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A uniform application of phosphorus (P) fertilizers to spatially variable soils often results in 
under-fertilization in low P-localities and over-fertilization in high P-localities. This study 

aimed to evaluate the variable rate applicability of P fertilizers on a 300-ha sloping landscape 

under rainfed winter wheat cultivation for over 70 years. The soils were sampled (155 samples) 
using a random spatial sampling technique based on visual differences in soil color and 

topographic factors. Plant available soil P content (Pav) and other variables of soil samples were 

analyzed. The spatial variability of Pav was evaluated and the area was divided into three uniform 
zones (low, medium, high) for fertilizer P application based on the spatial variation of Pav. The 

values of Pav showed moderate variablity (CV= 21.3%). The fertilizer recommended by the 

Ministry of Agriculture and Forestry (MAF) was calculated for five identically-sized sub-
regions. The results showed that P fertilizer rates calculated for all five sub-regions based on 

MAF were identical, suggesting that the MAF was insensitive to spatial variability of Pav in the 

study soils. Both semivariograms and surface maps of soil properties indicated a strong spatial 
association between Pav and each of plant available water content (PAWC) and aggregate 

stability index (ASI), suggesting that yield limitation casued by PAWC should be considered in 

a variable P-application program in the study area. A more comprehensive study is needed to 
evaluate the efficiency and cost-benefit economics of variable P application in the study soils. 

 

 

Keywords: 
 

Geostatistics 
Management zone 

Phosphorous fertilizers 

Site-specific management 
Variable P-application  

 

 

 

1. Introduction 
 

Application of commercial fertilizers contributes to crop 

growth to a considerable extent, resulting in a substantial yield 

increase in agricultural crops. However, uniform use of fertilizers 

has induced economical losses and caused pollution of the 

surface and groundwater, due to the spatial variability of soils, 

across the world (Vadas et al. 2004). The importance of the 

spatial variability of soil properties has long been recognized, 

emphasising the need for precise site-specific applications of 

agricultural fertilizers (Kassa et al. 2022; Sharma et al. 2022; 

Abera et al. 2022). Uniform fertilizer application may lead to 

over-fertilization in some localities and under-fertilization in 

others, resulting in improper fertilizer applications (Günal 2021). 

Site-specific fertilizer applications help equilibrate and stabilize 

the content of soil nutrients and yield (Sanches et al. 2021). 

Therefore, when high spatial variability of soil nutrient content is 

the case, application rates of those fertilizers should be adjusted 

site-specifically to optimize the nutrient supply to crops across 

the field (Ruffo et al. 2005).  

Site-specific crop management (SSCM) considers variability 

in soil and crop parameters to optimize use of inputs such as 

fertilizers and pesticides (Sudduth et al. 1997). However, without 

an adequate knowledge of the spatial variability of soils, site- 

specific application of soil nutrients is impossible (Sawyer 1994). 

Conventional soil testing methods, used in determining spatial 

variability of soils, are costly and time-consuming. In addition, 

the time and cost required for intensive sampling in the SSCM 

can limit the implementation of a variable-rate fertilizer 

application.  

Spatial variability management of soil chemical attributes is 

one of the means of precision agriculture (PA) to increase yield 

(Raddy et al. 2021; Beneduzzi et al. 2022). Understanding the 

variability in crop yield in relation to the spatial variations in soil 

properties can help more efficiently apply agricultural inputs on 

site-specific basis (Ameer et al. 2022; Ameer et al. 2023). 

Fertilizer application relying on soil characteristic map-based 

fertilizer recommendations may help reduce fertilizer input 

without sacrificing crop production (Yadav et al. 2023). 

