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Abstract
In this paper, we study several generalized metric properties of the space F(X) of finite
subsets of a space X endowed with the Vietoris topology. In particular, we consider such
properties (P ) for which F(X) has (P ) if and only if X has (P ). Also, we obtain some
results related to the images of metric spaces under some kinds of continuous mappings.
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1. Introduction and preliminaries
Recently, the generalized metric properties on hyperspaces with the Vietoris topology

have been studied by many authors ([8], [10], [16], [17], [20], [21], [22]). They considered
several generalized metric properties and studied the relation between a space X satis-
fying such a property and its hyperspaces with the Vietoris topology, such as the n-fold
symmetric product Fn(X), the hyperspace F(X) of finite subsets of X satisfying the same
property.

In this paper, we study the relation between a space X satisfying certain generalized
metric properties and its hyperspace of finite subsets F(X) with the Vietoris topology
satisfying the same properties. We prove that

(1) X is an sn-symmetric space if and only if so is F(X);
(2) X has a σ-strong network consisting of cs∗-covers (cs-covers) if and only if so does

F(X);
(3) X has a σ-(P )-strong network consisting of cs∗-covers (cs-covers) if and only if so

does F(X).
By these results, we obtain that

(1) X is a semi-metric space if and only if so is F(X);
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(2) X is an sn-metrizable space (resp., an sn-developable space, a strongly sn-developable
space) if and only if so is F(X);

(3) X is a weak Cauchy sn-symmetric space (resp., Cauchy sn-symmetric space) if
and only if so is F(X);

(4) X is a Cauchy sn-symmetric space with a σ-(P )-property cs∗-network (resp., cs-
network, sn-network) if and only if so is F(X);

(5) X is a space with a point-regular cs∗-network (resp., cs-network, sn-network) if
and only if so is F(X).

By (5), we get that X has a point-regular base if and only if so does F(X). Moreover,
we show that

(1) If F(X) is a g-metrizable space (resp., g-developable space, strongly g-developable
space, Cauchy symmetric space, weak Cauchy symmetric space), then so is X, but
the reverse is not true;

(2) If F(X) is a Cauchy symmetric space with a σ-(P )-property cs∗-network (resp.,
cs-network, sn-network, weak base), then so is X, but the reverse is not true;

(3) If F(X) has a point-regular weak base, then so does X, but the reverse is not true.
On the other hand, we also get some results about the images of metric spaces on

Vietoris hyperspaces.
Throughout this paper, all spaces are assumed to be T1 and regular, N denotes the set

of all positive integers. For a sequence {xn}n∈N converging to x, we say that {xn}n∈N is
eventually in P if {x} ∪ {xn : n ≥ m} ⊂ P for some m ∈ N, and {xn}n∈N is frequently in
P if some subsequence of {xn}n∈N is eventually in P .

Given a space X, we define its hyperspaces as the following sets:
(1) CL(X) = {A ⊂ X : A is closed and nonempty};
(2) K(X) = {A ∈ CL(X) : A is compact};
(3) Fn(X) = {A ∈ CL(X) : A has at most n points}, where n ∈ N;
(4) F(X) = {A ∈ CL(X) : A is finite}.

The set CL(X) is topologized by the Vietoris topology defined as the topology generated
by

B = {〈U1, . . . , Uk〉 : U1, . . . , Uk are open subsets of X, k ∈ N},

where
〈U1, . . . , Uk〉 =

{
A ∈ CL(X) : A ⊂

⋃
i≤k Ui, A ∩ Ui 6= ∅ for each i ≤ k

}
.

Note that, by definition, K(X), Fn(X) and F(X) are subspaces of CL(X). Hence, they
are topologized with the appropriate restriction of the Vietoris topology. Moreover,

(1) CL(X) is called the hyperspace of nonempty closed subsets of X;
(2) K(X) is called the hyperspace of nonempty compact subsets of X;
(3) Fn(X) is called the n-fold symmetric product of X;
(4) F(X) is called the hyperspace of finite subsets of X.

