
Universal Journal of Mathematics and Applications, 6 (1) (2023) 15-22
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.1207010

Theorems of Second Korovkin Type with respect to Triangular
A-Statistical Convergence

Selin Çınar1
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Abstract

This article is a continuation of our previous works. We mainly investigate a Korovkin
type theorem for double sequences of positive linear operators defined in the space of all
2π-periodic and real valued continuous functions on the real two-dimensional space with
help of the concept of triangular A-statistical convergence, which is a kind of statistical
convergence for double real sequences. Also, we analyze the rate of convergence of double
operators in this via modulus of continuity.

1. Introduction

Fast [1] (independently, Steinhaus [2]) introduced the concept of statistical convergence, which is an advantageous approach. This concept
is studied in various fields and its generalization and properties are investigated. Bardaro et al. [3], introduced the concept of triangular
A-statistical convergence which is a variant of statistical convergence in 2015. This new convergence offers another perspective as it is not
comparable to statistical convergence. In addition, there are other studies in the literature [4–7].
The Korovkin type theorem has an important place in approximation theory as it enables us to check convergence with minimum
calculations [8]. This theorem has been studied by many mathematicians in different spaces and with various types of convergence,
with the aim of obtaining more general results [9–20].
Let C∗

(
R2) stands for the space of all 2π-periodic and continuous functions on R2.

Our main aim in this study is to present a theorem of Korovkin type on C∗
(
R2) in the light of the triangular A-statistical convergence given

by Bardaro et al.
Before proceeding we recall some notation on the paper.
A double sequence x = (xm,n) is said to be convergent in Pringsheim’s sense if, for every ε > 0, there exists N = N(ε) ∈ N, the set of
all natural numbers, such that |xm,n− ı|< ε whenever m,n > N, where ı is called the Pringsheim limit of x and denoted by P− limx = ı
(see [21]). We shall call such an x, as P-convergent. By a bounded double sequence we mean there exists a H > 0 such that |xm,n| ≤ H
for all (m,n) ∈ N2 = N×N. It is worthy of note that unlike the single sequences, the double sequence does not have to be bounded.
Let A = (ak,l,m,n) be a four-dimensional summability matrix. For a given double sequence x = (xm,n), the A-transform of x, denoted by
Ax := ((Ax)k,l), is given by

(Ax)k,l = ∑
(m,n)∈N2

ak,l,m,nxm,n

provided the double series converges in Pringsheim’s sense for every (k, l) ∈ N2.

If two dimensional matrix transformation of a given x=(xm,n) sequence preserve (Ax)k,l limit, that is P− limx= ı whenever P− lim(Ax)k,l = ı
then the matrix A = (ak,l,m,n) is called a regular matrix.
Let’s remember a four dimensional matrix A = (ak,l,m,n) is said to be RH-regular if it maps every bounded P-convergent sequence into a
P-convergent sequence with the same P-limit. The well establish characterization of regularity for four-dimensional matrices is known as
Robison-Hamilton conditions or RH-regularity (see, [22, 23]) state that a four dimensional matrix A = (ak,l,m,n) is RH-regular iff
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(i) P− lim
k,l

ak,l,m,n = 0 for each (m,n) ∈ N2,

(ii) P− lim
k,l

∑(m,n)∈N2 ak,l,m,n = 1,

(iii) P− lim
k,l

∑
m∈N

∣∣ak,l,m,n
∣∣= 0 for each n ∈ N,

(iv) P− lim
k,l

∑
n∈N

∣∣ak,l,m,n
∣∣= 0 for each m ∈ N,

(v) ∑
(m,n)∈N2

∣∣ak,l,m,n
∣∣ is P-convergent for each (k, l) ∈ N2,

(vi) there exist finite A,B > 0 such that ∑
m,n>B

∣∣ak,l,m,n
∣∣< A holds for every (k, l) ∈ N2.

Firstly let A = (ak,l,m,n) be a non-negative RH-regular summability matrix, and let K ⊂ N2. Then A-density of K is given as below

δ
2
A (K) := P− lim

k,l
∑

(m,n)∈K
ak,l,m,n

provided that the limit on the right-hand side exists in Pringsheim’s sense. Now recall the definiton of A-statistical convergence by considering
the concept of A-density. A real double sequence x = (xm,n) is said to be A-statistically convergent to a number L if, for every ε > 0,

δ
2
A

(
{(m,n) ∈ N2 : |xm,n− ı| ≥ ε}

)
= 0.

