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ABSTRACT 

 

Since pH neutralization processes have extremely nonlinear characteristics, controlling it might be 

difficult. Therefore, a special controller design is needed to handle the high nonlinearities of the 

process. In this study, an inverse neuro-fuzzy model-based controller (NFMBC) design is presented 

for control of a pH neutralization process (NP). Input-output (IO) data set of the process is collected 

by applying a proper excitation signal. Then, forward and inverse neuro-fuzzy models of the process 

are constructed by using this data set after a training process. In terms of design simplicity, a two-

input-one-output model structure is chosen for both neuro-fuzzy models. These forward and inverse 

neuro-fuzzy models are used in a nonlinear internal model control (NIMC) structure in order to 

provide robustness against disturbances and model mismatches. To examine the proposed controller's 

performance, simulation studies are carried out under setpoint variation and disturbance conditions. 

Additionally, the performance of the inverse NFMBC is compared to that of a fuzzy proportional 

integral derivative (FPID) controller with a 7x7 rule base. The results demonstrate that the designed 

controller provides more effective control performance for setpoint variations and also exhibits higher 

robustness against disturbances in the acid flow rate than the FPID controller.  

 

Keywords: Fuzzy Model, Inverse Controller, Adaptive Network Based Fuzzy Inference System, pH 

Neutralization Process, Internal Model Control,  

 

1. INTRODUCTION 

 

The problem of pH control is a widespread issue in sectors such as chemical processes, sewage 

treatment and wastewater management [1]. The safety and stability of the system operation directly 

depend on the performance of pH control. The aim of pH control in neutralization systems is to keep 

the pH value at a certain setpoint by regulating the neutralizing agent flow rate. However, the control 
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of pH NPs is a challenging task due to their extremely nonlinear characteristics [2]. The titration curve 

of a neutralization process, in general, is an S-shaped curve depending on both process and 

neutralization stream compositions. In some cases, process stream composition may change during the 

operation, making the control issue much more challenging [3]. Therefore, deriving an analytical 

model and also designing an effective controller are difficult tasks for pH processes.  

 

In the literature, several linear and non-linear control approaches are proposed to solve the pH control 

problem. Classical linear PID controllers can hardly ever provide an efficient control performance for 

pH control applications [4]. Therefore, one way of applying the linear PID control approach to the pH 

control problem is to use a multi-model approach by linearizing the process model at a few operating 

points [5]. For instance, Nyström has successfully implemented the multi-model control technique to a 

pH NP [6]. There are some studies successfully applying linear model predictive control approach to 

pH neutralization processes [2], [7]. Despite the fact that linear controllers are simple to design, 

adaptive control or nonlinear control methods provide better control performance than the classical 

linear control methods [5], [8]. In [2], [9], nonlinear model predictive and adaptive control structures 

are proposed for the control of pH processes. Although all of these techniques are successful, it is still 

hard to obtain an adequate model representing the pH NP in any operating condition for practical 

applications [5]. 

 

Highly nonlinear systems can be modeled and controlled using fuzzy logic since fuzzy models are 

universal approximators and fuzzy controllers have a nonlinear structure [10]. Therefore, fuzzy 

models and controllers can effectively be used for pH neutralization processes. For example, a fuzzy 

PI controller design is presented by considering the titration curve in [5]. In [11], an adaptive fuzzy PI 

control structure with an online tuning mechanism is proposed for pH control. Similarly, there are 

some fuzzy model (FM) based control approaches proposed in literature such as fuzzy model 

predictive control [12].  

 

One easy and effective way of controller design is to use an inverse model of a process as the main 

controller. But it is not an easy task to derive inverse definitions of analytical models of processes. 

However, there are various exact and approximate inversion methods for fuzzy models [13]–[16]. 

Therefore, inverse fuzzy model-based control approaches are effective alternatives to conventional 

control approaches since forward and inverse fuzzy models of nonlinear systems can be derived 

without the need for any mathematical model. Several inverse fuzzy model based control approaches 

are proposed and effectively applied to the control problem of pH processes [1], [13], [16].  

 

The adaptive network-based fuzzy inference system (ANFIS) technique described by Jang makes it 

simple to construct forward and inverse fuzzy models of nonlinear systems [17]. ANFIS approach is 

widely used in various modeling and control applications [18]. Some studies about ANFIS-based 

modeling and also control of pH processes are presented in the literature [19-21]. In this study, an 

inverse NFMBC design for a pH NP is presented. Although the inverse controllers are able to provide 

perfect control in an open loop (OL) manner, they can show poor control performance or become 

unstable in case of sudden disturbances and in the presence of noises. Therefore, an internal model 

control (IMC) structure, which is a closed loop structure, is used in this study. A proper excitation 

signal is applied to the system for modeling purposes and the input and output data are collected. 
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Then, forward and inverse ANFIS models of the process are trained by using the collected IO data set. 

