2°-ions HCJ,Y) , we have

HCJY + (HCID) =24,
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Proof. From Definition 2.1 and (2.1), we obtain

HCJ + (HCJf,r))* = [J,(f)eo +J0 ey + -+ lezs_l] + [J,(Z’)eo ~J" ey~ - Jf;)z.v_lezs-l]

n+25—
= J,(f)eo + J,(f)eo

=2J"ey.

Theorem 2.3. The Binet-like formula for the higher order Jacobsthal 2°-ions HCJf,r) is

22— (=1)"(=D)
HCj»W =22~ 7 * 7
n 2r _ (=D
Proof. From Definition 2.1, we get
HCJ = JDey+ I ex + 7 e+ -+ 07 exy

and by using the equation (1.3), we obtain

onr _ (_l)nr 2(n+1)r _ (_l)(n+1)r 2(n+2)r _ (_1)(n+2)r
HCJ® = .
= [2’—(—1)’] ’ [ 27— (-1y ' y—cny |77
2(n+2“—1)r _ (_1)(n+2"—1)r
1 s
= 2r_—(_1)r [an (e() + 2’e1 + 22r€2 +oee+ 2(2 71)r82s_1)]
1 N
Ty [=(=1)" (eo + (~1)ex + (=))¥er + -+ (1) Vep )]
_ 27!7"2\_ (_I)YLV(iT)
25— (=1)

Corollary 2.4. For some special values s, by Theorem 2.3 the Binet-like formulas of HCJ,&I) are given as follows:

(i) For s =1, we obtain the Binet-like formula for the Jacobsthal complex numbers as

272 — (-=1)"(=1)
o (3)( )

where 2 = Y\ 2ie; and (=1) = 1, (~1)e;.
(i) For s = 2, we obtain the Binet-like formula for the Jacobsthal quaternions as

(Jacobsthal 2! - ions),

22 - (-1)'=D
3

where 2 = Y3 2ie; and (—1) = Y3 (~1)e;.
(iii) For s = 3, we obtain the Binet-like formula for the Jacobsthal octonions as

(Jacobsthal 22 - ions),

Q-In =

21 — (=1 (=1)
3

where 2 = 31 2ie; and (=1) = £ (- 1)'e;.
(iv) For s = 4, we obtain the Binet-like formula for the Jacobsthal sedenions as

oJ, = (Jacobsthal 2° — ions),

22— (=1y'(=1)
Sln - 3

where 2 = N2 2'e; and - = T2~

(Jacobsthal 2* — ions),
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(v) For s € Z*, we obtain the Binet-like formula for the Jacobsthal 2*-ions as

27 — (=1)"(=1)

HCJP =
" 3

(Jacobsthal 2° — ions),

where 2 = Y25 2ie; and (< 1) = Y25 (= 1)e;.
Theorem 2.5. For n > 1, we have the following recurrence relation.
HCJ")| = j,HCJY - (-2)HCJ? .
Proof. From Binet-like formula in Theorem 2.3, we get

(n+1)rimy _ (_ (n+l)r/_-\
ey 22— (D ED
n+l 2r_(_l)r

! (204173 = 271y D) + (271" D) - (<) D)

Ty -y

_nr ; nry 1\ 1) a1y 1\ D1
=2 [2)‘_(_1)r(2 2-(-)"(-1)) +2r_(_1)r[2( D"(=1) = (=" (=D)]
_ A (r) 1 Fe_ N1y _ (_1\@+Dr 1y

= YHCIY + 5 5 [ D7D - () ED)

=[2" + (-1)]HCJY — (=1)'HCJ" + |2 =1y (=1) = (=)= 1))

2 —(=1)

and by using the equation (1.1), we derive

HCJ = JECHY + 5 [ D272 D ED + 271D = (<D D)

. (r) _(_1\Hnry Fe_ 1\ (1)
= j,HCJ! +—2r_(_1)r[ (1272 + 2(=1)" (1)
— (r) (_2)r _Anr—roy 1\ 1N

jHCJC +—2r_(_1)r[ 272+ (1) (=)

2(n—1)r’27 _ (_1)(n—1)r(’__l\)

_ ") _(_ny

JHCID = (-2) [ iy

_ . r r (r)
= jHCJ” - (=2)'HCJ",.

