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Abstract 

 

In this paper the control system with integral constraint on the control functions is studied where the 

behavior of the system by the Urysohn type integral equation is described. The admissible control functions 

are chosen from the closed ball of the space 𝐿𝑝([𝑎, 𝑏]; 𝑅𝑚)  (𝑝 > 1) centered at the origin with radius 𝑟. 

Dependence of the set of trajectories on 𝑟 and 𝑝 is investigated. It is proved that the set of trajectories is 

Lipschitz continuous with respect to 𝑟  and is continuous with respect to 𝑝. The robustness of the trajectory 

with respect to the fast consumption of the remaining control resource is established. 

 

Keywords: control system, Hausdorff distance, integral constraint, robustness, Urysohn integral 

equation.  

1. Introduction 
 

The control systems arise in different areas of physics, 

mechanics, airspace navigation, economics, sociology, 

etc. and depending on character of control efforts are 

classified as control systems with geometric constraints, 

integral constraints and mixed constraints on the control 

functions. The theory of control systems with geometric 

constraints on the control functions is enough well 

investigated chapter of the control systems theory (see, 

e.g. [4], [13], [16], [20] and references therein). But 

integral constraints on the control functions arise in the 
cases when the control resource is exhausted by 

consumption such as energy, fuel, finance, etc. (see, e.g. 

[3], [6], [12], [15], [18], [21], [22], [23]). Note that 

integral boundedness of the control function does not 

imply its geometric boundedness. This situation causes 

additional difficulties and therefore studying the control 

systems with integral constraints on the control functions 

requires special methods. 

 

Integral equations are very adequate tool to describe the 

behaviors of various processes arising in the theory and 
applications (see, e.g. [2], [7], [17], [19], [24]).  In this 

paper the control system described by Uryshon type 

integral equation is considered. The control functions are 

chosen from the closed ball of the space  𝐿𝑝([𝑎, 𝑏]; 𝑅𝑚)   

(𝑝 > 1) centered at the origin with radius 𝑟. Note that the 

different topological properties and approximate 

constructions methods of the set of trajectories of the 
control systems described by various type integral 

equations and integral constraints on the control 

functions are studied in papers [8-11]. 

 

The paper is organized as follows. In Section 2 the basic 

conditions and propositions are formulated which are 

used in following arguments. In Section 3 it is proved that 

the set of trajectories is Lipschitz continuous with respect 

to 𝑟 (Theorem 3.1). In Section 4 it is shown that the set 

of trajectories depends on 𝑝 continuously (Theorem 4.1). 

In Section 5 it is proved that system’s trajectory is robust 

with respect to the fast consumption of the remaining 

control resource (Theorem 5.1) and it is shown that every 

trajectory can be approximated by trajectory obtained by 

the full consumption of the available control resource 

(Theorem 5.2).   

 

2. The System’s Description 

 

Consider control system the behavior of which is 

described by Urysohn type integral equation 
 

𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))  +  𝜆 ∫ 𝐾(𝑡, 𝑠, 𝑥(𝑠), 𝑢(𝑠))𝑑𝑠
𝑏

𝑎

    (𝟐. 𝟏) 

 

where 𝑡 ∈ [𝑎, 𝑏],  𝑥(𝑡) ∈ 𝑅𝑛   is the state vector, 𝑢(𝑠) ∈
𝑅𝑚  is the control vector, 𝜆 ≥ 0.  

For given 𝑝 > 1 and 𝑟 ≥ 0 we denote 
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𝑈𝑝,𝑟 = {𝑢(∙) ∈ 𝐿𝑝([𝑎, 𝑏]; 𝑅𝑚): ‖𝑢(∙)‖𝑝 ≤ 𝑟}  

 

which is called the set of admissible control functions and 

every 𝑢(∙) ∈ 𝑈𝑝,𝑟  is said to be an admissible control 

function, where  𝐿𝑝([𝑎, 𝑏]; 𝑅𝑚) is the space of Lebesgue 

measurable functions 𝑢(∙): [𝑎, 𝑏] → 𝑅𝑚 such that 

‖𝑢(∙)‖𝑝 < ∞, ‖𝑢(∙)‖𝑝 = (∫ ‖𝑢(𝑠)‖𝑝 𝑑𝑠
𝑏

𝑎
)

1

𝑝
,  ‖∙‖ denotes 

the Euclidean norm.  

 

It is obvious that the set of admissible control functions 

𝑈𝑝,𝑟 is the closed ball with radius  𝑟 and centered at the 

origin in the space   𝐿𝑝([𝑎, 𝑏]; 𝑅𝑚). 

 

It is assumed that the functions and a number λ given in 

system (2.1) satisfy the following conditions: 
 

2.A. the functions   𝑓(∙ , ∙): [𝑎, 𝑏] × 𝑅𝑛 → 𝑅𝑛  and  

𝐾(∙ , ∙ , ∙ , ∙ ): [𝑎, 𝑏] × [𝑎, 𝑏] × 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛  are 

continuous; 

 

2.B. there exist  𝑙0 ∈ [0,1) ,  𝑙1 ≥ 0, 𝛾1 ≥ 0,  𝑙2 ≥ 0, 
𝛾2 ≥ 0,  𝑙3 ≥ 0, 𝛾3 ≥ 0  such that 

 
‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑙0‖𝑥1 − 𝑥2‖ 

 

for every  (𝑡, 𝑥1) ∈ [𝑎, 𝑏] × 𝑅𝑛, (𝑡, 𝑥2) ∈ [𝑎, 𝑏] × 𝑅𝑛   

and 

 

