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Abstract. In this work, we define a new class of hyper complex numbers whose components are higher order
Jacobsthal numbers, and call such numbers as the higher order Jacobsthal 2s-ions. We obtain some algebraic
properties of the higher order Jacobsthal 2s-ions such as recurrence relation, Binet-like formula, generating function,
exponential generating function, Vajda’s identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity.
Morever we derive the matrix representation of the higher order Jacobsthal 2s-ions, and so prove Cassini’s identity
as a further type.
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1. Introduction

William Rowan Hamilton observed quaternions Q in 1843, which is a 22 = 4-dimensional algebra over R. Quater-
nions are associative, non-commutative and extension of complex numbers. John Graves introduced octonions O in
1843, which is a 23 = 8-dimensional algebra over R. Octonions are non-associative, non-commutative and extension of
quaternions. In 1845, Arthur Cayley discovered these algebras again, and called such numbers as Cayley numbers. The
Cayley-Dickson doubling process or the Cayley-Dickson process involves passing from R to C, from C to Q, and from
Q to O. The sedenions S, which is a 24 = 16-dimensional algebra over R, are produced by the subsequent doubling
process applied to O. This doubling process can be extended beyond the sedenions to produce the 2s-ions.

The real hyper complex algebra HC (or 2s-ions) is a 2s-dimensional R-linear space with basis

{e0, e1, e2, . . . , e2s−1} .

Here e0 is called the unit, and e1, e2, . . . , e2s−1 are called imaginaries. Many researchers have investigated the 2s-ions in
a wide range of fields, including coding theory, computer sciences, robotics, physics, navigation and many other areas.
For more information, see [1–5, 9, 11, 14].

The Jacobsthal and Jacobsthal-Lucas numbers are defined by the following recurrence relation for n ≥ 2

Jn = Jn−1 + 2Jn−2,

jn = jn−1 + 2 jn−2,
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where J0 = 0, J1 = 1, j0 = 2, and j0 = 1, respectively [10]. The Binet’s formulas [10] for the Jacobsthal and
Jacobsthal-Lucas numbers are given as follows:

Jn =
2n − (−1)n

3
,

jn = 2n + (−1)n. (1.1)

Also for n ∈ Z, we can give

J−n =
(−1)n+1Jn

2n . (1.2)

Many mathematicians have generalized Jacobsthal and Jacobsthal-Lucas numbers from ancient times to the present.
The higher order Jacobsthal numbers are one of these generalizations. In [16], Özkan and Uysal defined the higher
order Jacobsthal numbers for r ≥ 1 integer, as

J(r)
n =

Jnr

Jr
=

2nr − (−1)nr

2r − (−1)r . (1.3)

Since Jnr is divisible by Jr, the ratio
Jnr

Jr
is an integer. Hence, all higher order Jacobsthal numbers J(r)

n are integer. For

r = 1, the higher order Jacobsthal numbers J(1)
n become the known Jacobsthal numbers Jn. We give the higher order

Jacobsthal numbers J(r)
n for some n and r in Table 1.

Table 1. The higher order Jacobsthal numbers J(r)
n for some n and r.

J(r)
n r = 1 r = 2 r = 3 r = 4 r = 5

J(r)
0 0 0 0 0 0

J(r)
1 1 1 1 1 1

J(r)
2 1 5 7 17 31

J(r)
3 3 21 57 273 993

J(r)
4 5 85 455 4369 31775

J(r)
5 11 341 3641 69905 1016801

J(r)
6 21 1365 29127 1118481 32537631

Many scientists have studied quaternions, octonions, and sedenions whose components are Jacobsthal numbers.
Szynal-Liana and Włoch [18] introduced the n-th Jacobsthal quaternions QJn as

QJn = Jne0 + Jn+1e1 + Jn+2e2 + Jn+3e3.