Theorem 2.6. The generating function for the higher order Jacobsthal 2°-ions HCJ,(f) is

[E— (’—T)] - [(—1)6— 2r(fT)] x
(27 = (=11[1 = jrx + (=2)'x%]

HCJ" (x) =

Proof. Let

HCJP(x) = ) HCJOx"
n=0
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be the generating function of HCJ{". From Binet-like formula of HCJ” in Theorem 2.3, we have

8 o 1973 1y (T
HCJP(0) = Y HCIDY = ) [#] v
n=0 n=0

1 N NI~y N FoNT 7 1
= 2,_—(_1),{20 x) 2—%«—1) ) <—1>]

~ 2 1 -1 1
Tl = 1=27x| |27 == ||1=(=1yx

2 (=1)2x - (=) +2"(=D)x
@@ = (=D (1 =2x) (1 = (=1)x)

and by using the equation (1.1), we obtain
[2- D] - [~2-2(¢D)]x
[27 = (=111 = jrx + (=2 22]

HCJ" (x) =
O

Corollary 2.7. For some special values s, by Theorem 2.6 the generating functions of HCJ,SI) (x) are given as follows:

(1) For s =1, we obtain the generating function for the Jacobsthal complex numbers as

xey + eq

CJ,(x) = 7 (Jacobsthal 2" — ions).

—x—2x2
(i) For s = 2, we obtain the generating function for the Jacobsthal quaternions as
xeg +e1+ (1 +2x)ey + (3 + 2x)es
QJ(x) = :
1—x-2x
(iii) For s = 3, we obtain the generating function for the Jacobsthal octonions as
xep + 217:1 (J,' + 2Ji_1x) €;
1—x-2x2
(iv) For s = 4, we obtain the generating function for the Jacobsthal sedenions as
xey + 211:51 Ji+2Ji-1x) e;
1 —x—2x2
(v) For s € Z*, we obtain the generating function for the Jacobsthal 2°-ions as
xep + 212;71 (Ji + 2]i_1x) e;
1 —x—2x2

(Jacobsthal 2* — ions).

OJ,(x) = (Jacobsthal 2° — ions).

ST (x) = (Jacobsthal 24— ions).

HCJ " (x) = (Jacobsthal 2° — ions).

Theorem 2.8. Forn € N and m € Z*, the generating function for the higher order Jacobsthal 2°-ions HCJ,(,?,,, is
HCJ - (-2)'HCJ" x
1— jox+ (=222

HCJY, (0 = ) T HCY, " =
n=0

Proof. From Binet-like formula in Theorem 2.3, we have
s 2(n+m)r§_ -1 (n+m)r j
e=y [ DD
n=0

HCJ,(0 = > HCIY,

— »2’—(—1)’
1 N r o \nAmMIy N roan mri_ 19
=2,_—(_1),;(2 x)"2 2—;«—1”) (-1) (—1)]
~ 1 [ 272 (=1)y(=1)
T (= |[1=2rx 1—(=1yx
1 [2m 2= 221y x— (D)D) + (1 (-1D)2'x
2 —(=1r| (1-270)(1 = (-1)x)
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and by using the equation (1.1), we derive
1 (2"’”"2’\ — (_l)mr(/_T)) — (_ l)rzrx (Zml’*r’i — (_l)mrfr(j))

HCJ) (x) =
e 2 — (-1

HCJY — (=2yHCJ? x
L= x4 (=22

Theorem 2.9. The exponential generating function for the higher order Jacobsthal 2°-ions H(CJ,Y) is

a n 2'x’2‘_ e(—l)”x(:T)
HCJOZ =2 2% )
; " n! 2r —(=1)