These forward and inverse models are used in the IMC structure to advance the robustness of the 

control system against disturbances and model mismatches. The effectiveness of the designed inverse 

model-based controller is demonstrated through simulations under setpoint variation and disturbance 

conditions and the performance of this controller is compared to that of an FPID controller. The main 

advantage of the designed inverse NFMBC compared to the existing approaches is that it provides an 

effective performance although it uses only simple forward and inverse fuzzy models with 2 inputs 

and 1 output. 

 

This article is arranged as follows: the pH process model is presented in Section 2, the fuzzy model 

design is presented in Section 3. The inverse controller design technique is demonstrated in Section 4. 

Section 5 presents simulation studies to show the effectiveness of the constructed inverse controller. 

Finally, the conclusions are presented in Section 6. 

 
2. pH PROCESS MODEL 

 

pH neutralization is a process involving reactions between acids and bases. In this study, the 

neutralization reaction among strong acid and weak acid mixture and strong base is considered as a 

process model due to its non-linear characteristic. Figure 1 shows the NP in a continuous stirred tank 

reactor (CSTR). It is assumed that there is perfect mixing within the CSTR. Since the base 

concentration is relatively high compared to the acid concentrations, a constant liquid level is assumed 

in the CSTR. Accordingly, the model can be written as: 

 

𝑉
𝑑𝑥𝑖

𝑑𝑡
= 𝐹(𝑐𝑖 − 𝑥𝑖) + 𝑢(𝑏𝑖 − 𝑥𝑖)  for 𝑖 =1,…𝑛                                                                                     (1) 

                                                                                  

where 𝑐𝑖, 𝑏𝑖, and 𝑥𝑖 represent the total ion concentration of the species in the corresponding streams in 

Figure 1. Because of the assumption of a constant liquid level, here the constant for the volume of 

liquid inside CSTR is symbolized by V. The simulation parameters of the model given in Eqn. 1 are 

listed in Table 1. 

 

 

Figure 1. pH neutralization system. 
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Table 1. pH NP parameters. 

Symbol Process Parameters Value 

V 
Volume or the reactor  

[L] 
1  

F 
Flow rate of process stream  

[L/min] 
1  

u 
Flow rate of titrating stream  

[L/min] 
0-0.27  

𝑐𝑖 
Total ion concentration vector of process stream [Ca1 Ca2 Cb] 

 [mol/L] 
[0.001 0.001 0]  

𝑏𝑖 
Total ion concentration vector of titrating stream [Ca1 Ca2 Cb] 

[mol/L]  
[0 0 0.1] 

 

3. FUZZY MODELING of the pH PROCESS 

 

An appropriate excitation signal is used to stimulate the system at each set-point to construct the 

forward FM of the NP. The uniform random signals plus constant values are used as the excitation 

signal and the corresponding output is obtained. Then, by using this input-output data set, the neuro-

fuzzy based forward model of the system is obtained. In the data collection process, the sampling time 

is determined as 1 s, and the data is collected for 30000 seconds. The excitation signal and the 

corresponding output signal are demonstrated in Figure 2a and Figure 2b, respectively. 

 

 

Figure 2. (a) Input signal (b) system output signal. 
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A two-input one-output Takagi-Sugeno (TS) FM structure is constructed as illustrated in Figure 3 

since it provides an acceptable model approximation. The inputs of the FM are y(k-1) and u(k), and 

the output of the FM is y(k). The input of y(k-1) is expressed by 11 triangular membership functions 

(MFs), and the input of u(k) is constructed by 3 triangular MFs. Here y denotes pH value and u 

denotes titrating stream flow rate. 33 singleton MFs are used to define the output y(k). The training 

process uses the first 75% of the data and the validation process uses the remaining 25%. The rule 

base and MFs of the FM after training are represented in Table 2 and Figure 4, respectively. 

 

 

Figure 3. Input-output configuration of the fuzzy model. 