At this state, we can show it as st2
A− limx = ı. Also, while P− limx = ı, st2

A− limx = ı is true but when st2
A− limx = ı is not always

P− limx = ı. Furhermore, the double sequence does not require to be bounded when st2
A− limx = ı is exist.

It is worth noting that now with the special choices of the A matrix in concept of A-statistical convergence for double sequences, the following
relations are obtained. If one replaces the matrices A the double Cesáro matrix, then A-statistical convergence coincides to the statistical
convergence i.e., st2

C(1,1)− limx = st2− limx [24].

2. Triangular Statistical Convergence

Let x = (xm,n) be a double sequence and suppose that x = (xm,n) is neither A-statistical convergent nor convergent in the Pringsheim’s sense.
On the question of whether a different convergence is considered in such a case, Bardaro et al. introduced the notion of triangular A-statistical
convergence in [3]. First, consider the regular matrix for double sequences [3].
The Silverman-Toeplitz conditions, which have an important place in the literature for the regular characterization of the two-dimensional
matrix transformation, are as follows (see, for instance, [25]).

(i) ‖A‖= sup
m

∞

∑
n=1
|am,n|< ∞,

(ii) lim
m

am,n = 0 for each n ∈ N,

(iii) lim
m

∞

∑
n=1

am,n = 1.

Let A = (am,n) be a nonnegative regular summability matrix, K denotes the set
{
(m,n) ∈ N2 : n≤ m

}
and Km is the m-section of K, i.e., the

set of all n ∈ N such that (m,n) ∈ K, then we define triangular A-density of K by

δ
T
A (K) := lim

m ∑
n∈Km

am,n

provided that the limit on the right-hand side exists [3].
Also,

(i) δ T
A (N2) = 1,

(ii) if K ⊂ L then δ T
A (K)≤ δ T

A (L),
(iii) if K has triangular A-density then δ T

A (N2/K) = 1−δ T
A (K),

triangular A-density has the above properties.

Definition 2.1 ( [3]). Let A = (am,n) be a nonnegative regular summability matrix. The number sequence x = (xm,n) is triangular
A-statistically convergent to ı provided that for every ε > 0

lim
m ∑

n∈Km(ε)

am,n = 0,

where Km (ε) = { n ∈ N : n≤ m, |xm,n− ı| ≥ ε} also written as stT
A − lim

m
xm,n = ı.

The case in which A =C1 the Cesaro matrix of order one reduces to the triangular statistical convergence i.e., stT
A − limx = stT

C1
− limx.

Triangular density δ T (K) is given by

δ
T (K) = lim

m

1
m
|Km|
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or equivalently

δ
T (K) = lim

m
(C1χKm (n))m = lim

m

∞

∑
n=1

cm,nχKm (n)

if it exists. The number sequence x = (xm,n) is triangular statistically convergent to ı provided that for every ε > 0, the set K := Km (ε) :=
{n ∈ N : n≤ m, |xm,n− ı| ≥ ε} if δ T (Km (ε)) = 0; then we can write stT − lim

m
xm,n = ı.

Let stT
A be the set of all triangular A-statistically convergent sequences. As we mentioned before, triangular A-statistical convergence is a

variant of statistical convergence. Here we give examples showing that these two convergences cannot be compared.

Example 2.2. Let A =C1 and

xm,n =


2, m = n = j2

j
3( j+1) , m = 2 j, n = 2 j+1

2 j
3( j+2) , m = 2 j−1, n = 2( j+1)
0, otherwise

, j ∈ N.

x = (xm,n) be given as above. For every ε > 0,

1
m
|{n ∈ N : n≤ m, |xm,n−0| ≥ ε}|=

{
1
j2 , m = j2

0, otherwise
, j ∈ N

clearly,

lim
m

1
m
|{ n ∈ N : n≤ m, |xm,n−0| ≥ ε}|= 0.

So, we obtain stT
C1
− lim

m
xm,n = 0. Nevertheless, x = (xm,n) is not Pringsheim’s and C (1,1)-statistically convergent.

Example 2.3. Take A =C(1,1) and

xm,n =

{ √
mn, m = n = j2

3
mn , otherwise

, j ∈ N.

x = (xm,n) be given as above. Obviously, st2
C(1,1)− lim

m,n
xm,n = 0 but x is not Pringsheim’s and triangular statistically convergent.

Example 2.4. Let A =C1 and

xm,n =

{
−2, m = n = j2

0, otherwise
, j ∈ N.

x = (xm,n) be given as above. Similarly, stT
C1
− lim

m
xm,n = 0 and st2

C(1,1)− lim
m,n

xm,n = 0.