Several factors, such as differences in crop response to 

applied fertilizers and in exisiting nutrient pools in the soil, are 

considered in delineating nutrient management zones (MZs) on 

fields (Abera et al. 2022). Many researchers considered 

identifying existing nutrient pools in the soil to provide reliable 

fertilizer recommendations. Mapping of soil fertility is a practical 

and effective means to delineate the soils into low, medium, and 

high nutrient status zones (Ameer et al. 2022). These delineated 

internally homogeneous MZs, in terms of soil fertility and crop 

productivity management, can be treated separately for the 

precise application of fertilizers (Ameer et al. 2023). Some other 

techniques such as remote sensing (RS), geographical 

information system (GIS) (Yadav et al. 2023) and their 

combination (Trivedi et al. 2022) have been used successfully in 
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site-specific crop and fertilizer management. Modern geospatial 

tools such as RS, GIS, and Global Positioning System (GPS) 

have provided tremendously powerful means for surveying, 

mapping, monitoring, delineating, and charaterizing soil 

resources (Trivedi et al. 2022; Beneduzzi et al. 2022; Kumar et 

al. 2023). 

In Türkiye, ferilizer recommendations under the fertilizer 

support program rely on the “Fertilizer Calculator” provided by 

the Ministry of Agriculture and Forestry of Türkiye (MAF)”, 

which roughly considers variability in soil properties and 

concentrations of major nutrients in soil at the sampling time. 

This study aimed to 1) evaluate sensitivy of MAF-fertlizer 

recommendations to the varability in soil properties and 2) 

formulate a variable-rate P recommentation, based on spatial 

variation in Pav, for rainfed winter wheat, in a 300-ha land 

exhibiting differences in soil and slope properties. 

 

2. Materials and Methods 
 

2.1. Material 
 

This study was carried out on a 300-ha sloping farmland, 

located 20 km from the center of Çankırı cith along the Çankırı-

Ankara highway (Fig. 1). The study area comprises many 

scondary hillslopes characterized by varying aspects, steepness, 

and shapes, located on a sloping landscape with a general linear 

slope resulting from a liner increase in elevation toward the north. 

The area has been under rainfed winter wheat production for 

more than 70 years. Variation in slope properties and distribution 

of parent materials are key factors affecting yield variability. The 

prominent differences in soil color highlight substantial soil 

spatial variability potentially leading to variation in crop yield 

thoroughout the study area. 

A dry sub-humid/semi-arid continental Anatolian type 

climate prevails in the study area (Iyigun et al. 2013). Long term 

mean annual precipitation ranges from 406.0 to 538.0 mm, mean 

annual temperature from 9.1 to 11.1°C and relative humidity 

from 61.0 to 66.0%. The long term means of minimum 

temperature range from −5.0 to −2.7°C (in January) and 

maximum temperatures from 26.4 to 30.9°C (in July). The lowest 

extreme temperature ever recorded was −25.0°C on 25 January 

1950, and the highest was 42.0°C on 30 July 2000 (MGM 2024). 

Soils of the study area are Gypsic Haplustepts and Gypsic 

Ustorthents according to Soil Survey Staff (2014). The parent 

materials are gypsum/calcium carbonate mixed with colluvium 

in the majority of cases. Also, gypsum over lacustrine residuum 

generally appears on the flat to slightly sloping landscape 

positions.  
 

2.2. Methods 
 

2.2.1. Soil sampling and laboratory analyses 
 

In this study, 155 soil samples were taken based on random 

geostatistical sampling technique from the plow depth (0-20 cm). 

The sampling was designed with a minimum distance between 

two samples set at least 5 m, ensuring an adequate number of lags 

at close proximity to safely model the semivariogram near the 

origin. A global positioning system (GPS) was used to address 

sample coordinates. Soil samples were transferred to a 

laboratory, dried at room temperature, passed through a 2-mm 

sieve and stored for analysis. The soil variables analyzed and the 

methods used in the analyses are given in Table 1.  
 