  ‖𝐾(𝑡1, 𝑠, 𝑥1, 𝑢1) − 𝐾(𝑡2, 𝑠, 𝑥2 , 𝑢2)‖ 

≤ [𝑙1 + 𝛾1(∥ 𝑢1 ∥ +∥ 𝑢2 ∥)‖𝑡1 − 𝑡2‖ 

       + [𝑙2 + 𝛾2(∥ 𝑢1 ∥ +∥ 𝑢2 ∥)‖𝑥1 − 𝑥2‖ 

        + [𝑙3 + 𝛾3(∥ 𝑥1 ∥ +∥ 𝑥2 ∥)‖𝑢1 − 𝑢2‖                                                                     
 

for  every  (𝑡1, 𝑠, 𝑥1 , 𝑢1) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] × 𝑅𝑛 × 𝑅𝑚,  
(𝑡2, 𝑠, 𝑥2 , 𝑢2) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] × 𝑅𝑛 × 𝑅𝑚 ;   

 

2.C.  there exist 𝑝∗ > 1 and 𝑟∗ > 0 such that the 

inequality  

 

   𝜆 (𝑙2(𝑏 − 𝑎) + 2𝛾∗𝑟∗(𝑏 − 𝑎)
𝑝∗−1

𝑝∗ ) < 1 − 𝑙0   

 

is satisfied where 𝛾∗ = max  {𝛾1,  𝛾2 ,  𝛾3}.  

 

If the function (𝑡, 𝑠, 𝑥, 𝑢) → 𝐾(𝑡, 𝑠, 𝑥, 𝑢), (𝑡, 𝑠, 𝑥 , 𝑢) ∈
[𝑎, 𝑏] × [𝑎, 𝑏] × 𝑅𝑛 × 𝑅𝑚,   is Lipschitz continuous with 

respect to (𝑡, 𝑥, 𝑢), then it satisfies the condition 2.B. 

 

We set 

 

𝐿(𝜆; 𝑝, 𝑟) = 𝑙0 + 𝜆 (𝑙2(𝑏 − 𝑎) + 2𝛾∗𝑟(𝑏 − 𝑎)
𝑝−1

𝑝 )  (2.2) 

 

From Condition 2.C it follows that  

 

                  0 ≤ 𝐿(𝜆; 𝑝∗, 𝑟∗) < 1 .                               (2.3) 
 

Then there exist 𝛽1 > 0,  𝛽2 > 0 such that 𝐿(𝜆; 𝑝, 𝑟) < 1 

for every  𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1] and 𝑟 ∊ [0, 𝑟∗ + 𝛽2].  
 

Denote 

 

   𝐿∗(𝜆) = max{𝐿(𝜆; 𝑝, 𝑟) ∶ 𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1],   
                                    𝑟 ∊ [0, 𝑟∗ + 𝛽2]}.                         (2.4) 

 

From (2.2), (2.3) and (2.4) it follows that  

 

             0 ≤ 𝐿∗(𝜆) < 1 ,    𝐿∗(𝜆) − 𝑙0 ≥ 0                (𝟐. 𝟓) 
 

From now on, it will be assumed that 𝑝 ∊ [𝑝∗ − 𝛽1 , 𝑝∗ +
𝛽1] and 𝑟 ∊ [0, 𝑟∗ + 𝛽2]. 
 

Now, let us define a trajectory of the system (2.1) 

generated by given admissible control function 𝑢(⋅) ∊
𝑈𝑝,𝑟 .  A continuous function  𝑥(⋅): [𝑎, 𝑏] → 𝑅𝑛 satisfying 

the integral equation (2.1) for every 𝑡 ∈ [𝑎, 𝑏], is said to 

be a trajectory of the system (2.1) generated by the 

admissible control function 𝑢(⋅) ∊ 𝑈𝑝,𝑟. The set of 

trajectories of the system (2.1) generated by all 

admissible control functions 𝑢(⋅) ∊ 𝑈𝑝,𝑟 is denoted by 

symbol 𝑋𝑝,𝑟  and  is called the set of trajectories of the 

system (2.1). 

 

The conditions 2.A-2.C guarantee that every admissible 

control function 𝑢(⋅) ∊ 𝑈𝑝,𝑟 generates a unique trajectory 

𝑥(⋅) ∊ 𝐶([𝑎, 𝑏]; 𝑅𝑛) of the system (2.1) (see, Theorem 

3.1 of [8]), where 𝐶([𝑎, 𝑏]; 𝑅𝑛) is the space of continuous 

functions 𝑥(⋅): [𝑎, 𝑏] → 𝑅𝑛  with norm  ∥ 𝑥(⋅) ∥𝐶=
max{∥ 𝑥(𝑡) ∥∶ 𝑡 ∊ [𝑎, 𝑏]}. Analogously to the Theorem 

4.1 of [8] it is possible to show that there exists 𝛽∗ > 0  

such that 

 

                          ∥ 𝑥(⋅) ∥𝐶≤ 𝛽∗                                    (2.6) 
 

for every 𝑥(⋅) ∊ 𝑋𝑝,𝑟 , 𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1] and 𝑟 ∊
[0, 𝑟∗ + 𝛽2]. Moreover, by virtue of Theorem 5.1 of [8] 

we have that the set of trajectories 𝑋𝑝,𝑟  is a precompact 

subset of the space 𝐶([𝑎, 𝑏]; 𝑅𝑛). 
 

Let us give an auxiliary proposition which will be used 

in following arguments. 