In [19], Torunbalcı-Aydın and Yüce obtained some properties of Jacobsthal quaternions such as Binet-like formula and
Cassini’s identity. Then, Özkan and Uysal [16] defined the higher order Jacobsthal quaternions as

QJ(r)
n = J(r)

n e0 + J(r)
n+1e1 + J(r)

n+2e2 + J(r)
n+3e3,

and presented some identities related to these quaternions.
Çimen and İpek [6, 7] defined the n-th Jacobsthal octonions OJn and the n-th Jacobsthal sedenions SJn as

OJn =

7∑
i=0

Jn+iei,

SJn =

15∑
i=0

Jn+iei,

and they obtained a wide range of identities for these sequences. After, Göcen and Soykan [8] defined the Horadam
2s-ions, and investigated some properties of these sequences. They are a generalization of Jacobsthal quaternions,
octonions and sedenions.

Many researchers have recently focused on higher order numbers. For example, Özvatan [17] introduced the higher
order Fibonacci numbers. In [13], Kızılateş and Kone have studied higher order Fibonacci quaternions. Furthermore,
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they [12] have introduced higher order Fibonacci hyper complex numbers which were defined by using the higher order
Fibonacci numbers. Then, they obtained Vajda’s identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity
by Binet-like formula. With the help of the matrix representation of the higher order Fibonacci hyper complex numbers,
they proved the another form of Cassini’s identity. In [16, 20], Özkan and Uysal defined higher order Jacobsthal and
Jacobsthal-Lucas numbers, and higher order Jacobsthal and Jacobsthal-Lucas quaternions, respectively, and gaved
some algebraic properties of these numbers. Then, Özimamoğlu [15] defined higher order Pell numbers, and higher
order Pell hyper complex numbers and presented some properties related to these hyper complex numbers.

In light of the previous recent studies, we introduce a new family of Jacobsthal 2s-ions, and give their properties
This family is a generalization of the higher order Jacobsthal numbers J(r)

n , and call such numbers as the higher order
Jacobsthal 2s-ions HCJ(r)

n . We obtain recurrence relation, Binet-like formula, generating function, exponential gener-
ating function, Vajda’s identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity for HCJ(r)

n . We define
two new matrices T(r) and J (r). By these matrices, we find a matrix whose entries are higher order Jacobsthal 2s-ions
and generate the Cassini’s identity.

2. Higher order Jacobsthal 2s-ions

In this part, we define the higher order Jacobsthal 2s-ions and obtain several other new identities for them. Through-
out this paper, we take

2̂ =
2s−1∑
i=0

2irei = e0 + 2re1 + 22re2 + · · · + 2(2s−1)re2s−1,

(̂−1) =
2s−1∑
i=0

(−1)irei = e0 + (−1)re1 + (−1)2re2 + · · · + (−1)(2s−1)re2s−1.

Definition 2.1. The higher order Jacobsthal hyper complex numbers HCJ(r)
n (or higher order Jacobsthal 2s-ions) are

defined by

HCJ(r)
n =

2s−1∑
i=0

J(r)
n+iei = J(r)

n e0 + J(r)
n+1e1 + J(r)

n+2e2 + · · · + J(r)
n+2s−1e2s−1,

where J(r)
n is the n-th higher order Jacobsthal number.

Now we can present some special situations of HCJ(r)
n in Definition 2.1 as follows:

(1) For s = 0, we have the known higher order Jacobsthal numbers J(r)
n [16].

(2) For s = 1, we have the higher order Jacobsthal complex numbers CJ(r)
n .

(3) For s = 2, we have the higher order Jacobsthal quaternions QJ(r)
n [16], [19] .

(4) For s = 3, we have the higher order Jacobsthal octonions OJ(r)
n .

(5) For s = 4, we have the higher order Jacobsthal sedenions SJ(r)
n .

(6) For s = 0 and r = 1, we have the known Jacobsthal numbers Jn [10].
(7) For s = 1 and r = 1, we have the Jacobsthal complex numbers CJn.
(8) For s = 2 and r = 1, we have the Jacobsthal quaternions QJn [18].
(9) For s = 3 and r = 1, we have the Jacobsthal octonions OJn [6].

(10) For s = 4 and r = 1, we have the Jacobsthal sedenions SJn [7].