Proof. By using Binet-like formula of HCJ'” in Theorem 2.3, we find that
© X © anE_ (_1)nr(’_—1\) K
HCJ"OZ = 2= 7

1 o (270"~ o (1) %) —
2r—(—1)r[§ n! 2_; n! =D

ezfx’z‘_ e(—l)fx(_"l‘)
2r — (_l)r

3. SoMmE IDENTITIES FOR HIGHER ORDER JACOBSTHAL 2°-10NS
In this part, we present some identities for higher order Jacobsthal 2°-ions.
Theorem 3.1. (Vajda’s Identity) For any integers n,m and k, we get
Cwegopnye - S 2MED2 - CDM2ED]
n n+mtk 2 —(=1)
Proof. From Binet-like formula for the higher order Jacobsthal 2°-ions in Theorem 2.3, we get

HCJ),HCJ?) —HCJPHCI?

HCJY HCJO

n+m n+k

n+m+k

_[20mr2 — (oD ][ 204972 - (D™D ][22 = (1= D) | [ 200D — (1T
- 2r —(=1)y 2r —(=1) 2r —(=1) 20— (=1)
— 1 _Atmyry _\(n+krar 1N _ (_1\ormra(ntkri_ 13y nre__1\(n+m+k)ra_ 13 1\ (ntmtk)r 139 |

—[2’—(—1)’]2[ 2 -1 2(-1)-(-1) 2 =D2+2"(-1) 2(-1)+(-1)"2 ( 1)2]
_ 2" (=)™ mr 155YARR mrakr; 1\ M+ 13 (m+k)yr; 13\~ |
= —— | -2""(-1D)"2(-1) = (- 1)"2"(-1)2 + (-1 2(-1)+2 -1)2

[2r—(—1>r]2[ (=1F2(=1) = (=129 (=12 + (=1)"™O2(=T) + 20 (=172

(_2)nr kray_ 1\ (Hmr mr kri 1\~ (Amr mr

=T D@ - ()™ + 2P (CT2 @ — (-1

oy D D@ - )M+ 2R - 1)
G - (- 202 - (-1)2(-D)]

[2r - (-1
and by using the equation (1.3), we find that

® » O 70 (=273 [2(=1)2 = (- 1)}"2(-=1)]
HCJ,},HCJ,, —HCJ,’HCJ,”) . = 2 —(=1) '
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Proposition 3.2. Forn € Z,r € Z* we have

J(r) B (_l)nr+1J£lr)
= o .
Proof. By using (1.3) and (1.2), we can easily obtain

J(r) _ ﬁ _ (_1)11r+1Jnr _ (_1)nr+1Jr(lr)
-n J, 2nrJr onr :

Now, from the Vajda’s identity, we provide the following special situations:

Corollary 3.3. (Catalan’s Identity) Let n,k € Z" be such that n > k. Then, the Catalan’s identity for the higher order
for Jacobsthal 2°-ions is

2 (=20 [20 (=12 - (-1)2(= D)
= 2r — (-1 ) '

HCJ? HCJ), - (HCJP)
Proof. For m = —k in Theorem 3.1, we have
=2y |29 (=12 - (-1 2(=1)]
<1y

(r) (r) 7\2 _
HCJ HCJY), - (HCJP) =

and by using Proposition 3.2, we find that
s 2 2 12 - (D2 D)

(r) () r
HCJ HCJ?), - (HCJD)

2}’ _ (_l)r
_(_2)(n—k)rjlif) [2kr(’_—1\)E_ (_1)kr§(j)]
- 27— (-1y ‘
i
Corollary 3.4. (Cassini’s Identity) For n € Z*, then we get
~(=2)" =V [2(=1)2 - (1) 2(=D)]
" " _ "y =
HCJ? HCJ), - (HCJP) = T :
Proof. For k = 1 in Corollary 3.3, we have
—(=2)m g [27 (=12 = (-1)2(=1)]
() n _ "\ _ 1
HCJ? HCJ), - (HCJP) = T Iy
and by using the equation (1.3), we derive
~(=2)" V[ (=12 - (1) 2(=D)]
" " _ "y =
HCJ? HCJ), - (HCJP) = T :
mi