 

Table 2. Rule base of the forward FM. 

  u(k) 

   A1 A2 A3 

 

 

 

 

 

y(k-1) 

A1 2.989 3.032 0 

A2 3.163 3.718 3.837 

A3 4.244 4.387 4.493 

A4 0 5.044 5.169 

A5 0 5.582 5.886 

A6 0 5.084 6.772 

A7 0 -0.892 8.413 

A8 0 -6.014 9.889 

A9 0 4.698 9.182 

A10 0 8.399 9.467 

A11 0 9.785 10.07 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 
 

 
 
 

Akca, et al., Journal of Scientific Reports-A, Number 52, 19-34, March 2023. 
 

 
 

24 
 

 

Figure 4. Antecedent membership functions of the trained FM. 

 

The derived FM is compared with the neutralization system output for different setpoints. The forward 

FM response and the error between the system and the FM outputs are represented in Figure 5a and 

Figure 5b, respectively. The modeling performance of the derived fuzzy model is acceptable since it 

provides the root mean square error (RMSE) value of 4.8 𝑥 10−3. 



 
 
 

 
 

 
 
 

Akca, et al., Journal of Scientific Reports-A, Number 52, 19-34, March 2023. 
 

 
 

25 
 

 

Figure 5. (a) Comparison of the system and the FM outputs (b) modeling error.  

 

4. INVERSE NFMBC DESIGN  

 

The inverse FM of the pH NP is designed by using ANFIS approach. Although the inverse controllers 

are able to provide perfect control in an OL manner, they can show poor control performance or 

become unstable in case of sudden disturbances and in the presence of noises. Therefore, the inverse 

FM of the pH NP is directly used as the main controller in the IMC structure shown in Figure 9 to 

increase robustness against disturbances and model mismatches. 

 

 

Figure 6. Proposed IMC structure. 



 
 
 

 
 

 
 
 

Akca, et al., Journal of Scientific Reports-A, Number 52, 19-34, March 2023. 
 

 
 

26 
 

y(k) and y(k-1) are used as inputs and u(k) is used as the output by exchanging the IO data of the 

collected data set to derive the inverse FM of the pH NP. The IO configuration of the neuro-fuzzy 

based inverse controller is represented in Figure 6. 

 

   

Figure 7. Input-output configuration of the neuro-fuzzy based inverse controller. 

 

For inputs y(k) and y(k-1), 11 and 3 triangular MFs are used, respectively. 33 rule consequents are 

determined by using linear functions as shown in Table 3. The training process uses the first 75% of 

the data, while the validation process uses the remaining 25% of the data. The rule base and MFs of 

the trained inverse FM are represented in Table 3 and Figure 7, respectively. 

 

Figure 8. Antecedent MFs of the trained inverse FM. 
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Table 3. Rule base of the inverse FM. 

  y(k-1) 

  A1 A2 A3 

 

 
 
 
 
 
 
y(k) 

A1 [0.34 -0.31 -0.11] [-0.006 0.026 -0.17] [0 0 0] 

A2 [0.11 -0.1 0.004] [0.03 -0.02 -0.02] [0 0 0] 

A3 [0.05 -0.04 0.004] [0.14 -0.14 -0.03] [0 0 0] 

A4 [0.14 -0.14 0.006 [0.03 -0.03 -0.03] [0 0 0] 

A5 [0.07 -0.07 0.02] [0.02 -0.01 -0.02] [-0.008 -0.009 -0.001] 

A6 [-0.001 0.002 0.03] [0.009 -0.002 -0.02] [-0.01 0.02 -0.02] 

A7 [0.02 0.01 0.002] [0.005 -0.001 -0.009] [-0.002 0.003 0.007] 

A8 [0 0 0] [0.004 -0.0002 -0.01] [0.0004 0.001 0.006] 

A9 [0 0 0] [0.003 0.0008 -0.01] [0.004 -0.002 0.006] 

A10 [0 0 0] [-0.009 0.01 -0.009] [0.01 -0.01 0.006] 

A11 [0 0 0] [-0.08 0.08 0.004] [0.04 -0.04 0.002] 

 

In order to show the inverse FM validation, the output of the inverse controller is compared to the 

excitation signal in Figure 8a. The associated error signal is demonstrated in Figure 8b and the 

obtained RMSE value is 7.11 𝑥 10−5. As it is seen from Figure 8, the performance of the derived 

inverse FM is acceptable. 
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Figure 9. (a) Comparison of the excitation signal and the output of the inverse FM (b) the inversion 

error. 

 

5. SIMULATION STUDIES 

 

To demonstrate the performance of the proposed controller, simulation studies are performed under 

different setpoint and disturbance conditions. In the simulations, a FPID controller is also used for 

performance comparison. The block diagram of the FPID controller is demonstrated in Figure 10. 