2.2.2. Delineating uniform phosphorous application zones 
 

The study area was conveniently divided into five equal-

sized sub-regions based on visual differences in soil color and 

topography, and P recommendation-values were calculated with 

mean data for each of the sub-regions using the fertilizer 

recommendation calculator of the Ministry of Agriculture and 

Forestry of Türkiye (MAF). The recommendation for P for all 

five sub-regions was identical, indicating that the MAF was 

insensitive to spatial variability of Pav in the study area. For 

delineating variable P fertilizer management zones (MZs), the 

fertilizer recommendation was calculated for each of the 

sampling points using Pav and expected wheat yield. The 

expected wheat yield was determined based on farmer’s 

statement, and it was taken as 4000 kg ha-1. The mean and 

standard deviation of Pav and P recommendation values were 

calculated for the study area and then used to delineate MZs as 

follows: 

 

 

Figure 1. Location and view of the study area. The lighter colors indicate low fertility localities. 
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𝐼𝑓 𝑃𝑎𝑣𝑖 <  (𝑀𝑃𝑎𝑣  – 𝑆𝐷𝑃𝑎𝑣) 𝑡ℎ𝑒𝑛 𝐹𝑃𝑖  =  𝑀𝐹𝑃  +  𝑆𝐷𝐹𝑃 [1] 

 

𝐼𝑓 𝑃𝑎𝑣𝑖 >  (𝑀𝑃𝑎𝑣  +  𝑆𝐷𝑃𝑎𝑣) 𝑡ℎ𝑒𝑛 𝐹𝑃 =  𝑀𝐹𝑃 −
 𝑆𝐷𝐹𝑃                                                                                       [2] 

 

𝐼𝑓  (𝑀𝑃𝑎𝑣   – 𝑆𝐷𝑃𝑎𝑣) <  𝑃𝑎𝑣𝑖 <  (𝑀𝑃𝑎𝑣  +
 𝑆𝐷𝑃𝑎𝑣) 𝑡ℎ𝑒𝑛 𝐹𝑃𝑖  =  𝑀𝐹                                                        [3] 

 

Where, SDPav is the standard deviation and MPav is the mean 

of Pav-values, and MFP is the mean and SDFP is standard deviation 

of fertilizer P recommendations, calculated using Pav and mean 

yield (4000 kg ha-1) in the study area. Pavi is the plant available 

soil P content and FPi is the fertilizer P recommended for 

sampling site i. For example, let SDPav= 3, MPav= 15, MFP= 17, 

SDFP= 4, and Pavi= 6, then FPi for the site i can be calculated as 

follows: As Pavi= 6 < (15-3) = 12, the Eq. (1) should be used. 

Therefore, according to Eq. (1), FPi= 17+4= 21 kg ha-1. Thus, the 

21 kg ha-1 application zone should include the sampling site i.  
 

2.2.3. Geostatistical analysis of spatial variability of soil 

variables  
 

A typical geostatistical analysis was conducted at three 

stages: an exploratory data analysis, a semivariogram analysis, 

and a spatial interpolation of the variable of subject (Isaaks and 

Srivasta 1989) The data for experimental semivariograms were 

modelled using commonly employed theoretical models 

(spherical, exponential, Gaussion models). Geostatistical 

analysis of soil variables of pH, EC, sand, silt, clay, OM, CaCO3 

and K contents and PAWC and ASI was conducted besides Pav. 

According to Webster (2001), variables with a skewness > 1.0 

are assumed to be strongly skewed and log-transformed and those 

between 0.5 and 1.0 are assumed to be moderately skewed 

and square root-transformed, while those < 0.5 are assumed to 

be slightly skewed and do not need to be transformed. The data 

for EC were log-transformed to decrease its skewness below 

absolute 0.5. The log-transformation resulted in a small 

decrease in skewness. However, after removing one data point 

and repeating the log-transformation this resulted in a 

tremendous decrease in skewness of the data for EC (Table 2). 

Similarly, to EC, removing four data points and then square root-

transforming resulted in a substantial decrease in skewness for 

PAWC. As both full and reduced datasets for pH, clay content, 

silt content, and Pav were insensitive to data transformations, data 

were removed from those data sets until the values of skewness 

fell below absolute 0.5. Table 2 shows descriptive statistics of 

full and reduced datasets and results for log- and square root-

transformation for EC and PAWC, respectively.  
 