 

Proposition 2.1. Let 𝑢1(⋅) ∊ 𝑈𝑝,𝑟1
,  𝑢2(⋅) ∊ 𝑈𝑝,𝑟2

  where 

𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1], and 𝑟1 ∊ [0, 𝑟∗ + 𝛽2] , 𝑟2 ∊
[0, 𝑟∗ + 𝛽2].  Then 

 

  𝜆 ∫ (𝑙2 + 𝛾2[∥ 𝑢1(𝑠) ∥ +∥ 𝑢2(𝑠) ∥])𝑑𝑠
𝑏

𝑎

 ≤ 𝐿∗(𝜆) − 𝑙0 

where  𝐿∗(𝜆) is defined by (2.4). 

 

The proof of the proposition follows from Hölder's 

inequality. 
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For given metric space (𝑍, 𝑑𝑍(⋅ , ⋅))  the Hausdorff 

distance between the sets 𝐹 ⊂ 𝑍  and  𝐸 ⊂ 𝑍   is denoted 

by ℎ𝑍(𝐹, 𝐸) and defined as 

 

  ℎ𝑍(𝐹, 𝐸) = max  { 𝑠𝑢𝑝𝑥∈𝐹  𝑑𝑍(𝑥, 𝐸) , 𝑠𝑢𝑝𝑦∈𝐸  𝑑𝑍(𝑦, 𝐹)} 

 

where 𝑑𝑍(𝑥, 𝐸) = inf  {𝑑𝑍(𝑥, 𝑦): 𝑦 ∈ 𝐸}. 

 

Now let (𝑍, 𝑑𝑍(⋅ , ⋅))  be a metric space and 𝑏(𝑍) be a 

family of all nonempty bounded subsets of  𝑍. Then 

(𝑏(𝑍), ℎ𝑍(⋅ , ⋅)) is a pseudometric space where ℎ𝑍(⋅ , ⋅) 

stands for Hausdorff distance between subsets of the 

space (𝑍, 𝑑𝑍(⋅ , ⋅)) (see, e.g. [1], [14]). 

 

Let (𝑌, 𝑑𝑌(⋅ , ⋅)) and (𝑍, 𝑑𝑍(⋅ , ⋅)) be metric spaces, 

𝛷(⋅) ∶ 𝑌 → 𝑏(𝑍) be a given set valued map, and  𝑦∗ ∈ 𝑌. 

If ℎ𝑍(𝛷(𝑦), 𝛷(𝑦∗)) → 0  as 𝑦 → 𝑦∗, then the map 𝛷(⋅)  

is called continuous at 𝑦∗ . 

 

If there exists 𝑀0 > 0  such that  

 

ℎ𝑍(𝛷(𝑦1), 𝛷(𝑦2)) ≤ 𝑀0 ⋅ 𝑑𝑌(𝑦1 , 𝑦2) 

 

for every 𝑦1 ∈ 𝑌 and 𝑦2 ∈ 𝑌, then the map 𝛷(⋅)  is called 

Lipschitz continuous with Lipschitz constant 𝑀0. 
 

The Hausdorff distance between the sets 𝑈 ⊂ 𝑅𝑛 and 

𝑉 ⊂ 𝑅𝑛  is denoted by ℎ𝑛(𝑈, 𝑉) and the Hausdorff 

distance between the sets 𝐺 ⊂ 𝐶([𝑎, 𝑏]; 𝑅𝑛) and 𝑊 ⊂
𝐶([𝑎, 𝑏]; 𝑅𝑛) is denoted by ℎ𝐶(𝐺, 𝑊). 

 

For 𝑡 ∈ [𝑎, 𝑏]  we set 

 

           𝑋𝑝,𝑟(𝑡) = {𝑥(𝑡) ∈ 𝑅𝑛 ∶ 𝑥(⋅) ∈ 𝑋𝑝,𝑟}.             (2.7) 

 

The set 𝑋𝑝,𝑟(𝑡) is close to the attainable set notion used 

in control and dynamical systems theory and consists of 

points to which arrive the trajectories of the system at the 

instant of 𝑡  (see, e.g. [4], [5], [6]). 

 

It follows from Proposition 5.2 of [8] that 

ℎ𝑛(𝑋𝑝,𝑟(𝑡), 𝑋𝑝,𝑟(𝑡∗)) → 0   as 𝑡 → 𝑡∗ for every fixed  𝑡∗ ∈
[𝑎, 𝑏]. 
 

3. Lipschitz Continuity of the Set of Trajectories 

with Respect to r  

 

In this section for each fixed  𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1] the 

Lipschitz continuity of the set valued map 𝑟 → 𝑋𝑝,𝑟  , 𝑟 ∊
[0, 𝑟∗ + 𝛽2], is proved.  Denote 

 

  𝐵𝐶(1) = {𝑥(⋅) ∈ 𝐶([𝑎, 𝑏]; 𝑅𝑛) : ∥ 𝑥(⋅) ∥𝐶≤ 1}       (3.1) 

 

  𝑙∗ = max  {(𝑏 − 𝑎)
𝑝−1

𝑝 ∶ 𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1]}     (3.2) 

 

                   𝑅∗ =
𝜆(𝑙3 + 2𝛽∗𝛾3)𝑙∗

1 − 𝐿∗(𝜆)
                               (𝟑. 𝟑) 

 

where 𝐿∗(𝜆)  is defined by (2.4), 𝛽∗ is given in (2.6). 

 

Theorem 3.1. Let 𝑝 ∊ [𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1] be fixed. Then 

 

ℎ𝐶(𝑋𝑝,𝑟1
 , 𝑋𝑝,𝑟2

) ≤ 𝑅∗|𝑟1 − 𝑟2| 

 

for every 𝑟1 ∊ [0, 𝑟∗ + 𝛽2] , 𝑟2 ∊ [0, 𝑟∗ + 𝛽2]   where 𝑅∗  is 

defined by (3.3). 