 

 

Figure 10. Block diagram of the FPID controller. 
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In order to design the FPID controller, TS fuzzy inference structure is chosen and a 7x7 symmetrical 

rule base is used. Triangular MFs are chosen for the definition of input variables E and ΔE as shown 

in Figure 11. Singleton MFs are defined for the control variable U. The parameters of the FPID 

controller are determined as KE=0.015, KΔE=0.001, Ki=0.003 and Kd=0.95. 

 

Figure 11. Antecedent MFs of the FPID controller. 

 

The robustness filter in IMC structure is chosen as follows to provide a suitable control performance. 

 

𝐺𝑓(𝑧) =  
0.09516

𝑧−0.9048
                                                                                                                                (2) 

   

In comparisons, the following integral square error (ISE) and integral absolute error (IAE) 

performance criteria are used.  

 

ISE: ∫ 𝑒2 (𝑡)𝑑𝑡                                                                                             (3) 

 

IAE: ∫|𝑒(𝑡)|𝑑𝑡                                                                                               (4)         

 

The controller performances under setpoint variation are demonstrated in Figure 12 and performance 

results are compared in Table 4. 
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Figure 12. a) Comparison of the system responses under the setpoint variation b) control signals. 

 

Table 4. Performance comparison under the setpoint variation. 

Controller IAE ISE 

FPID  1.392 1.072 

Inverse Controller 0.4303 0.3601 

 

As seen in Figure 12 and Table 4, the proposed inverse controller is able to provide significant control 

performance at all setpoint changes. On the other side, the FPID controller is able to provide 

satisfactory control performance only at certain pH values where the system gain is relatively low. For 

setpoint values where the system gain is high, the FPID controller gives oscillating system responses. 

In order to evaluate the control performances under disturbance conditions, change in acid flow rate is 

considered. The reference signal, applied disturbances, corresponding system responses, and control 

signals are represented in Figure 13. The performance criteria values are given in Table 5. As it is seen 

from Figure 13 and Table 5, the proposed controller exhibits superior robustness performance under 

disturbance conditions compared to the FPID controller. 
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Figure 13. a) Comparison of the system responses under the input disturbance condition b) control 

signals. 

 

Table 5. Performance comparison under the disturbance condition. 

Controller IAE ISE 

FPID  1.472 1.105 

Inverse Controller 0.7168 0.5339 

 

The pH NP is a highly nonlinear system depending on the nonlinear characteristic of its titration 

curve. The process has different process gains at different pH interval values. The process has lower 

gains for the pH intervals of [3-6] and [9-12] whereas it has higher gains for the pH intervals of [6-9]. 

Since the inverse controller is the inverse definition of the fuzzy model of the pH NP, it inherently 

possesses the process gain information and exhibits significant control performance for different pH 

levels. However, the conventional FPID controller with the symmetrical rule base is not able to handle 

these system gain variations as much as the inverse controller. Additionally, since the inverse 

controller is used in the IMC structure, it has the capability of handling disturbances. On the other 

hand, the conventional FPID controller has no special configuration to handle disturbances. Therefore, 

the inverse NFMBC provides superior robustness performance against disturbances compared to the 

conventional FPID controller. Consequently, the superior pH control performance is obtained by 

using the inverse NFMBC having only simple forward and inverse fuzzy models with 2 inputs and 1 

output as compared to the conventional FPID controller. 
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6. CONCLUSION 

 

In this study, an inverse NFMBC design is presented for a pH NP. An NIMC structure is used to 

provide robustness against disturbances and model mismatches. The forward and inverse fuzzy 

models of the pH NP are represented by simple fuzzy models with two inputs and one output. The 

training procedures of the fuzzy models are performed by using an input-output data set collected 

from the pH NP. The effectiveness of the designed inverse NFMBC is demonstrated through 

simulations under setpoint variation and disturbance conditions. The simulation results illustrate that 

the inverse NFMBC exhibits superior control performance compared to the FPID controller with a 

7x7 rule base. 

 

The forward and inverse fuzzy models of the pH NP used in the design procedure are in a basic 

structure with 2 inputs and 1 output, which makes the approach very suitable for real-time control 

applications. Additionally, these fuzzy models are obtained automatically based on the ANFIS 

approach without the need for any expert knowledge or tuning. Thanks to these properties, simple but 

effective controllers can be designed for highly nonlinear systems by using the proposed approach. 
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