Table 1. Soil variables and the methods used in their analysis 

Soil property Methods/device Reference 

Soil texture By mechanical analysis Gee and Bouder (1986) 

Plant available potassium content With a flame photometer Kacar (1996) 

Field capacity and wilting point With pressure chambers Cassel and Nielsen (1986) 

Plant available water content Difference between field capacity and wilting point Cassel and Nielsen (1986) 

Electrical conductivity With an EC electrode in 1:2.5 soil-water suspension Rhoades et al. (1999) 

Soil pH With a pH electrode in 1:2.5 soil-water suspension Rhoades et al. (1999) 

Organic matter content By Walkley-Black method Nelson and Sommers (1982) 

CaCO3 content With a Scheibler calcimeter McLean (1982) 

Plant available P content By Olsen method Olsen (1954) 

Aggregate stability index By wet sieving Kemper and Rosenau (1986) 

 
Table 2. Descriptive statistics of soil properties in study area 

Soil property N Min Max Mean SD Skewness Kurtosis CV, % 

pH (1:2.5) 155 6.80 7.69 7.15 0.23 1.70 1.49 3.21 

pH (1:2.5) &128 6.90 7.20 7.06 0.055 -0.20 -0.04 0.77 

EC (mS cm-1) 155 2.49 2630.00 472.10 521.3 3.16 9.31 110.40 

#EC &154     -0.41 9.22  

Sand (%) 155 7.97 63.56 26.24 7.97 0.24 -0.48 30.37 

Clay (%) 155 16.75 69.70 53.80 7.43 -0.97 3.37 13.81 

Clay (%) &153 29.80 69.70 53.94 7.08 -0.42 0.66 13.13 

Silt (%) 155 5.45 47.05 20.18 5.61 0.96 3.00 27.80 

Silt (%) &153 5.45 35.00 19.94 5.14 0.41 0.46 25.82 

CaCO3 (%) 155 4.65 32.76 17.12 6.22 0.38 -0.34 36.32 

OM (%) 155 0.62 2.95 2.19 0.53 -1.10 0.65 18.27 

OM (%) &145 1.09 2.95 2.28 0.41 -0.77 -0.06 17.98 

Na (mg kg-1) 155 5.90 37.69 15.78 15.78                0.70 2.57 75.91 

K (mg kg-1) 145 13.51 65.10 38.94 12.98 -0.01 -0.92 33.33 

PAWC (%) 155 2.90 52.08 20.87 11.69 0.87  -0.16  54.94 

## PAWC &151     0.38 -0.60  

ASI (%) 155 0.33 0.611 0.49 0.05 -0.21 0.20 11.16 

P (mg kg-1) 155 3.42 20.11 15.26 3.25 -1.73 2.83 21.29 

P (mg kg-1) &140 12.21 20.11 16.25 1.65 -0.43 -0.41 10.15 

N: Number of soil samples, Min: Minimum, Max: Maximum, SD: Standard deviation, CV (%): Coefficient of variation EC: Electrical Conductivity, OM: Organic Matter, 

Na: Sodium, K: Potassium, Pav: Plant available phosphorus, FC: Field capacity, WP: Wilting point, ASI: Aggregate stability index. 

#: log-transformed, ##: Square root-transformed, &: Number of data points retained to decrease the corresponding value of skewness below 0.50. 
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The spatial structure of soil variables including Pav was 

modeled and ordinary kriging (OK)-interpolations were 

conducted using geostatistical software (GS+ 2022). The most 

suitable semivariogram model was selected based on the highest 

R2 and lowest SSE-values for semivariogram fitting. In addition, 

cross-validation correlation coefficient (rCV) was considered to 

judge if the theoretical semivariograms could adequately 

represent the experimental semivariograms. For sand content, 

CaCO3 content, and ASI full data (155 data points); for EC log-

transformed and PAWC square root-transformed reduced data; 

and for rest of the soil variables reduced data were used in 

geostatistical analysis (Tables 2 and 3).  