 

Proof. Let 𝑟1 < 𝑟2  and 𝑥∗(⋅) ∊ 𝑋𝑝,𝑟2
 be an arbitrarily 

chosen trajectory generated by the control function 

𝑢∗(⋅) ∊ 𝑈𝑝,𝑟2
. Define a control function �̃�(⋅): [𝑎, 𝑏] →

𝑅𝑚, setting 
 

                �̃�(𝑡) =  
𝑟1

𝑟2

𝑢∗(𝑡), 𝑡 ∈ [𝑎, 𝑏].                 (𝟑. 𝟒) 

 

Since 𝑢∗(⋅) ∊ 𝑈𝑝,𝑟2
, then from (3.4) it follows that  �̃�(⋅) ∊

𝑈𝑝,𝑟1
. Let 𝑥(⋅): [𝑎, 𝑏] → 𝑅𝑛  be the trajectory of the 

system (2.1) generated by the control function �̃�(⋅) ∊
𝑈𝑝,𝑟1

.  Then 𝑥(⋅) ∊ 𝑋𝑝,𝑟1
  and from condition 2.B and 

(2.1) we obtain  

 

    ∥ 𝑥(𝑡) − 𝑥∗(𝑡) ∥≤ 𝑙0 ∥ 𝑥(𝑡) − 𝑥∗(𝑡) ∥ 
 

                 +𝜆 ∫ [𝑙2 + 𝛾2(∥ �̃�(𝑠) ∥ +∥ 𝑢∗(𝑠) ∥)]
𝑏

𝑎

 

 

                               ⋅∥ 𝑥(𝑠) − 𝑥∗(𝑠) ∥ 𝑑𝑠 
 

+𝜆 ∫ [𝑙3 + 𝛾3(∥ 𝑥(𝑠) ∥ +∥ 𝑥∗(𝑠) ∥)]
𝑏

𝑎

  

 

                                 ⋅∥ �̃�(𝑠) − 𝑢∗(𝑠) ∥ 𝑑𝑠 .                  (3.5) 
 

From (2.6), (3.2), (3.4), Proposition 2.1 and Hölder’s 

inequality it follows 

 

   𝜆 ∫ [𝑙2 + 𝛾2(∥ �̃�(𝑠) ∥ +∥ 𝑢∗(𝑠) ∥)]
𝑏

𝑎

 

                                  ⋅∥ 𝑥(𝑠) − 𝑥∗(𝑠) ∥ 𝑑𝑠 
 

          ≤ 𝜆 ∫ [𝑙2 + 𝛾2(∥ �̃�(𝑠) ∥ +∥ 𝑢∗(𝑠) ∥)]𝑑𝑠
𝑏

𝑎

 

                                 ⋅∥ 𝑥(⋅) − 𝑥∗(⋅) ∥𝐶  
 

         ≤ [𝐿∗(𝜆) − 𝑙0] ⋅∥ 𝑥(⋅) − 𝑥∗(⋅) ∥𝐶  ,                  (𝟑. 𝟔) 
 

   𝜆 ∫ [𝑙3 + 𝛾3(∥ 𝑥(𝑠) ∥ +∥ 𝑥∗(𝑠) ∥)]
𝑏

𝑎

 

                                   ⋅∥ �̃�(𝑠) − 𝑢∗(𝑠) ∥ 𝑑𝑠 
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          ≤ 𝜆[𝑙3 + 2𝛽∗𝛾3] ∫ ‖
𝑟1

𝑟2

𝑢∗(𝑠) − 𝑢∗(𝑠)‖ 𝑑𝑠
𝑏

𝑎

 

 

          ≤ 𝜆[𝑙3 + 2𝛽∗𝛾3] 
|𝑟1 − 𝑟2|

𝑟2

𝑟2  (𝑏 − 𝑎)
𝑝−1

𝑝  

 

          ≤  𝜆[𝑙3 + 2𝛽∗𝛾3] 𝑙∗|𝑟1 − 𝑟2|.                            (3.7) 

  

(3.5), (3.6) and (3.7) imply that   
  

   ∥ 𝑥(𝑡) − 𝑥∗(𝑡) ∥≤ 𝑙0 ∥ 𝑥(⋅) − 𝑥∗(⋅) ∥𝐶  
 

                        +[𝐿∗(𝜆) − 𝑙0] ⋅∥ 𝑥(⋅) − 𝑥∗(⋅) ∥𝐶   
 

                        +𝜆[𝑙3 + 2𝛽∗𝛾3] 𝑙∗|𝑟1 − 𝑟2| 
 

for every 𝑡 ∈ [𝑎, 𝑏]. The last inequality, (2.5) and (3.3) 

yield 
 

   ∥ 𝑥(⋅) − 𝑥∗(⋅) ∥𝐶  ≤
𝜆[𝑙3 + 2𝛽∗𝛾3] 𝑙∗

1 − 𝐿∗(𝜆)
|𝑟1 − 𝑟2| 

 

                                  = 𝑅∗|𝑟1 − 𝑟2|.                             (3.8) 
 

So, by virtue of the inequality (3.8), for each 𝑥∗(⋅) ∊ 𝑋𝑝,𝑟2
 

there exists 𝑥(⋅) ∊ 𝑋𝑝,𝑟1
  such that that the inequality  

 

         ∥ 𝑥(⋅) − 𝑥∗(⋅) ∥𝐶  ≤ 𝑅∗|𝑟1 − 𝑟2| 
 

is satisfied. This means that  

 

         𝑋𝑝,𝑟2
⊂ 𝑋𝑝,𝑟1

+ 𝑅∗|𝑟1 − 𝑟2| ⋅ 𝐵𝐶(1)                  (3.9) 

 

where  𝐵𝐶(1) is defined by (3.1). Keeping in mind that 

𝑋𝑝,𝑟1
⊂ 𝑋𝑝,𝑟2

, we have from (3.9) the proof of the 

theorem. 