The conjugate of the higher order Jacobsthal 2s-ions HCJ(r)
n is

(
HCJ(r)

n

)∗
= J(r)

n e0 −

2s−1∑
i=1

J(r)
n+iei = J(r)

n e0 − J(r)
n+1e1 − · · · − J(r)

n+2s−1e2s−1. (2.1)

Proposition 2.2. For the higher order Jacobsthal 2s-ions HCJ(r)
n , we have

HCJ(r)
n +
(
HCJ(r)

n

)∗
= 2J(r)

n .
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Proof. From Definition 2.1 and (2.1), we obtain

HCJ(r)
n +
(
HCJ(r)

n

)∗
=
[
J(r)

n e0 + J(r)
n+1e1 + · · · + J(r)

n+2s−1e2s−1
]
+
[
J(r)

n e0 − J(r)
n+1e1 − · · · − J(r)

n+2s−1e2s−1
]

= J(r)
n e0 + J(r)

n e0

= 2J(r)
n e0.

□

Theorem 2.3. The Binet-like formula for the higher order Jacobsthal 2s-ions HCJ(r)
n is

HCJ(r)
n =

2nr2̂ − (−1)nr (̂−1)
2r − (−1)r .

Proof. From Definition 2.1, we get

HCJ(r)
n = J(r)

n e0 + J(r)
n+1e1 + J(r)

n+2e2 + · · · + J(r)
n+2s−1e2s−1

and by using the equation (1.3), we obtain

HCJ(r)
n =

[
2nr − (−1)nr

2r − (−1)r

]
e0 +

[
2(n+1)r − (−1)(n+1)r

2r − (−1)r

]
e1 +

[
2(n+2)r − (−1)(n+2)r

2r − (−1)r

]
e2 + · · ·

+

[
2(n+2s−1)r − (−1)(n+2s−1)r

2r − (−1)r

]
e2s−1

=
1

2r − (−1)r

[
2nr
(
e0 + 2re1 + 22re2 + · · · + 2(2s−1)re2s−1

)]
+

1
2r − (−1)r

[
−(−1)nr

(
e0 + (−1)re1 + (−1)2re2 + · · · + (−1)(2s−1)re2s−1

)]
=

2nr2̂ − (−1)nr (̂−1)
2r − (−1)r .

□

Corollary 2.4. For some special values s, by Theorem 2.3 the Binet-like formulas of HCJ(1)
n are given as follows:

(i) For s = 1, we obtain the Binet-like formula for the Jacobsthal complex numbers as

CJn =
2n2̂ − (−1)n (̂−1)

3
(Jacobsthal 21 − ions),

where 2̂ =
∑1

i=0 2iei and (̂−1) =
∑1

i=0(−1)iei.
(ii) For s = 2, we obtain the Binet-like formula for the Jacobsthal quaternions as

QJn =
2n2̂ − (−1)n (̂−1)

3
(Jacobsthal 22 − ions),

where 2̂ =
∑3

i=0 2iei and (̂−1) =
∑3

i=0(−1)iei.
(iii) For s = 3, we obtain the Binet-like formula for the Jacobsthal octonions as

OJn =
2n2̂ − (−1)n (̂−1)

3
(Jacobsthal 23 − ions),

where 2̂ =
∑7

i=0 2iei and (̂−1) =
∑7

i=0(−1)iei.
(iv) For s = 4, we obtain the Binet-like formula for the Jacobsthal sedenions as

SJn =
2n2̂ − (−1)n (̂−1)

3
(Jacobsthal 24 − ions),

where 2̂ =
∑15

i=0 2iei and (̂−1) =
∑15

i=0(−1)iei.
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(v) For s ∈ Z+, we obtain the Binet-like formula for the Jacobsthal 2s-ions as

HCJ(1)
n =

2n2̂ − (−1)n (̂−1)
3

(Jacobsthal 2s − ions),

where 2̂ =
∑2s−1

i=0 2iei and (̂−1) =
∑2s−1

i=0 (−1)iei.

Theorem 2.5. For n ≥ 1, we have the following recurrence relation.