Example 2.5. Let A =C1 and

xm,n =



1, m = n = j2
j

2 j+1 , m = 2 j+1, n = 2 j−1
j

4 j+2 , m = 2 j, n = 2( j+1)
k, m = j2, n = j2 +1
0, otherwise

, j ∈ N.

x = (xm,n) be given as above. So, we can easily see that stT
C1
− lim

m
xm,n = 0. Neither x = (xm,n) is Pringsheim’s and C (1,1)-statistically

convergent nor bounded.

Remark 2.6. (i) Triangular statistical convergence and statistical convergence are incompatible; i.e., stT
A * st2

A and st2
A * stT

A .
(ii) A P-convergent double sequence is A-statistically convergent and triangular A-statistically convergent to the same value but the inverse
implications are not true, i.e., st2

A * c2 and stT
A * c2.

3. A Korovkin-Type Approximation Theorem

In this section using the concept of triangular A-statistical convergence for double sequence and test function 1,sins,coss,sint,cost, we
provide a Korovkin type theorem for positive linear operators on the space C∗

(
R2) .

If a function f on R2 has a 2π-period, then, for all (s, t) ∈ R2,

f (s, t) = f (s+2kπ, t) = f (s, t +2kπ)

holds for k = 0,±1,±2, .... This space is equipped with the supremum norm

‖ f‖C∗(R2) = sup
(s,t)∈R2

| f (s, t)| ,
(

f ∈C∗
(
R2
))

.
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Theorem 3.1 ( [26]). Let A = (ak,l,m,n) be a non-negative RH-regular summability matrix and let (Lm,n) be a double sequence of positive
linear operators acting from C∗

(
R2) into C∗

(
R2) . Then, for all f ∈C∗

(
R2)

st2
A− lim‖Lm,n ( f )− f‖C∗(R2) = 0

iff the following statements hold:

st2
A− lim‖Lm,n ( fr)− fr‖C∗(R2) = 0, r = 0,1,2,3,4,

where f0(s, t) = 1, f1(s, t) = sins, f2(s, t) = sin t, f3(s, t) = coss and f4(s, t) = cos t.

Theorem 3.2. Let A = (am,n) be a nonnegative regular summability matrix and (Lm,n) be a double sequence of positive linear operators
from C∗

(
R2) into C∗

(
R2) . Then, for all f ∈C∗

(
R2)

stT
A − lim

m
‖Lm,n ( f )− f‖C∗(R2) = 0 (3.1)

iff the following statements hold:

stT
A − lim

m
‖Lm,n ( fr)− fr‖C∗(R2) = 0, for every r = 0,1,2,3,4 (3.2)

where f0(s, t) = 1, f1(s, t) = sins, f2(s, t) = sin t, f3(s, t) = coss and f4(s, t) = cos t.

Proof. Under the hypotheses, since 1, sins, coss, sint and cost belong to C∗
(
R2) , the necessity is clear. Suppose that (3.2) hold and let

f ∈C∗
(
R2) and D, F be closed subinterval of length 2π of R. Fix (s, t) ∈ D×F. As in the proof of Theorem 2.1 in [17], it follows from the

continuity of f that

| f (u,v)− f (s, t)|< ε +
2M f

sin2 δ

2

ϕ (u,v)

which gives,

|Lm,n ( f ;s, t)− f (s, t)| ≤Lm,n (| f (u,v)− f (s, t)| ;s, t)+ | f (s, t)| |Lm,n ( f0;s)− f0(s, t)|

≤

∣∣∣∣∣Lm,n

(
ε +

2M f

sin2 δ

2

ϕ (u,v) ;s, t

)∣∣∣∣∣+M f |Lm,n ( f0;s)− f0(s, t)|

≤
(
ε +M f

)
|Lm,n ( f0;s)− f0(s, t)|+

M f

sin2 δ

2

{2 |Lm,n ( f0;s)− f0(s, t)|

+ |sinx| |Lm,n ( f1;s, t)− f1(s, t)|+ |siny| |Lm,n ( f2;s, t)− f2(s, t)|
+ |cosx| |Lm,n ( f3;s, t)− f3(s, t)|++ |cos t| |Lm,n ( f4;s, t)− f4(s, t)|}+ ε