 

From Theorem 3.1 it follows that for each fixed  𝑝 ∊
[𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1]  the set valued map  𝑟 → 𝑋𝑝,𝑟 , 𝑟 ∊
[0, 𝑟∗ + 𝛽2],  is Lipschitz continuous with Lipschitz 

constant 𝑅∗.  

 

From Theorem 3.1 we also obtain the validity of the 

following corollary. 

 

Corollary 3.1. Let 𝑝 ∊ [𝑝∗ − 𝛽1 , 𝑝∗ + 𝛽1] be fixed. Then 

 

ℎ𝐶(𝑋𝑝,𝑟1
(𝑡) , 𝑋𝑝,𝑟2

(𝑡)) ≤ 𝑅∗|𝑟1 − 𝑟2| 

 

for every 𝑟1 ∊ [0, 𝑟∗ + 𝛽2] , 𝑟2 ∊ [0, 𝑟∗ + 𝛽2] and 𝑡 ∈
[𝑎, 𝑏]  where 𝑅∗  is defined by (3.3), 𝑋𝑝,𝑟(𝑡) ⊂ 𝑅𝑛 is 

defined by (2.7).  
 

4. Continuity of the Set of Trajectories with Respect 

to p 

 

In this section the dependence of the set of trajectories on 

𝑝 will be investigated. At first let us define a distance 

between the subsets of the spaces 𝐿𝑝1
([𝑎, 𝑏]; 𝑅𝑚) and  

𝐿𝑝2
([𝑎, 𝑏]; 𝑅𝑚)  where 𝑝1 ∈ [1, +∞), 𝑝2 ∈ [1, +∞). 

 

The Hausdorff distance between the sets 𝑄 ⊂
𝐿𝑝1

([𝑎, 𝑏]; 𝑅𝑚) and  𝐷 ⊂ 𝐿𝑝2
([𝑎, 𝑏]; 𝑅𝑚)  where 1 ≤

 𝑝1 < +∞, 1 ≤ 𝑝2 < +∞  is denoted by 𝐻1(𝑄, 𝐷) and is 

defined by 

 

     𝐻1(𝑄, 𝐷) = 𝑚𝑎𝑥 {𝑠𝑢𝑝𝑥(⋅)∈𝑄 𝑑𝐿1
(𝑥(⋅), 𝐷) ,   

 

                                          𝑠𝑢𝑝𝑦(⋅)∈𝐷  𝑑𝐿1
(𝑦(⋅), 𝑄)}. 

 

Here  

 

    𝑑𝐿1
(𝑥(⋅), 𝐷) = inf  {∥ 𝑥(⋅) − 𝑦(⋅) ∥1∶ 𝑦(⋅) ∈ 𝐷}, 

 

          ∥ 𝑥(⋅) − 𝑦(⋅) ∥1 = ∫ ∥ 𝑥(𝑠) − 𝑦(𝑠) ∥ 𝑑𝑠
𝑏

𝑎
. 

 

We denote 
 

                   𝑞∗ =
𝜆(𝑙3 + 2𝛽∗𝛾3)

1 − 𝐿∗(𝜆)
                             (𝟒. 𝟏) 

 

where 𝐿∗(𝜆)  is defined by (2.4), 𝛽∗ is given in (2.6). 

 

Theorem 4.1. Let 𝑟 ∊ [0, 𝑟∗ + 𝛽2] and  𝑝0 ∊ (𝑝∗ −
𝛽1, 𝑝∗ + 𝛽1)  be fixed. Then for every 𝜀 > 0 there exists 

𝛿 = 𝛿(𝜀, 𝑝0, 𝑟) > 0 such that for every 𝑝 ∈ (𝑝0 −
𝛿, 𝑝0 + 𝛿) the inequality 

 

ℎ𝐶(𝑋𝑝,𝑟 , 𝑋𝑝0 ,𝑟) ≤ 𝜀 

 

holds. 

 

Proof. By virtue of  Theorem 3.6 from [5] we have that 

for fixed 𝑟 ∊ [0, 𝑟∗ + 𝛽2], 𝑝0 ∊ (𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1)  and 

for given  
𝜀

𝑞∗
  there exists 𝛿 = 𝛿(𝜀, 𝑝0, 𝑟) ∈ (0, 𝑝0 − 1) 

such that 

 

                    𝐻1(𝑈𝑝,𝑟 , 𝑈𝑝0,𝑟) ≤
𝜀

𝑞∗

                                 (𝟒. 𝟐) 

 

for every 𝑝 ∈ (𝑝0 − 𝛿, 𝑝0 + 𝛿).  Without loss of 

generality let us assume that 

 

      𝛿 = 𝛿(𝜀, 𝑝0, 𝑟) < min{𝑝0 − 𝑝∗ + 𝛽1, 𝑝∗ − 𝑝0 + 𝛽1} 
 

which implies that 
 

        (𝑝0 − 𝛿 , 𝑝0 + 𝛿) ⊂ (𝑝∗ − 𝛽1, 𝑝∗ + 𝛽1).            (4.3) 