HCJ(r)
n+1 = jrHCJ(r)

n − (−2)rHCJ(r)
n−1.

Proof. From Binet-like formula in Theorem 2.3, we get

HCJ(r)
n+1 =

2(n+1)r2̂ − (−1)(n+1)r (̂−1)
2r − (−1)r

=
1

2r − (−1)r

[(
2(n+1)r2̂ − 2r(−1)nr (̂−1)

)
+
(
2r(−1)nr (̂−1) − (−1)(n+1)r (̂−1)

)]
= 2r
[

1
2r − (−1)r

(
2nr2̂ − (−1)nr (̂−1)

)]
+

1
2r − (−1)r

[
2r(−1)nr (̂−1) − (−1)(n+1)r (̂−1)

]
= 2rHCJ(r)

n +
1

2r − (−1)r

[
2r(−1)nr (̂−1) − (−1)(n+1)r (̂−1)

]
=
[
2r + (−1)r]HCJ(r)

n − (−1)rHCJ(r)
n +

1
2r − (−1)r

[
2r(−1)nr (̂−1) − (−1)(n+1)r (̂−1)

]

and by using the equation (1.1), we derive

HCJ(r)
n+1 = jrHCJ(r)

n +
1

2r − (−1)r

[
−(−1)r2nr2̂ + (−1)(n+1)r (̂−1) + 2r(−1)nr (̂−1) − (−1)(n+1)r (̂−1)

]
= jrHCJ(r)

n +
1

2r − (−1)r

[
−(−1)r2nr2̂ + 2r(−1)nr (̂−1)

]
= jrHCJ(r)

n +
(−2)r

2r − (−1)r

[
−2nr−r2̂ + (−1)nr−r (̂−1)

]
= jrHCJ(r)

n − (−2)r

2(n−1)r2̂ − (−1)(n−1)r (̂−1)
2r − (−1)r


= jrHCJ(r)

n − (−2)rHCJ(r)
n−1.

□

Theorem 2.6. The generating function for the higher order Jacobsthal 2s-ions HCJ(r)
n is

HCJ(r)
n (x) =

[̂
2 − (̂−1)

]
−
[
(−1)r2̂ − 2r (̂−1)

]
x

[2r − (−1)r]
[
1 − jr x + (−2)r x2] .

Proof. Let

HCJ(r)
n (x) =

∞∑
n=0

HCJ(r)
n xn
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be the generating function of HCJ(r)
n . From Binet-like formula of HCJ(r)

n in Theorem 2.3, we have

HCJ(r)
n (x) =

∞∑
n=0

HCJ(r)
n xn =

∞∑
n=0

2nr2̂ − (−1)nr (̂−1)
2r − (−1)r

 xn

=
1

2r − (−1)r

 ∞∑
n=0

(2r x)n2̂ −
∞∑

n=0

((−1)r x)n (̂−1)


=

 2̂
2r − (−1)r

 [ 1
1 − 2r x

]
−

 (̂−1)
2r − (−1)r

 [ 1
1 − (−1)r x

]
=

2̂ − (−1)r2̂x − (̂−1) + 2r (̂−1)x
(2r − (−1)r) (1 − 2r x) (1 − (−1)r x)

and by using the equation (1.1), we obtain

HCJ(r)
n (x) =

[̂
2 − (̂−1)

]
−
[
(−1)r2̂ − 2r (̂−1)

]
x

[2r − (−1)r]
[
1 − jr x + (−2)r x2] .

□

Corollary 2.7. For some special values s, by Theorem 2.6 the generating functions of HCJ(1)
n (x) are given as follows:

(i) For s = 1, we obtain the generating function for the Jacobsthal complex numbers as

CJn(x) =
xe0 + e1

1 − x − 2x2 (Jacobsthal 21 − ions).

(ii) For s = 2, we obtain the generating function for the Jacobsthal quaternions as

QJn(x) =
xe0 + e1 + (1 + 2x)e2 + (3 + 2x)e3

1 − x − 2x2 (Jacobsthal 22 − ions).