On the other hand, it is obvious that F(X) =
⋃ ∞

n=1Fn(X) and Fn(X) ⊂ Fn+1(X) for
each n ∈ N.

Remark 1.1 ([20]). Let X be a space and let n ∈ N.
(1) Fn(X) is closed in F(X).
(2) f1 : X � F1(X), (x 7→ {x}), is a homeomorphism.
(3) Every Fm(X) is a closed subset of Fn(X) for each m, n ∈ N, m < n.

Notation 1.2 ([17]). If U1, . . . , Us are open subsets of a space X, then 〈U1, . . . , Us〉F(X)
denotes the intersection of the open set 〈U1, . . . , Us〉 of the Vietoris topology, with F(X).

Notation 1.3 ([22]). Let X be a space. If {x1, . . . , xr} is a point of F(X) and {x1, . . . , xr} ∈
〈U1, . . . , Us〉F(X), then for each j ≤ r, we let
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Uxj =
⋂

{U ∈ {U1, . . . , Us} : xj ∈ U}.
Observe that 〈Ux1 , . . . , Uxr 〉F(X) ⊂ 〈U1, . . . , Us〉F(X).

Definition 1.4 ([3]). For a cover P of a space X, let (P ) be one of the following properties:
point-finite, compact-finite, locally finite, point-countable, compact-countable, and locally
countable. We say that P has the σ-(P )-property, if P can be expressed as

⋃
{Pn : n ∈ N},

where each Pn has the (P )-property.

Definition 1.5. Let P be a family of subsets of a space X and P ⊂ X.
(1) P is a sequential neighborhood at x [1], if each sequence L converging to x is

eventually in P .
(2) P is a cs∗-cover [1] (resp., cs-cover [25]), if every convergent sequence is frequently

(resp., eventually) in some P ∈ P.
(3) P is a cs∗-network [1] (resp., cs-network [13]), if whenever L is a sequence converg-

ing to x ∈ U with U open in X, then L is frequently (resp., eventually) in P ⊂ U
for some P ∈ P.

(4) X is a ℵ-space [13], if it has a σ-locally finite cs-network.
(5) P is point-regular [1], if for every x ∈ U with U open in X, the set {P ∈ P : x ∈

P 6⊂ U} is finite.

Definition 1.6 ([3]). Let {Pn : n ∈ N} be a sequence of covers of a space X. Put
P =

⋃
{Pn : n ∈ N}.

(1) P is a σ-strong network for X, if Pn+1 refines Pn for every n ∈ N and {St(x,Pn) :
n ∈ N} is a network at each x ∈ X.

(2) P is a σ-(P )-strong network for X, if it is a σ-strong network and each Pn has the
(P )-property.

(3) P is a σ-(P )-strong network consisting of cs∗-covers (cs-covers) for X, if it is a
σ-(P )-strong network and each Pn is a cs∗-cover (cs-cover).

Definition 1.7 ([2]). Let P =
⋃

{Px : x ∈ X} be a cover of a space X such that Px is a
network at x, and if P1, P2 ∈ Px, then P ⊂ P1 ∩ P2 for some P ∈ Px.

(1) P is a weak base, if for G ⊂ X, G is open in X if and only if for every x ∈ G, there
exists P ∈ Px such that P ⊂ G; Px is said to be a weak neighborhood base at x.

(2) P is an sn-network, if every element of Px is a sequential neighborhood of x for
every x ∈ X; Px is said to be an sn-network at x.

Remark 1.8. (1) Bases ⇒ weak bases ⇒ sn-networks [12] ⇒ cs-networks ⇒ cs∗-
networks.

(2) In a sequential space, weak bases ⇔ sn-networks [12].

Following [7], a function d : X × X → [0, ∞) such that for all x, y ∈ X, d(x, y) = 0 if
and only if x = y and d(x, y) = d(y, x), is called a d-function on X.

Definition 1.9. [7, Definition 2.6] Let d be a d-function on a space X. For each x ∈ X
and n ∈ N, put Sn(x) = {y ∈ X : d(x; y) < 1/n}. Then, X is semi-metric [24] (resp.,
symmetric, sn-symmetric), if {Sn(x) : n ∈ N} is a neighborhood base (resp., a weak
neighborhood base, an sn-network) at x for all x ∈ X.