 

Now, let us choose arbitrary 𝑝 ∈ (𝑝0 − 𝛿 , 𝑝0 + 𝛿)  and 

𝑥(⋅) ∊ 𝑋𝑝,𝑟, generated by admissible control function 

𝑢(⋅) ∊ 𝑈𝑝,𝑟 . According to (4.2) we have that for 𝑢(⋅) ∊

𝑈𝑝,𝑟 there exists 𝑣(⋅) ∊ 𝑈𝑝0 ,𝑟  such that 
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                    ∥ 𝑢(⋅) − 𝑣(⋅) ∥1≤
𝜀

𝑞∗

                               (𝟒. 𝟒) 

 

where 𝑞∗ > 0  is defined by (4.1). Let  𝑧(⋅): [𝑎, 𝑏] →  𝑅𝑛  

be the trajectory of the system (2.1) generated by the 

admissible control function 𝑣(⋅) ∊ 𝑈𝑝0 ,𝑟 . Then 𝑧(⋅) ∊

𝑋𝑝0 ,𝑟 and from condition 2.B it follows that 

 

    ∥ 𝑥(𝑡) − 𝑧(𝑡) ∥≤ 𝑙0 ∥ 𝑥(𝑡) − 𝑧(𝑡) ∥ 
 

       +𝜆 ∫ [𝑙2 + 𝛾2(∥ 𝑢(𝑠) ∥ +∥ 𝑣(𝑠) ∥)]
𝑏

𝑎

 

 

                             ⋅∥ 𝑥(𝑠) − 𝑧(𝑠) ∥ 𝑑𝑠 
 

      +𝜆 ∫ [𝑙3 + 𝛾3(∥ 𝑥(𝑠) ∥ +∥ 𝑧(𝑠) ∥)] 
𝑏

𝑎

 

 

                            ⋅∥ 𝑢(𝑠) − 𝑣(𝑠) ∥ 𝑑𝑠                     (4.5)    
 

From (2.6), (4.4) and Proposition 2.1 we have 

 

      𝜆 ∫ [𝑙2 + 𝛾2(∥ 𝑢(𝑠) ∥ +∥ 𝑣(𝑠) ∥)]
𝑏

𝑎

 

 

          ⋅∥ 𝑥(𝑠) − 𝑧(𝑠) ∥ 𝑑𝑠 
 

     ≤ 𝜆 ∫ [𝑙2 + 𝛾2(∥ 𝑢(𝑠) ∥ +∥ 𝑣(𝑠) ∥)]𝑑𝑠
𝑏

𝑎

 

 

                                 ⋅∥ 𝑥(⋅) − 𝑧(⋅) ∥𝐶  
 

≤ [𝐿∗(𝜆) − 𝑙0] ⋅∥ 𝑥(⋅) − 𝑧(⋅) ∥𝐶 ,             (𝟒. 𝟔) 
 

    𝜆 ∫ [𝑙3 + 𝛾3(∥ 𝑥(𝑠) ∥ +∥ 𝑧(𝑠) ∥)] 
𝑏

𝑎

 

 

⋅∥ 𝑢(𝑠) − 𝑣(𝑠) ∥ 𝑑𝑠 
 

   ≤  𝜆[𝑙3 + 2𝛽∗𝛾3] ∫ ∥ 𝑢(𝑠) − 𝑣(𝑠) ∥ 𝑑𝑠
𝑏

𝑎

 

 

               ≤  𝜆[𝑙3 + 2𝛽∗𝛾3] ⋅ 
𝜀

𝑞∗
                                (4.7) 

 

From (4.5), (4.6) and (4.7) we obtain that 
  

    ∥ 𝑥(𝑡) − 𝑧(𝑡) ∥≤ 𝑙0 ∥ 𝑥(⋅) − 𝑧(⋅) ∥𝐶  
 

                    +[𝐿∗(𝜆) − 𝑙0] ⋅∥ 𝑥(⋅) − 𝑧(⋅) ∥𝐶  
 

                       +𝜆[𝑙3 + 2𝛽∗𝛾3] ⋅
𝜀

𝑞∗

 

  = 𝐿∗(𝜆) ⋅∥ 𝑥(⋅) − 𝑧(⋅) ∥𝐶+ 𝜆[𝑙3 + 2𝛽∗𝛾3] ⋅
𝜀

𝑞∗

 

 

for every 𝑡 ∈ [𝑎, 𝑏]. The last inequality, (2.5) and (4.1) 

imply that 

 

‖𝑥(⋅) − 𝑧(⋅)‖𝐶 ≤
𝜆(𝑙3 + 2𝛽∗𝛾3)

1 − 𝐿∗(𝜆)
⋅

𝜀

𝑞∗

= 𝜀. 

 

Thus, we get that for each 𝑥(⋅) ∊ 𝑋𝑝,𝑟  there exists 𝑧(⋅) ∊

𝑋𝑝0 ,𝑟 such that the inequality  

 

            ∥ 𝑥(⋅) − 𝑧(⋅) ∥𝐶  ≤ 𝜀                 
 

holds. This yields that 

 

                            𝑋𝑝,𝑟 ⊂ 𝑋𝑝0 ,𝑟 + 𝜀 ⋅ 𝐵𝐶(1)                   (𝟒. 𝟖) 

 

Analogously, it is possible to show that 

 

                            𝑋𝑝0 ,𝑟 ⊂ 𝑋𝑝,𝑟 + 𝜀 ⋅ 𝐵𝐶(1)                   (𝟒. 𝟗) 

 

(4.8) and (4.9) complete the proof. 