We used variable lag-distances to increase the quality of 

semivariogram fits. Also, some data points were removed from 

some lags to increase modeling performance, especially for 

increasing R2 and decreasing RSSE-values. Table 3 shows the 

number of data points used in semivariograms modeling. OK-

interpolations were conducted using parameters (sill, range (A), 

and nugget variance) from the corresponding theoretical 

semivariograms. A minimum of 10 and a maximum of 13 

neighboring data were used in OK interpolations. We applied 

inverse distance with varying power when the OK-interpolation 

performed inadequately. The data were interpolated by normal 

distance interpolation when rCV was insignificant in both of IDW 

and OK-interpolations. 

 

3. Results and Discussion 
 

3.1. Descriptive statistics of soil properties 
 

The variability of soil attributes plays a crucial role in 

defining uniform nutrient management zones. The sand and silt 

contents of soil textural components were highly similar in CV 

compared to clay content (Table 2). Sand and silt content were 

moderately and clay content was slightly variable according to 

(Mulla and McBratney 2002), who noted that a soil attribute with 

CV< 15% is deemed slightly, between 15 and 36% moderately 

and >36% highly variable. Silt content was moderately and sand 

and clay contents were slightly right-skewed according to 

Webster (2001). The values for K and Na showed highly 

dissimilar statistical distributions as suggested by their 

corresponding values of skewness, kurtosis, and CV. Values for 

Na were highly variable, while those for K were moderately 

variable. The values of CaCO3 content ranged from 2.49 to 32.76 

and were moderately variable and slightly right-skewed. The 

mean for CaCO3 suggested that the majority of the study soils 

were highly calcareous (Table 2). The values of OM content were 

moderately variable and strongly left-skewed, indicating that 

some extremely low OM-valued localities were present in the 

study area. Aggregate stability index (ASI) is an important 

indicator of soil physical quality. Values for ASI were between 

33 and 61% and showed a slightly left-skewed distribution and 

little variability. The values for ASI indicated that the study soils 

were structured weakly to moderately in strength. Soil pH has a 

strong influence on the soil P availability to plants (Tisdale et al. 

1993). The values of soil pH ranged from 6.80 to 7.69 (Table 2). 

The range indicated that soil pH would be a limiting factor of P-

availability, especially at some high pH-localities in the study 

area. Values for EC showed a highly asymmetric and flat 

distribution as suggested by high positive skewness and kurtosis. 

Also, the greatest value of CV occurred for EC. The ranges for 

EC and pH indicated that no salinity or alkalinity problems were 

the case in the study area. Values for FC and WP showed 

somehow dissimilar statistical distribution, while they were 

highly similar in variability, they were highly different in 

skewness and kurtosis. Plant available water content (PAWC) 

was highly variable (CV%= 54.7); its values ranged from 2.74 

(very low) to 48.74 (very high). The value for skewness (0.79) 

indicates the presence of some relatively high-valued localities of 

PAWC across the study area. 
 

3.2. Spatial variation of plant available soil phosphorous content 

as related to uniform phosphorous application zones  
 

Values for Pav ranged from 6.84 to 23.53 mg kg-1 and 

exhibited a medium variability (CV= 21.29%) (Table 2). High 

positive skewness indicated that some high Pav-valued localities 

are present in the study area. High short-range variability (nugget 

variance) and short geostatistical range (A= 20 m) indicated that 

P-availability was affected by numerous soil factors as noted 

elsewhere (Trangmar et al. 1985). Table 3 shows that the 

geostatistical range for Pav is 20 m, and that the values are 

moderately spatially dependent according to Cambardella et al. 

(1994), who suggested that a variable with percent nugget effect 

< 25 is dependent strongly, between 25 and 75 moderately, and 

> 75 weakly. Figure 2b shows spatial pattern in Pav across the 

study area. The Pav was interpolated by OK using the parameters 

of semivariogram given in the Table 2, and results are shown in 

Table 3. The cross-validation correlation coefficient (rcv) 

suggested that the kriging interpolation performed poorly, which 

may be attributed to a short-range of influence (small A) and a 

high short-range variability (relatively high nugget variance) for 

Pav as indicated corresponding semivariogram (Fig. 2a and Table 

3). The inverse distance weighted (IDW) interpolation technique 

was tried using different  power-values,  again,  the  results  were  

unsatisfying. 