Definition 1.10. Let d be a d-function on a space X. Then:
(1) X is Cauchy symmetric [23] (resp., Cauchy sn-symmetric [2]), if (X, d) is a sym-

metric space (resp., an sn-symmetric space) and every convergent sequence is
d-Cauchy.

(2) X is weak Cauchy symmetric (resp., weak Cauchy sn-symmetric) [5], if (X, d) is
a symmetric space (resp., an sn-symmetric space) and every convergent sequence
has a d-Cauchy subsequence.
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Remark 1.11 ([3], [5], [7]). (1) symmetric spaces ⇐⇒ sequential and sn-symmetric
spaces.

(2) Cauchy symmetric spaces ⇐⇒ sequential and Cauchy sn-symmetric spaces.
(3) weak Cauchy symmetric spaces ⇐⇒ sequential and weak Cauchy sn-symmetric

spaces.
(4) semi-metric spaces ⇐⇒ first-countable and sn-symmetric spaces.

Definition 1.12 ([14]). Let
X = {∞} ∪ {xn : n ∈ N} ∪ {xnm : n, m ∈ N},

where every xn, xnm and ∞ are different from each other. The set X endowed with the
following topology is called the Arens space and denoted briefly as S2: each xnm is isolated;
a basic neighborhood of xn has the form {xn} ∪ {xnm : m > k} for some k ∈ N; a basic
neighborhood of ∞ has the form {∞} ∪

( ⋃
{Vn : n ≥ k}

)
for some k ∈ N, where each Vn

is a neighborhood of xn.
Let us restrict the prefixes α(P1) and α(P2) to the following
(1) α(P1) is compact if (P1) is point-finite, α(P1) is mssc if (P1) is locally finite, and

α(P1) is msk if (P1) is compact-finite.
(2) α(P2) is s if (P2) is point-countable, α(P2) is cs if (P2) is compact-countable, and

α(P2) is msss if (P2) is locally countable.
For some undefined or related concepts, we refer the reader to [2], [3] and [13].

2. Main results
Let X be a space. We say that a sequence {An}n∈N consisting of subsets of X converges

to a subset A ⊂ X if for each open set U in X with A ⊂ U , there exists k ∈ N such that
An ⊂ U for each n > k.
Lemma 2.1. Let X be a space and {Fm}m∈N be a sequence of points of F(X). If {Fm}m∈N
converges to a point F = {x1, . . . , xr} in F(X) and {U1, . . . , Ur} is a family of pairwise
disjoint open subsets of X such that xj ∈ Uj for each j ≤ r, then {Fm ∩ Uj}m∈N converges
to {xj} in X for each j ≤ r.
Proof. Fix j ∈ {1, . . . , r} and let Vj be any open neighborhood of xj in X. Put Oj =
Vj ∩ Uj , then Oj is an open neighborhood of xj in X. This implies that

F ∈ 〈U1, . . . , Uj−1, Oj , Uj+1, . . . , Ur〉F(X).

Since {Fm}m∈N converges to the point F = {x1, . . . , xr} in F(X), there exists k ∈ N such
that

{Fm : m > k} ⊂ 〈U1, . . . , Uj−1, Oj , Uj+1, . . . , Ur〉F(X) ∩ 〈U1, . . . , Ur〉F(X).

Because {U1, . . . , Ur} is a family of pairwise disjoint open subsets of X and Oj ⊂ Uj , we
have that

Fm ∩ Uj ⊂ Oj ⊂ Vj for each m > k.

Therefore, {Fm ∩ Uj}m∈N converges to {xj} in X. �

For each n ∈ N, let Pn be a family of subsets of a space X. Put

Pn = {〈P (n)
1 , . . . , P (n)

s 〉F(X) : P
(n)
1 , . . . , P (n)

s ∈ Pn, s ∈ N},

where 〈P (n)
1 , . . . , P

(n)
s 〉F(X) = 〈P (n)

1 , . . . , P
(n)
s 〉 ∩ F(X). Then, Pn is a family of subsets of

F(X) for each n ∈ N.
If A is a family of subsets of a space Y and B ⊂ Y , then the star of B with respect to

A is the set
St(B,A) := ∪{A ∈ A : A ∩ B 6= ∅}.