 

From Theorem 4.1 it follows that for each fixed 𝑟 ∊
[0, 𝑟∗ + 𝛽2] the set valued map 𝑝 → 𝑋𝑝,𝑟 , 𝑝 ∊ (𝑝∗ −

𝛽1, 𝑝∗ + 𝛽1), is continuous. 

 

Theorem 4.1 implies the validity of the following 

corollary. 

 

Corollary 4.1. Let 𝑟 ∊ [0, 𝑟∗ + 𝛽2] and  𝑝0 ∊ (𝑝∗ −
𝛽1, 𝑝∗ + 𝛽1)  be fixed. Then for every 𝜀 > 0 there exists 

𝛿 = 𝛿(𝜀, 𝑝0, 𝑟) > 0 such that for every 𝑝 ∈ (𝑝0 −
𝛿, 𝑝0 + 𝛿) the inequality 

 

ℎ𝐶(𝑋𝑝,𝑟(𝑡) , 𝑋𝑝0 ,𝑟(𝑡)) ≤ 𝜀 

 

is verified for every 𝑡 ∈ [𝑎, 𝑏] where the set  𝑋𝑝,𝑟(𝑡) is 

defined by (2.7). 

 

5. Robustness of the Trajectories with Respect to 

the Remaining Control Resource  

 

In this section we study the robustness of a trajectory with 

respect to the remaining control resource consumption. 

Theorem 5.1  Let  𝜀 > 0 be a given number, 𝑥(∙) ∈
𝑋𝑝,𝑟 be a trajectory of the system (2.1) generated by the 

control function 𝑢(∙) ∈ 𝑈𝑝,𝑟 such that ‖𝑢(∙)‖𝑝 = 𝑟0 < 𝑟, 

Ω∗ ⊂ [𝑎, 𝑏] be a Lebesgue measurable set, the control 

function 𝑢0(∙): [𝑎, 𝑏] → 𝑅𝑚 be defined 

 

           𝑢0(𝑠) = {
𝑢(𝑠)   𝑖𝑓  𝑠 ∈ [𝑎, 𝑏] ∖ Ω∗ ,

𝑣(𝑠)        𝑖𝑓  𝑠 ∈ Ω∗           
               (5.1) 

 

such that ‖𝑢0(∙)‖𝑝 = 𝑟 and let 𝑥0(∙) ∈ 𝑋𝑝,𝑟 be a 

trajectory of the system (2.1) generated by the control 

function 𝑢0(∙) ∈ 𝑈𝑝,𝑟 . If  
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           𝜇(Ω∗)  ≤ [
1 − 𝐿∗(𝜆)

2𝜆𝑟(𝑙3 + 2𝛽∗𝛾3)
⋅ 𝜀]

𝑝
𝑝−1

,               (𝟓. 𝟐) 

 

then the inequality 

 

             ‖𝑥(∙) − 𝑥0(∙)‖𝐶 ≤ 𝜀 

 

is held where 𝐿∗(𝜆) and 𝛽∗ > 0 are defined by (2.4) and 

(2.6) respectively, 𝜇(Ω∗) denotes the Lebesgue measure 

of the set Ω∗. 
 

Proof. (2.1), (2.4), (2.6), (5.1), Proposition 2.1, condition 

2.B, the inclusions  𝑢(∙) ∈ 𝑈𝑝,𝑟 , 𝑢0(∙) ∈ 𝑈𝑝,𝑟  and 

Hölder’s inequality imply that 

 

    ∥ 𝑥(𝑡) − 𝑥0(𝑡) ∥≤ 𝑙0 ∥ 𝑥(𝑡) − 𝑥0(𝑡) ∥ 
 

+𝜆 ∫ [𝑙2 + 𝛾2(∥ 𝑢(𝑠) ∥ +∥ 𝑢0(𝑠) ∥)]
𝑏

𝑎

 

 

                             ⋅∥ 𝑥(𝑠) − 𝑥0(𝑠) ∥ 𝑑𝑠 
 

 +𝜆 ∫ [𝑙3 + 𝛾3(∥ 𝑥(𝑠) ∥ +∥ 𝑥0(𝑠) ∥)] 
𝑏

𝑎

 

 

                            ⋅∥ 𝑢(𝑠) − 𝑢0(𝑠) ∥ 𝑑𝑠    
 

       ≤ 𝑙0 ∥ 𝑥(⋅) − 𝑥0(⋅) ∥𝐶    
 

   +𝜆 ∫ [𝑙2 + 𝛾2(∥ 𝑢(𝑠) ∥ +∥ 𝑢0(𝑠) ∥)]𝑑𝑠
𝑏

𝑎

 

 

                              ⋅∥ 𝑥(⋅) − 𝑥0(⋅) ∥𝐶  
 

+𝜆(𝑙3 + 2𝛽∗𝛾3) ∫ ∥ 𝑢(𝑠) − 𝑢0(𝑠) ∥ 𝑑𝑠
Ω∗

 

 

        ≤ 𝑙0‖𝑥(⋅)−𝑥0(⋅)‖𝐶 + (𝐿∗(𝜆) − 𝑙0)‖𝑥(⋅)−𝑥0(⋅)‖𝐶 

 

            +2𝜆𝑟(𝑙3 + 2𝛽∗𝛾3) [𝜇(Ω∗)]
𝑝−1

𝑝  

 

       = 𝐿∗(𝜆) ⋅ ‖𝑥(⋅)−𝑥0(⋅)‖𝐶 

             +2𝜆𝑟(𝑙3 + 2𝛽∗𝛾3)[𝜇(Ω∗)]
𝑝−1

𝑝  

 

for every 𝑡 ∈ [𝑎, 𝑏]. The last inequality, (2.5) and (5.2) 

imply  

 

‖𝑥(∙) − 𝑥0(∙)‖𝐶 ≤
2𝜆𝑟(𝑙3 + 2𝛽∗𝛾3)

1 − 𝐿∗(𝜆)
[𝜇(Ω∗)]

𝑝−1
𝑝 ≤ 𝜀 . 