(iii) For s = 3, we obtain the generating function for the Jacobsthal octonions as

OJn(x) =
xe0 +

∑7
i=1 (Ji + 2Ji−1x) ei

1 − x − 2x2 (Jacobsthal 23 − ions).

(iv) For s = 4, we obtain the generating function for the Jacobsthal sedenions as

SJn(x) =
xe0 +

∑15
i=1 (Ji + 2Ji−1x) ei

1 − x − 2x2 (Jacobsthal 24 − ions).

(v) For s ∈ Z+, we obtain the generating function for the Jacobsthal 2s-ions as

HCJ(1)
n (x) =

xe0 +
∑2s−1

i=1 (Ji + 2Ji−1x) ei

1 − x − 2x2 (Jacobsthal 2s − ions).

Theorem 2.8. For n ∈ N and m ∈ Z+, the generating function for the higher order Jacobsthal 2s-ions HCJ(r)
n+m is

HCJ(r)
n+m(x) =

∞∑
n=0

HCJ(r)
n+mxn =

HCJ(r)
m − (−2)rHCJ(r)

m−1x

1 − jr x + (−2)r x2 .

Proof. From Binet-like formula in Theorem 2.3, we have

HCJ(r)
n+m(x) =

∞∑
n=0

HCJ(r)
n+mxn =

∞∑
n=0

2(n+m)r2̂ − (−1)(n+m)r (̂−1)
2r − (−1)r

 xn

=
1

2r − (−1)r

 ∞∑
n=0

(2r x)n2mr2̂ −
∞∑

n=0

((−1)r x)n (−1)mr (̂−1)


=

1
2r − (−1)r

 2mr2̂
1 − 2r x

−
(−1)mr (̂−1)
1 − (−1)r x


=

1
2r − (−1)r

2mr2̂ − 2mr2̂(−1)r x − (−1)mr (̂−1) + (−1)mr (̂−1)2r x
(1 − 2r x) (1 − (−1)r x)


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and by using the equation (1.1), we derive

HCJ(r)
n+m(x) =

1
1 − jr x + (−2)r x2


(
2mr2̂ − (−1)mr (̂−1)

)
− (−1)r2r x

(
2mr−r2̂ − (−1)mr−r (̂−1)

)
2r − (−1)r


=
HCJ(r)

m − (−2)rHCJ(r)
m−1x

1 − jr x + (−2)r x2 .

□

Theorem 2.9. The exponential generating function for the higher order Jacobsthal 2s-ions HCJ(r)
n is

∞∑
n=0

HCJ(r)
n

xn

n!
=

e2r x̂2 − e(−1)r x (̂−1)
2r − (−1)r .

Proof. By using Binet-like formula of HCJ(r)
n in Theorem 2.3, we find that

∞∑
n=0

HCJ(r)
n

xn

n!
=

∞∑
n=0

2nr2̂ − (−1)nr (̂−1)
2r − (−1)r

 xn

n!

=
1

2r − (−1)r

 ∞∑
n=0

(2r x)n

n!
2̂ −

∞∑
n=0

((−1)r x)n

n!
(̂−1)


=

e2r x̂2 − e(−1)r x (̂−1)
2r − (−1)r .

□

3. Some Identities for Higher Order Jacobsthal 2s-ions

In this part, we present some identities for higher order Jacobsthal 2s-ions.

Theorem 3.1. (Vajda’s Identity) For any integers n,m and k, we get

HCJ(r)
n+mHCJ(r)

n+k − HCJ(r)
n HCJ(r)

n+m+k =
(−2)nr J(r)

m

[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
2r − (−1)r .