For y ∈ Y , we use the notation St(y,A) instead of St({y},A).
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Lemma 2.2. For each n ∈ N,

St({x1, . . . , xs},Pn) = 〈St(x1,Pn), St(x2,Pn), . . . , St(xs,Pn)〉F(X).

Proof. Let A ∈ St({x1, . . . , xs},Pn). Then, there exist P1, . . . , Pl ∈ Pn such that

A, {x1, . . . , xs} ∈ 〈P1, . . . , Pl〉F(X).

By [15, Lemma 2.3.1], we have that

A ∈ 〈P1, . . . , Pl〉F(X) ⊂ 〈St(x1,Pn), . . . , St(xs,Pn)〉F(X).

Therefore,

St({x1, . . . , xs},Pn) ⊂ 〈St(x1,Pn), St(x2,Pn), . . . , St(xs,Pn)〉F(X). (2.1)

Next, take any A = {y1, . . . , yk} ∈ 〈St(x1,Pn), St(x2,Pn), . . . , St(xs,Pn)〉F(X). Then,
for each i ≤ k, since

A = {y1, . . . , yk} ⊂
⋃
i≤s

St(xi,Pn),

there exists j ≤ s such that yi ∈ St(xj ,Pn). Hence, there exists Pyi ∈ Pn such that
{yi, xj} ⊂ Pyi . On the other hand, for each j ≤ s, since A ∩ St(xj ,Pn) 6= ∅, there exist
i ≤ k and Qxj ∈ Pn such that {xj , yi} ⊂ Qxj . If we put

{Pyi : i ≤ k} ∪ {Qxj : j ≤ s} = {G1, . . . , Gr},

then
A ∈ 〈G1, . . . , Gr〉F(X) ⊂ St({x1, . . . , xs},Pn).

This shows that

〈St(x1,Pn), St(x2,Pn), . . . , St(xs,Pn)〉F(X) ⊂ St({x1, . . . , xs},Pn). (2.2)

By (2.1), (2.2), the lemma is proved. �

Lemma 2.3. (1) If
⋃

{Pn : n ∈ N} is a σ-strong network for X, then
⋃

{Pn : n ∈ N}
is a σ-strong network for F(X).

(2) For each n ∈ N, if St(x,Pn) is a sequential neighborhood of x for all x ∈ X, then
St(F,Pn) is a sequential neighborhood of F for all F ∈ F(X).

(3) If Pn is a cs∗-cover (resp., cs-cover) for X, then Pn is a cs∗-cover (resp., cs-cover)
for F(X).

(4) If Pn has the (P )-property, then Pn has the (P )-property.

Proof. Assume that F = {x1, . . . , xr} ∈ F(X) and U is an open neighborhood of F in
F(X). Then, there exist open subsets U1, . . . , Us of X such that

F ∈ 〈U1, . . . , Us〉F(X) ⊂ U.

Because X is Hausdorff, it follows from Notation 1.3 that we can find pairwise disjoint
open subsets O1, . . . , Or of X such that xj ∈ Oj for each j ≤ r and

F ∈ 〈O1, . . . , Or〉F(X) ⊂ 〈U1, . . . , Us〉F(X) ⊂ U.

Let {Fm}m∈N be a sequence converging to F in F(X). By Lemma 2.1, for each j ≤ r, the
sequence {Fm ∩ Uj}m∈N converges to {xj} in X.