 
Table 3. Semivariogram analysis of study soils 

SV M Co C Co/C0+C A  RSSE R2 rCV n 

Sand (%) E 33.30 66.60 0.34 276.0 349.00 0.86 0.54 151 
Clay (%) E 16.80 58.00 0.29 690.0 149.00 0.94 0.62 152 

Silt (%) E 8.37 30.00 0.29 51.0 71.40 0.74 0.29 153 

OM content (%) E 0.11 0.23 0.33 192.0 6.48 x 10-3 0.63 0.01 145 
pH E 0.001 0.003 0.47 24.0 1.84 x 10-7 0.53 0.01 128 

EC (ms cm-1) G 0.25 0.50 0.50 51.9 0.07 0.49 0.60 154 

CaCO3 content (%) S 6.24 33.80 18.00 25.0 430.00 0.38 0.56 150 
PAWC (%) E 0.60 1.46 0.41 21.0 0.03 0.72 0.01 150 

ASI S 6.30 x 10-3 2.8 x 10-2 0.23 20.0 6.00 x 10-7 0.62 0.26 150 
P (mg kg-1) E 1.27 3.18 40.93 18.0 1.45 0.62 0.05 140 

SV: Soil variable, M: Model type (E exponential, S: spherical, G: Gaussian), Co: Nugget variance, C: sill, A: geostatistical range, RSSE: Residual sum of squared error,      

R2: Coefficient of determination for semivariogram fit, rCV: Correlation coefficient between cross validated and actual values, n: number of data points (out of 155 data points 

(full data)) included in the geostatistical analysis, EC: Electrical conductivity, OM: Organic matter, Pav: Plant available phosphorus, FC: Field capacity, WP: Wilting point, 

PAWC: Plant available water content, ASI: Aggregate stability index. 
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Therefore, we used the normal distance interpolation technique 

to build a surface map for Pav (Fig. 2b). Fig. 2b shows that most 

of the low Pav sites were located in the southern and northern part 

of the study area. Please notice that the “north” in the                

GS+-produced surface maps is different from the absolute north 

on the Google Earth Map for the study area. 

Figure 2c shows uniform P fertilizer management zones 

(MZs) determined based on spatial distribution of Pav-values 

shown in Fig. 2b. Three MZs were defined: High, medium and 

low P application zones (Fig. 2c) Medium P application sites 

were located mainly in northeast and southwest, while high P 

application sites oriented from southeast to northwest (Fig. 3c). 

The reverse was the case for spatial pattern for Pav (Fig. 2b). The 

MFP was 24 kg P ha-1 for the uniform application across the study 

area. The uniform P application could result approximately 450 

kg P to be saved. However, plants in the high P application zones 

(sites) would suffer P deficiency due to the application of P 

fertilizer in inadequate amounts, which may result in  significant

 

 
Figure 2. (a) Semivariogram and (b) spatial distribution pattern for plant available P content in study soils, (c) delineated uniform P application zones 

and corresponding fertilizer P requirements for each of the zone. The surface map in b was built by normal distance weighted interpolation. 
See text for explanation. 
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Figure 3. Semivariograms and corresponding surface maps of soil variables. The surface maps for OM content, pH, and PAWC were built by normal 

distance weighted interpolation.    



Wardami et al./Mediterr Agric Sci (2024) 37(1): 41-50 

© Akdeniz University Faculty of Agriculture 

47 

 
Figure 3. (continued) Semivariograms and corresponding surface maps of soil variables. The surface maps for OM content, pH, and PAWC were built 

by normal distance weighted interpolation.  
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decrease of the yield. A further study is needed to evaluate the 

cost: benefit economics of variable P applications in the study 

area. On the other hand, the size of management zone 1 is 

negligible (the isolated lighter blue-colored spots oriented from 

northwest to southeast, Fig. 2c); therefore, the study area was 

divided into two management zones: a medium P application 

zone including low P application spots and a high P application 

zone. 