Proof. From Binet-like formula for the higher order Jacobsthal 2s-ions in Theorem 2.3, we get

HCJ(r)
n+mHCJ(r)

n+k − HCJ(r)
n HCJ(r)

n+m+k

=

2(n+m)r2̂ − (−1)(n+m)r (̂−1)
2r − (−1)r

 2(n+k)r2̂ − (−1)(n+k)r (̂−1)
2r − (−1)r

 − 2nr2̂ − (−1)nr (̂−1)
2r − (−1)r

 2(n+m+k)r2̂ − (−1)(n+m+k)r (̂−1)
2r − (−1)r


=

1
[2r − (−1)r]2

[
−2(n+m)r(−1)(n+k)r2̂(̂−1) − (−1)(n+m)r2(n+k)r (̂−1)̂2 + 2nr(−1)(n+m+k)r2̂(̂−1) + (−1)nr2(n+m+k)r (̂−1)̂2

]
=

2nr(−1)nr

[2r − (−1)r]2

[
−2mr(−1)kr2̂(̂−1) − (−1)mr2kr (̂−1)̂2 + (−1)(m+k)r2̂(̂−1) + 2(m+k)r (̂−1)̂2

]
=

(−2)nr

[2r − (−1)r]2

[
−(−1)kr2̂(̂−1) (2mr − (−1)mr) + 2kr (̂−1)̂2 (2mr − (−1)mr)

]
=

(−2)nr [2mr − (−1)mr]
[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
[2r − (−1)r]2

and by using the equation (1.3), we find that

HCJ(r)
n+mHCJ(r)

n+k − HCJ(r)
n HCJ(r)

n+m+k =
(−2)nr J(r)

m

[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
2r − (−1)r .

□
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Proposition 3.2. For n ∈ Z, r ∈ Z+ we have

J(r)
−n =

(−1)nr+1J(r)
n

2nr .

Proof. By using (1.3) and (1.2), we can easily obtain

J(r)
−n =

J−nr

Jr
=

(−1)nr+1Jnr

2nr Jr
=

(−1)nr+1J(r)
n

2nr .

□

Now, from the Vajda’s identity, we provide the following special situations:

Corollary 3.3. (Catalan’s Identity) Let n, k ∈ Z+ be such that n ≥ k. Then, the Catalan’s identity for the higher order
for Jacobsthal 2s-ions is

HCJ(r)
n−kHCJ(r)

n+k −
(
HCJ(r)

n

)2
=
−(−2)(n−k)r J(r)

k

[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
2r − (−1)r .

Proof. For m = −k in Theorem 3.1, we have

HCJ(r)
n−kHCJ(r)

n+k −
(
HCJ(r)

n

)2
=

(−2)nr J(r)
−k

[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
2r − (−1)r

and by using Proposition 3.2, we find that

HCJ(r)
n−kHCJ(r)

n+k −
(
HCJ(r)

n

)2
=

2(n−k)r(−1)(n+k)r+1J(r)
k

[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
2r − (−1)r

=
−(−2)(n−k)r J(r)

k

[
2kr (̂−1)̂2 − (−1)kr2̂(̂−1)

]
2r − (−1)r .

□

Corollary 3.4. (Cassini’s Identity) For n ∈ Z+, then we get

HCJ(r)
n−1HCJ(r)

n+1 −
(
HCJ(r)

n

)2
=
−(−2)(n−1)r

[
2r (̂−1)̂2 − (−1)r2̂(̂−1)

]
2r − (−1)r .

Proof. For k = 1 in Corollary 3.3, we have

HCJ(r)
n−1HCJ(r)

n+1 −
(
HCJ(r)

n

)2
=
−(−2)(n−1)r J(r)

1

[
2r (̂−1)̂2 − (−1)r2̂(̂−1)

]
2r − (−1)r

and by using the equation (1.3), we derive

HCJ(r)
n−1HCJ(r)

n+1 −
(
HCJ(r)

n

)2
=
−(−2)(n−1)r

[
2r (̂−1)̂2 − (−1)r2̂(̂−1)

]
2r − (−1)r .

□

Corollary 3.5. (d’Ocagne’s Identity) Let n ∈ N, t ∈ Z+ such that t > n + 1. Then, we have

HCJ(r)
n+1HCJ(r)

t − HCJ(r)
n HCJ(r)

t+1 =
(−2)nr

[
2(t−n)r (̂−1)̂2 − (−1)(t−n)r2̂(̂−1)

]
2r − (−1)r .