(1) For each n ∈ N, since Pn+1 refines Pn, it is obvious that Pn+1 refines Pn. On
the other hand, for each j ≤ r, since

⋃
{Pn : n ∈ N} is a σ-strong network for X,

{St(xj ,Pn) : n ∈ N} is a network at xj in X. Thus, there exists mj ∈ N such that

xj ∈ St(xj ,Pn) ⊂ Uj whenever n ≥ mj .
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Let m = max{mj : j ≤ r}. Then
F ∈ 〈St(x1,Pn), . . . , St(xr,Pn)〉F(X) ⊂ 〈U1, . . . , Ur〉F(X)

whenever n ≥ m. It follows from Lemma 2.2 that F ∈ St(F,Pn) ⊂ U for every n ≥ m.
Therefore, {St(F,Pn) : n ∈ N} is a network at F in F(X). This implies that

⋃
{Pn : n ∈

N} is a σ-strong network for F(X).
(2) For each n ∈ N and j ≤ r, since St(xj ,Pn) is a sequential neighborhood of xj , there

exists kj ∈ N such that

{xj} ∪
( ⋃

{Fm ∩ Uj : m ≥ kj}
)

⊂ St(xj ,Pn).

If we put k = max{kj : j ≤ r}, then it follows from Lemma 2.2 that
{F} ∪ {Fm : m > k} ⊂ 〈St(x1,Pn), St(x2,Pn), . . . , St(xr,Pn)〉F(X) = St(F,Pn).

This shows that St(F,Pn) is a sequential neighborhood of F .
(3) If Pn is a cs∗-cover for X, by induction on r, then there exist P

(n)
j ∈ Pn and a

subsequence {mk}k∈N of N such that

{xj} ∪
( ⋃

{Fmk
∩ Uj : k ∈ N}

)
⊂ P

(n)
j .

This implies that 〈P (n)
1 , . . . , P

(n)
r 〉F(X) ∈ Pn and

{F} ∪ {Fmk
: k ∈ N} ⊂ 〈P (n)

1 , . . . , P (n)
r 〉F(X).

Hence, Pn is a cs∗-cover for F(X).
If Pn is a cs-cover for X, then there exist P

(n)
j ∈ Pn and kj ∈ N such that

{xj} ∪
( ⋃

{Fm ∩ Uj : m ≥ kj}
)

⊂ P
(n)
j .

Put k = max{kj : j ≤ r}. Then, 〈P (n)
1 , . . . , P

(n)
r 〉F(X) ∈ Pn and

{F} ∪ {Fm : m > k} ⊂ 〈P (n)
1 , . . . , P (n)

r 〉F(X).

Therefore, Pn is a cs-cover for F(X).
(4) Because each Pn has the (P )-property, similar to the proof of [21, Lemma 2.2], we

claim that Pn has the (P )-property. �

Theorem 2.4. A space X is an sn-symmetric space if and only if so is F(X).

Proof. Necessity. Let X be an sn-symmetric space. By [3, Theorem 2.3], X has a σ-
strong network

⋃
{Pn : n ∈ N} such that {St(x,Pn) : n ∈ N} is an sn-network at x for all

x ∈ X. It follows from Lemma 2.3(1) that
⋃

{Pn : n ∈ N} is a σ-strong network for F(X),
where

Pn = {〈P (n)
1 , . . . , P (n)

s 〉F(X) : P
(n)
1 , . . . , P (n)

s ∈ Pn, s ∈ N}.

Now, we will prove that {St(F,Pn) : n ∈ N} is an sn-network at F for all F ∈ F(X).
Indeed, take any F = {x1, . . . , xr} ∈ F(X). Then:

(1) Since
⋃

{Pn : n ∈ N} is a σ-strong network for F(X), {St(F,Pn) : n ∈ N} is a
network at F .

(2) Let St(F,Pn1), St(F,Pn2) ∈ {St(F,Pn) : n ∈ N}. Since Pn+1 refines Pn for all
n ∈ N, if we put m = max{n1, n2}, then

St(F,Pm) = St(F,Pn1) ∩ St(F,Pn2).
(3) Since {St(x,Pn) : n ∈ N} is an sn-network at x for all x ∈ X, St(x,Pn) is a

sequential neighborhood of x for all x ∈ X and n ∈ N. By Lemma 2.3(2), St(F,Pn) is a
sequential neighborhood of F for each n ∈ N,.