The study area is located on a sloping landscape with ridges 

and eroded hilltops, characterized by shallow topsoil and exposed 

subsoils. Overall, eroded soils, where low Pav–valued sites are 

located, had a lighter color than the other sites. Similarly, 

Fleming et al. (2001) reported lower yield for corn (Zea mays C.) 

on upper slope positions in Nebraska. Additionally, a strong 

correlation between Pav level and winter wheat yields in northeast 

Colorado was reported. In western Iowa, crop yields on footslope 

positions surpassed those on backslopes and side-slope positions, 

which was attributed to higher soil organic matter and available 

water content for plants in more productive localities (Bonfil et 

al. 2006). 

The variable fertilizer application yields benefits in the 

majority of cases. For example, similar to our study, Bhatti et al. 

(1998) calculated varying rates of fertilizer for their area, divided 

into three homogenous MZs. They calculated the net profits as 

$321 for MZ1, $392 for MZ2, and $416 ha-1 for MZ3. Their cost: 

benefit ratios were 4.33, 5.28, and 5.62 for MZ1, MZ2, and MZ3, 

respectively. They suggested that hybrid selection and hybrid- 

specific fertilizer management are also important in management 

of N fertilizers.  
 

3.3. Spatial variability of soil properties as related to plant 

available soil P content in the study area 
 

Table 3 presents the results of semivariogram analysis, and 

Figure 3 shows the semivariograms and spatial pattern of the soil 

properties within the study area. The findings in Table 3 indicate 

that the majority of the soil variables are moderately spatially 

dependent similar to Pav. In addition, many of the soil variables 

are poorly interpolated as low r-values for cross validation (rCV) 

indicated. Silt and clay contents were highly different from the 

rest of the soil variables in A, while CaCO3 content, FC, WP, 

PAWC, ASI and Pav were similar. In addition, the spatial 

structure of Pav was highly similar to those of ASI and PAWC in 

both model type and A. Except ASI and CaCO3 content, all the 

soil attributes, including Pav, were moderately spatially 

dependent. 

Figure 3 shows the spatial pattern of soil variables across the 

study area. Greater values of sand content and lower values of 

clay content are generally co-located on the medium P 

application zone. The spatial pattern for OM content showed no 

clear spatial association to the spatial pattern of Pav in the study 

area, while those for CaCO3 content and wilting point showed 

that their greater values tended to be located in the medium P 

application zone. Similarly, a spatial relationship between ASI 

and Pav is evident, while soil pH and EC showed no apparent 

spatial relationship with Pav. When semivariogram and the spatial 

pattern for Pav are compared to those for rest of the soil properties, 

it can be concluded that the greatest spatial relationship occurred 

between Pav and ASI and PAWC. The close spatial relationship 

with PAWC and Pav should be considered in variable P 

application as low Pav and low PAWC tend to co-exist in the 

study area. In many cases, especially in dryland farming 

conditions, low PAWC is one of the most important yield 

limiting factors. If this is the case in the study area, the expected 

benefit may not be obtained from greater fertilizer applications 

on the low-P sites.  

The results revealed that OK- interpolations for many of the 

soil variables performed poorly due probably to the same reasons 

behind unsatisfactory interpolation of Pav. Just like with Pav, we 

experimented with different lagging and modeling approaches to 

improve the success of OK-interpolation for other soil properties. 

Although performance for semivariogram modelling increased 

tremendously in many cases as indicated by increased R2 and/or 

decreased RSSE, no significant improvement was the case in the 

corresponding rCV-values. A different sampling configuration 

may yield a highly different modeling performance (Kravchenko 

2003). Actually, there were adequate numbers of samples in close 

distances (between 0 and 50 m), while greater number of samples 

were needed in medium distances (50-200 m) to safely model 

semivariograms in those proximities. There are also adequate 

numbers of samples to calculate semivariograms in distances 

longer than 200 m. However, the fact that the data enabled the 

detection of close spatial associations between Pav and PAWC is 

very important in practice as PAWC can limit the benefit from 

greater P application on the low PAWC-sites.  