Proof. For m = 1, k = t − n in Theorem 3.1, we get

HCJ(r)
n+1HCJ(r)

t − HCJ(r)
n HCJ(r)

t+1 =
(−2)nr J(r)

1

[
2(t−n)r (̂−1)̂2 − (−1)(t−n)r2̂(̂−1)

]
2r − (−1)r

and by using the equation (1.3), we obtain

HCJ(r)
n+1HCJ(r)

t − HCJ(r)
n HCJ(r)

t+1 =
(−2)nr

[
2(t−n)r (̂−1)̂2 − (−1)(t−n)r2̂(̂−1)

]
2r − (−1)r .

□
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4. A Matrix Representation for Higher Order Jacobsthal 2s-ions

In this section of our paper, we generate the matrix representation of the higher order Jacobsthal 2s-ions. We define
two matrices T(r) and J (r) as

T(r) =

[
jr −(−2)r

1 0

]
and J (r) =

[
HCJ(r)

2 HCJ(r)
1

HCJ(r)
1 HCJ(r)

0

]
, (4.1)

where jr is the Jacobsthal-Lucas number. Considering our consequence, we now present the following theorem.

Theorem 4.1. For n ∈ N, we have (
T(r)
)n

J (r) =

[
HCJ(r)

n+2 HCJ(r)
n+1

HCJ(r)
n+1 HCJ(r)

n

]
.

Proof. We prove the theorem by the induction method on n. For n = 0, the equality holds. Suppose that the hypothesis
is true for n = i. That is, (

T(r)
)i

J (r) =

[
HCJ(r)

i+2 HCJ(r)
i+1

HCJ(r)
i+1 HCJ(r)

i

]
. (4.2)

For n = i + 1, from the equations (4.1) and (4.2), we get(
T(r)
)i+1

J (r) = T(r)
(
T(r)
)i

J (r)

=

[
jr −(−2)r

1 0

] [
HCJ(r)

i+2 HCJ(r)
i+1

HCJ(r)
i+1 HCJ(r)

i

]
=

[
jrHCJ(r)

i+2 − (−2)rHCJ(r)
i+1 jrHCJ(r)

i+1 − (−2)rHCJ(r)
i

HCJ(r)
i+2 HCJ(r)

i+1

]
and by using Theorem 2.5, we find that (

T(r)
)i+1

J (r) =

[
HCJ(r)

i+3 HCJ(r)
i+2

HCJ(r)
i+2 HCJ(r)

i+1

]
.

Hence, the proof is completed. □

In the following corollary, we also derive Cassini’s identity for higher order Jacobsthal 2s-ions by using the matrices
mentioned above.

Corollary 4.2. For n ∈ Z+, then we have

HCJ(r)
n+1HCJ(r)

n−1 −
(
HCJ(r)

n

)2
= (−2)(n−1)r

[
HCJ(r)

2 HCJ(r)
0 −
(
HCJ(r)

1

)2]
.

Proof. By using (4.1) and Theorem 4.1, we get[
jr −(−2)r

1 0

]n−1 [
HCJ(r)

2 HCJ(r)
1

HCJ(r)
1 HCJ(r)

0

]
=

[
HCJ(r)

n+1 HCJ(r)
n

HCJ(r)
n HCJ(r)

n−1

]
. (4.3)

If we take the determinant on both sides of (4.3), then we obtain

HCJ(r)
n+1HCJ(r)

n−1 −
(
HCJ(r)

n

)2
= (−2)(n−1)r

[
HCJ(r)

2 HCJ(r)
0 −
(
HCJ(r)

1

)2]
.

□

5. Conclusions

In this study, we introduce and investigate higher order Jacobsthal 2s-ions, which are defined by higher order Ja-
cobsthal numbers. Then, we generate numerous structural features of these higher order Jacobsthal 2s-ions, including
recurrence relation, the Binet-like formula, the generating function, and the exponential generating function. Then,
we obtain Vajda’s identity, Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity by using the Binet-like for-
mula. Finally, we demonstrate as a type Cassini’s identity by using matrix representation of the higher order Jacobsthal
2s-ions.
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