By [3, Theorem 2.3], F(X) is an sn-symmetric space.
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Sufficiency. Let F(X) be an sn-symmetric space. Since every subspace of an sn-
symmetric space is an sn-symmetric space, X is an sn-symmetric space by Remark 1.1. �

Corollary 2.5. A space X is a semi-metric space if and only if so is F(X).

Proof. By [15, Theorem 4.5.3] and Remark 1.1, we have that X is a first-countable space
if and only if so is F(X). Therefore, X is a semi-metric space if and only if so is F(X) by
Theorem 2.4 and Remark 1.11(4). �

Theorem 2.6. Let X be a space. Then:
(1) X has a σ-strong network consisting of cs∗-covers (cs-covers) if and only if so does

F(X);
(2) X has a σ-(P )-strong network consisting of cs∗-covers (cs-covers) if and only if so

does F(X).

Proof. Necessity. By Lemma 2.3.
Sufficiency. Assume that

⋃
{Pn : n ∈ N} is a σ-strong network consisting of cs∗-covers

(cs-covers) (resp., σ-(P )-strong network consisting of cs∗-covers (cs-covers)) for F(X). For
each n ∈ N, we put

Gn = {W ∩ F1(X) : W ∈ Pn}.

Then,
⋃

{Gn : n ∈ N} is a σ-strong network consisting of cs∗-covers (cs-covers) (resp.,
σ-(P )-strong network consisting of cs∗-covers (cs-covers)) for F1(X). Thus, X has a σ-
strong network consisting of cs∗-covers (cs-covers) (resp., σ-(P )-strong network consisting
of cs∗-covers (cs-covers)) by Remark 1.1. �

By Theorem 2.6, [3, Theorems 2.5, 2.7, 2.9], [3, Corollaries 2.11, 2.13], [6, Theorem 1],
[2, Theorems 2.3, 2.6, 2.9], [2, Corollaries 3.6, 3.8], [1, Theorem 2.3], [11, Theorem 1], we
obtain the following corollaries.

Corollary 2.7. Let X be a space. Then:
(1) X is an sn-metrizable space (resp., an sn-developable space, a strongly sn-developable

space) if and only if so is F(X);
(2) X is a weak Cauchy sn-symmetric space (resp., Cauchy sn-symmetric space) if

and only if so is F(X);
(3) X is a Cauchy sn-symmetric space with a σ-(P )-property cs∗-network (resp., cs-

network, sn-network) if and only if so is F(X);
(4) X is a space with a point-regular cs∗-network (resp., cs-network, sn-network) if

and only if so is F(X).

Corollary 2.8. Suppose a topological property γ satisfies the following:
(1) γ is a 1-sequence-covering and π-image of a metric space;
(2) γ is a sequence-covering and π-image of a metric space;
(3) γ is a compact-covering compact and mssc-image of a metric space;
(4) γ is a sequentially-quotient π and mssc-image of a metric space;
(5) γ is a 1-sequence-covering and mssc-image of a metric space;
(6) γ is a 1-sequence-covering compact and σ-image of a metric space;
(7) γ is a sequence-covering π and σ-image of a metric space;
(8) γ is a 1-sequence-covering and compact image of a metric space;
(9) γ is a sequence-covering and compact image of a metric space;

(10) γ is a pseudo-sequence-covering and compact image of a metric space;
(11) γ is a sequentially-quotient and π-image of a metric space;
(12) γ is a 1-sequence-covering compact, α(P1)-image of a metric space;
(13) γ is a sequence-covering π, α(P1)-image of a metric space;
(14) γ is a 1-sequence-covering π, α(P2)-image of a metric space;
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(15) γ is a sequence-covering π, α(P2)-image of a metric space.
Let X be a space. Then, X has the property γ if and only if so does F(X) .

Remark 2.9. By Corollary 2.7(4), we obtain [10, Theorem 4.7] that X has a point-regular
base if and only if so does F(X).

Proof. It follows from [4, Lemma 5.4.7] that a space has a point-regular base if and only
if it is a first-countable space with a point-regular sn-network. On the other hand, by the
proof of Corollary 2.5, we have that X is a first-countable space if and only if so is F(X).
Therefore, X has a point-regular base if and only if so does F(X) by Corollary 2.7(4). �

Since the property of sequential spaces is closed hereditary, by Remark 1.1 and Corollary
2.7, we obtain the following corollary.