Corollary 3.5. (d’Ocagne’s Identity) Let n € N, t € Z* such that t > n + 1. Then, we have
(_z)nr [2(Z—n)r(’_—1\)’27_ (_1)(I—lz)r’2\(’_—1\)j|

(r) (r) r (N _
HCJ” HCJ,” - HCJPHCT,?, = Oy

Proof. Form = 1,k =t —nin Theorem 3.1, we get
(_z)nrjir) [Z(Z—n)r(:l\)a_ (_1)(z—n)r§(:1\)]
2 —(=1)

() (r) (r) (n _
HCJ" HCJ —- HCJPHCIY, =

and by using the equation (1.3), we obtain

” ” " ” (_z)nr [2(1_’1)’(/_—1\)/2\_ (_1)(t—lz)r’2\(’__1\)j|
HCJ? HCJ - HCJPHCIY, = Oy :
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4. A MATRIX REPRESENTATION FOR HIGHER ORDER JACOBSTHAL 2°-IONS

In this section of our paper, we generate the matrix representation of the higher order Jacobsthal 2°-ions. We define

two matrices T and J as
i —(=2) HcJ HCJ?
T = [] r } and J© = [ 0 n | “.D
10 HC/? HCJ

where j, is the Jacobsthal-Lucas number. Considering our consequence, we now present the following theorem.

Theorem 4.1. For n € N, we have
(1) g = HCJ2, HCLD|
HCJ,  HCJY

Proof. We prove the theorem by the induction method on n. For n = 0, the equality holds. Suppose that the hypothesis
is true for n = i. That is,

: (r) (r)
(1) 4 = [HC]’J% HCJ"&%]- “2)
HCJY, HCJ!
For n = i + 1, from the equations (4.1) and (4.2), we get
(T(r))"“ JO = ® (T<r))i Jo
_[,-, —<—2>’] [H@ffié HCJEPI}
= ) )
I 0 [lHCJY HCJ
[ jHCJY - (=2yHCJ?  jHCJ" —(—2)’HCJ§’)}

i+2 i+1 i+1

HCJ" HCJ?

i+2 i+1

and by using Theorem 2.5, we find that

; (r) (r)
HC"H—Z HCJHI
Hence, the proof is completed. O

In the following corollary, we also derive Cassini’s identity for higher order Jacobsthal 2°-ions by using the matrices
mentioned above.

Corollary 4.2. Forn € Z*, then we have
r T r 2 n—1)r T r »\2
HCJY) HCJ?, — (HCJP) = (=) [HCJQ 'HCJ - (HCJ)) ]

Proof. By using (4.1) and Theorem 4.1, we get

jr =2y EC)Y HCJP| _[HCJY, HCI
1 0 ) | = ) GHE (4.3)
HCJ” HCJ)| ™ |HCJY HCIY
If we take the determinant on both sides of (4.3), then we obtain
) % M? _ ~yr % ) )2
HCJY) HCJD, — (HCIP) = (-2)"" [H©12 HCJ - (HCJ )]
O

5. CoONCLUSIONS

In this study, we introduce and investigate higher order Jacobsthal 2°-ions, which are defined by higher order Ja-
cobsthal numbers. Then, we generate numerous structural features of these higher order Jacobsthal 2°-ions, including
recurrence relation, the Binet-like formula, the generating function, and the exponential generating function. Then,
we obtain Vajda’s identity, Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity by using the Binet-like for-
mula. Finally, we demonstrate as a type Cassini’s identity by using matrix representation of the higher order Jacobsthal
2°-ions.
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