The On Farm Management Information Systems (FMIS) 

seem promising to facilitate the implementation of precision 

agriculture for small-scale farmers in Türkiye. The On-Farm 

Experimentation (OFE) is an innovative process in which farmers 

and professional researchers collaborate to improve farm 

management by generating data from agronomic experiments on 

farmers’ own fields (Tanaka et al. 2023). Lack of data availability 

is another key obstacle in the implementation of precision 

farming, worldwide (Tanaka et al. 2023; Kumar et al. 2023). 

Many different tools and techniques are used to gather the 

information needed for precision agriculture. Tools and 

technologies such as Global Positioning System (GPS), 

Geographic Information System (GIS), sensor technology, yield 

monitoring systems, software, and spatial interpolation of soil 

resources can be used for gathering the information needed for 

implementing variable rate application of fertilizers across the 

world (Kumar et al. 2023). Those same techniques and tools can 

be used in Türkiye to facilitate the application of variable 

fertilizer management across the nation.  

 

4. Conclusions 
 

The main objectives of this study were to identify the field 

scale spatial variability in soil Pav and some soil properties to 

develop uniform P management zones (MZs) for site-specific 

applications of P fertilizers. Characteristics of semivariograms 

and spatial patterns related to both Pav and most of the studied 

soil properties indicated the presence of high short-range 

variability of soil attributes in the study area. Results of cross-

validation analyses suggested that a different soil sampling 

configuration with a greater sampling density is needed to safely 

apply geostatistics to delineate uniform P application MZs.  

Two MZs were identified based on the spatial variation of 

Pav. The soil attributes such as PAWC and ASI were highly 

spatially related to Pav as their greater values co-located with 

greater values of Pav, and vice versa. The close spatial association 

between Pav and PAWC is very important in practice. A greater 

P application may not yield the expected benefit on low PAWC-

sites as low PAWC may still limit the yield increase at those sites. 

The variable P application management zones (MZs), identified 

through observed yield differences, may not fully capture soil 

factors that limit yield beyond Pav. Therefore, the spatial 
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variability in soil variables should be considered along with 

spatial variability in yield to correctly identify the yield 

differences and factors responsible for the differences in 

developing a successful variable fertilizer application program.  

An extensive literature search for this research revealed that 

Türkiye is just in the early stages of adopting and beginning to 

embrace precision agriculture, aligning with the global trend 

observed in numerous other nations across the world. However, 

the strategic support from both public and commercial sectors is 

still in the infancy stages. The advancement of precision 

agriculture (PA) in Türkiye faces obstacles and various 

challenges, including a lack of information, connectivity issues 

in rural areas, and a lack of funding. The main factor impeding 

the advancement of precision agriculture, and a key reason for its 

slow implementation, is the constraint posed by insufficient 

financial resources. Issues related to the adaption of the farmers, 

organization, and functioning of the economy to increase its 

profitability, employment, and staff development should be 

solved in order to implement precision agriculture on a national 

scale. The small field size and lack of financial resources are 

obstacles for small-scale farmers. These problems force the 

farmers to apply traditional methods in production. 

Future studies may explore how current variable rate 

fertilizer and pesticide management techniques and approaches 

may increase food production, limit environmental effects, and 

cut costs. Studies should be conducted to achieve the integration 

of precision farming into everyday farming operations in 

Türkiye. The obstacles that force the farmers to apply traditional 

methods in production should be studied holistically, considering 

the technical, financial, and social aspects of the problem. The 

On Farm Management Information Systems (FMIS) may 

facilitate the implementation of precision agriculture, especially 

by small-scale farmers. Therefore, we propose research on the 

orientation of FMIS to be given priority in future studies in 

Türkiye.  
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