Corollary 2.10. Let X be a space. Then:
(1) If F(X) is a g-metrizable space (resp., g-developable space, strongly g-developable

space, Cauchy symmetric space, weak Cauchy symmetric space), then so is X;
(2) If F(X) is a Cauchy symmetric space with a σ-(P )-property cs∗-network (resp.,

cs-network, sn-network, weak base), then so is X;
(3) If F(X) has a point-regular weak base, then so does X.

By Corollary 2.10 and [3, Corollaries 2.6, 2.8, 2.12, 2.14] and [2, Corollaries 2.7, 2.10],
we get the following corollary.

Corollary 2.11. Suppose a topological property γ satisfies the following:
(1) γ is a weak-open and π-image of a metric space;
(2) γ is a weak-open and mssc-image of a metric space;
(3) γ is a weak-open compact-covering compact and σ-image of a metric space;
(4) γ is a weak-open π and σ-image of a metric space;
(5) γ is a weak-open and compact image of a metric space;
(6) γ is a weak-open compact-covering compact, α(P1)-image of a metric space;
(7) γ is a weak-open π, α(P1)-image of a metric space;
(8) γ is a weak-open compact-covering π, α(P2)-image of a metric space;
(9) γ is a weak-open π, α(P2)-image of a metric space.

Then, if X is a space satisfying F(X) has the property γ, then so does X.

Lemma 2.12. If X, Y are Cauchy sn-symmetric spaces (resp., Cauchy symmetric spaces),
then X ⊕ Y is a Cauchy sn-symmetric space (resp., Cauchy symmetric space).

Proof. By [3, Theorem 2.5], the space X (resp., the space Y ) has a σ-strong network
consisting of cs-covers

⋃
{Gn : n ∈ N} (resp.,

⋃
{Hn : n ∈ N}). Then, Gn+1 ∪ Hn+1 refines

Gn ∪ Hn for every n ∈ N. Next, let x ∈ X ⊕ Y and V be an open neighborhood of x in
X ⊕ Y . Without loss of generality we can assume that x ∈ X. Since V ∩ X is an open
neighborhood of x in X, there exists n ∈ N such that St(x,Gn) ⊂ V ∩ X. On the other
hand, since x /∈ H for every H ∈ Hn, we claim that

St(x,Gn ∪ Hn) = St(x,Gn) ⊂ V ∩ X ⊂ V.

Therefore,
⋃

{Gn ∪ Hn : n ∈ N} is a σ-strong network for X ⊕ Y .
Now, suppose that the sequence L converges to x in X ⊕ Y . Without loss of generality

we can assume that L ⊂ X. Thus, the sequence L converges to x in X. Because Gn is a
cs-cover for X, there exists G ∈ Gn ⊂ Gn ∪ Hn such that L is eventually in G. It shows
that each Gn ∪Hn is a cs-cover for X ⊕ Y . It follows from [3, Theorem 2.5] that X ⊕ Y is
a Cauchy sn-symmetric space. Moreover, if X, Y are sequential spaces, then X ⊕ Y is a
sequential space. Hence, if X, Y are Cauchy symmetric spaces, then X ⊕ Y is a Cauchy
symmetric space by Remark 1.11. �
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Lemma 2.13. The Arens space S2 is a Cauchy symmetric space.

Proof. For each n ∈ N, we put

Pn =
{

{xij} : i, j ∈ N
}

∪
(
{∞} ∪ {xi : i ≥ n}

)
∪

{
{xi} ∪ {xim : m ≥ n} : i ∈ N

}
.

Then, Pn+1 refines Pn for every n ∈ N. Furthermore, we have:
(1) {St(x,Pn) : n ∈ N} is a network at each x ∈ S2.
Let x ∈ S2 and V be an open neighborhood of x in S2. If x = xij , then St(x,Pn) =

{x} ⊂ V for every n > j. If x = xm, then we choose n > m such that
St(x,Pn) = {xm} ∪ {xmj : j ≥ n} ⊂ V.