 

The proof of the theorem is completed. 

 

 

Theorem 5.1 shows that full consumption of the 

remaining control resource on the domain with 

sufficiently small measure causes small deviation of the 

trajectory. 

Denote 

 

𝑈𝑝,𝑟
∗ = {𝑢(∙) ∈ 𝐿𝑝([𝑎, 𝑏]; 𝑅𝑚): ‖𝑢(∙)‖𝑝 = 𝑟} 

 

and let 𝑋𝑝,𝑟
∗  be the set of trajectories of the system (2.1) 

generated by the control functions  𝑢(∙) ∈ 𝑈𝑝,𝑟
∗ .  

For fixed 𝑡 ∈ [𝑎, 𝑏] we set 

 

         𝑋𝑝,𝑟
∗ (𝑡) = {𝑥(𝑡) ∈ 𝑅𝑛 ∶ 𝑥(⋅) ∈ 𝑋𝑝,𝑟

∗ }.                (𝟓. 𝟑) 

 

Theorem 5.2. The equality 𝑐𝑙(𝑋𝑝,𝑟) = 𝑐𝑙(𝑋𝑝,𝑟
∗ )  is 

satisfied where 𝑐𝑙 denotes the closure of a set. 

Proof. Since 𝑋𝑝,𝑟
∗ ⊂ 𝑋𝑝,𝑟, then we have  

 

                       𝑐𝑙 (𝑋𝑝,𝑟
∗ ) ⊂ 𝑐𝑙 (𝑋𝑝,𝑟).                          (5.4) 

 

Let 𝑥∗(∙) ∈ 𝑋𝑝,𝑟 be an arbitrarily chosen trajectory of the 

system (2.1) generated by the control function 𝑢∗(∙) ∈
𝑈𝑝,𝑟 where ‖𝑢∗(∙)‖𝑝 = 𝑟∗ < 𝑟. Now we choose an 

arbitrary 𝛿 > 0 and the Lebesgue measurable set 𝑉∗ ⊂
[𝑎, 𝑏] such that   

 

             𝜇(𝑉∗)  ≤ [
1 − 𝐿∗(𝜆)

2𝜆𝑟(𝑙3 + 2𝛽∗𝛾3)
𝛿]

𝑝
𝑝−1

                 (𝟓. 𝟓) 

 

where 𝐿∗(𝜆) is defined by (2.4), 𝛽∗ is defined by (2.6). 

Assume that  ∫ ‖𝑢∗(𝑠)‖𝑝𝑑𝑠 = 𝑟1
𝑝

[𝑎,𝑏]∖𝑉∗
 . Define new 

control function 𝑤∗(∙): [𝑎, 𝑏] → 𝑅𝑚 setting 

 

  𝑤∗(𝑠) = {

 𝑢∗(𝑠)         𝑖𝑓  𝑠 ∈ [𝑎, 𝑏] ∖ 𝑉∗ 

[
𝑟𝑝−𝑟1

𝑝

𝜇(𝑉∗)
]

1

𝑝
⋅ 𝑏∗      𝑖𝑓       𝑠 ∈ 𝑉∗

  

 

where 𝑏∗ ∈ 𝑅𝑚 is an arbitrary vector such that ‖𝑏∗‖ = 1. 
It is obvious that  ‖𝑤∗(∙)‖𝑝 = 𝑟, i.e.  𝑤∗(∙) ∈ 𝑈𝑝,𝑟

∗ . Let 

𝑦∗(∙) be the trajectory of the system (2.1) generated by 

the control function 𝑤∗(∙). Then 𝑦∗(∙) ∈ 𝑋𝑝,𝑟
∗ , and 

keeping in mind (5.5) we obtain from Theorem 5.1 that 
‖𝑥∗(∙) − 𝑦∗(∙)‖𝐶 ≤ 𝛿. Since  𝛿 > 0  is arbitrarily chosen, 

we have that  𝑥∗(∙) ∈ 𝑐𝑙(𝑋𝑝,𝑟
∗ ) which implies that  𝑋𝑝,𝑟 ⊂

𝑐𝑙(𝑋𝑝,𝑟
∗ ), and hence 

  

                       𝑐𝑙 (𝑋𝑝,𝑟) ⊂ 𝑐𝑙(𝑋𝑝,𝑟
∗ )                                (𝟓. 𝟔) 

 

From (5.4) and (5.6) we obtain the proof of the theorem. 

The Theorem 5.1 means that every trajectory  𝑥(⋅) ∈ 𝑋𝑝,𝑟  

can be approximated by the trajectory obtained by full 

consumption of the control resource. 
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From Theorem 5.2 it follows the validity of the following 

corollary.  

 

Corollary 5.1. The equality   

 

                 𝑐𝑙 (𝑋𝑝,𝑟(𝑡)) = 𝑐𝑙 (𝑋𝑝,𝑟
∗ (𝑡)) 

  

is satisfied for every 𝑡 ∈ [𝑎, 𝑏] where the set 𝑋𝑝,𝑟(𝑡) is 

defined by (2.7), the set 𝑋𝑝,𝑟
∗ (𝑡) is defined by (5.3). 
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