If x = ∞, then there exists m ∈ N such that xi ∈ V for every i ≥ m. Take n ≥ m, we
have

St(x,Pn) = {∞} ∪ {xi : i ≥ n} ⊂ V.

Therefore, {St(x,Pn) : n ∈ N} is a network at x.
(2) Each Pn is a cs-cover for S2.
Let x ∈ S2 and L be a sequence converging to x in S2. If x = xij , then L is eventually

in P = {xij} ∈ Pn. If x = xi, then L is eventually in P = {xi} ∪ {xij : j ≥ n} ∈ Pn. If
x = ∞, then L is eventually in P = {∞} ∪ {xi : i ≥ m} ∈ Pn. This shows that Pn is a
cs-cover for S2.

Then, S2 is a Cauchy sn-symmetric space by Theorem 2.5 in [3] stating that a space X
is Cauchy sn-symmetric if and only if X has a σ-strong network consisting of cs-covers.
(Recall that for a sequence {Pn : n ∈ N} of covers of a space X, ∪{Pn : n ∈ N} is a
σ-strong network for X [9] if Pn+1 refines Pn for all n ∈ N and {St(x,Pn) : n ∈ N} is a
network at x for each x ∈ X.) Since S2 is a sequential space, S2 is a Cauchy symmetric
space by Remark 1.11. �

Remark 2.14. (1) In [2, Lemma 2.2] the authors described a (general) construction of
the d-function which can work in the proof of the previous lemma.

(2) We gave a direct proof of the previous lemma. However, the result follows from the
fact that S2 is a 1-sequence-covering quotient and compact image of a metric space. Such
spaces are Cauchy symmetric [18].

Example 2.15. There exists a Cauchy symmetric and ℵ-space X such that F2(X) is not
a k-space.

Proof. Let Y = S2 × (P∪ {0}), where S2 is the Arens space and P is the set of irrational
numbers. Then, Y is not a k-space [13, Example 1.8.6]. Put X = S2 ⊕ (P∪ {0}). Then, X
is a ℵ-space because the space S2 and P∪ {0} are ℵ-spaces. Moreover, since S2 is Cauchy
symmetric by Lemma 2.13, and P∪ {0} is Cauchy symmetric, we claim that X is Cauchy
symmetric by Lemma 2.12. On the other hand, since Y is a closed subset of X2 and the
property of k-spaces is closed hereditary, we can conclude that the product X2 is not a
k-space. Therefore, F2(X) is not a k-space by [20, Remark 4.2]. �

Remark 2.16. By Example 2.15, we claim that the inverse of Corollaries 2.10 and 2.11
is not true.

Proof. Let X be a Cauchy symmetric space and ℵ-space in Example 2.15. Observe that
X is a weak Cauchy symmetric space. It follows from [2, Theorem 2.3], [3, Theorem
2.9], Remarks 1.8 and 1.11 that X is a Cauchy symmetric space with a σ-locally finite
weak base. Furthermore, by [2, Corollary 2.7, Remark 2.8], X is a strong g-developable
space and X is a weak-open compact-covering compact and mssc-image of a metric space.
Thus, X is g-developable, g-metrizable, a weak-open π and σ-image of a metric space by
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[3, Corollary 2.12]. It follows from [3, Corollary 2.14] that X has a point-regular weak base.
By [3, Corollaries 2.6, 2.8, 2.12, 2.14] and [2, Corollaries 2.7, 2.10], we claim that X satisfies
the properties γ in Corollary 2.11. On the other hand, if F2(X) is a g-metrizable space
or a g-developable space or a strongly g-developable space or a (weak) Cauchy symmetric
space or a Cauchy symmetric space with a σ-(P )-property cs∗-network (resp., cs-network,
sn-network, weak base) or a space with a point-regular weak base or a space satisfies
one of the properties in Corollary 2.11, then F2(X) is a k-space. This is a contradiction.
Therefore, the converse of Corollaries 2.10 and 2.11 is not true. �
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