<ε +N
4

∑
r=0
|Lm,n ( fr;s)− fr(s, t)|

where M f = ‖ f‖C∗(R2) , ϕ (u,v) = sin2 u−s
2 + sin2 v−t

2 and N := ε +M f +
2M f

sin2 δ

2
. Then, taking supremum over (s, t) ∈ R2, we obtain

‖Lm,n ( f )− f‖C∗(R2) < ε +N
4

∑
r=0
‖Lm,n ( fr)− fr‖C∗(R2) . (3.3)

Now given ε
′
> 0, choose ε > 0 such that ε < ε

′
, and define

Dm :=
{

n ∈ N : n≤ m, ‖Lm,n ( f )− f‖C∗(R2) ≥ ε
′
}
,

Dr
m :=

{
n ∈ N : n≤ m, ‖Lm,n ( fr)− fr‖C∗(R2) ≥

ε
′ − ε

5N

}
, r = 0,1,2,3,4.

It is easy see that from (3.3)

Dm ⊆
4⋃

r=0
Dr

m.

Hence, we may write

∑
n∈Dm

am,n ≤
4

∑
m=0

∑
n∈Dr

m

am,n.

Now taking the limit m→ ∞, (3.2) yield the result.
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Example 3.3. We consider the following the double sequence of Fejer operators on C∗
(
R2)

σm,n ( f ;s, t) =
1

(mπ)(nπ)

π∫
−π

π∫
−π

f (u,v)Fm (u)Fn (v)dudv (3.4)

where Fm (u) = sin2 m(u−s)
2

2sin2 u−s
2

and 1
π

π∫
−π

Fm (u)du = 1. Analyze this

σm,n ( f0;s, t) = f0(s, t), σm,n ( f1;s, t) =
m−1

m
f1(s, t),

σm,n ( f2;s, t) =
n−1

n
f2(s, t), σm,n ( f3;s, t) =

m−1
m

f3(s, t),

σm,n ( f4;s, t) =
n−1

n
f4(s, t). (3.5)

Let A =C1 and define a double sequence (um,n) by

um,n =


1, m = n = k2

k
3(k+1) , m = 2k+1, n = 2k−1

k
2(k+1) , m = 2k, n = 2(k+1)
0, otherwise

, k ∈ N. (3.6)

In this case, observe that

stT
C1
− lim

m
um,n = 0. (3.7)

Nevertheless, the sequence (um,n) is not statistically convergent. Also using (3.4) and (3.6), we define the following double positive linear
operators on C∗

(
R2) as follows:

Lm,n ( f ;s, t) = (1+um,n)σm,n ( f ;s, t) . (3.8)

Then, observe that the double sequence of positive linear operators (Lm,n) defined by (3.8) satisfy all hypotheses of Theorem 3.2. Therefore,
by (3.5) and (3.7), we have, for all f ∈C∗

(
R2) ,

stT
A − lim

m
‖Lm,n ( f )− f‖C∗(R2) = 0.

Since (um,n) is not statistically convergent, the Theorem 3.1 does not work for our operators (Lm,n) defined by (3.8).

Example 3.4. Fejer operators be the same in Example 3.3. Now let A =C (1,1) and define a double sequence (βm,n) by

βm,n =

{ √
mn, m = n = k2,

1
mn otherwise.

(3.9)

Obviously

st2
C(1,1)− lim

m,n
βm,n = 0. (3.10)

Combing (3.4) and (3.9), we define the following positive linear operators on C
(
R2) as follows:

Lm,n( f ;s, t) = (1+βm,n)σm,n ( f ;s, t) . (3.11)

So, by the Theorem 3.1 and (3.10), we are seeing this

st2
A− lim

m,n
‖Lm,n ( f )− f ‖C∗(R2) = 0.

Also, since (βm,n) is not triangular statistical convergent, here we can explain that the Korovkin theorem in triangular statistical sense does
not work for operators defined by (3.11).

4. Rate of Triangular A-Statistical Convergence

Definition 4.1 ( [3]). Let A = (am,n) be a nonnegative regular summability matrix and let (αm) be a positive non-increasing sequence. A
double sequence x = (xm,n) is triangular A-statistically convergent to a number ı with the rate of o(αm) if for every ε > 0,

lim
m

1
αm

∑
n∈Km(ε)

am,n = 0,

where

Km(ε) := { n ∈ N : n≤ m, |xm,n− ı| ≥ ε} .

We may write

xm,n− ı = stT
A −o(αm) as m→ ∞.
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Definition 4.2 ( [3]). Let A = (am,n) and (αm) be the same as in Definition 4.1. Then, a double sequence x = (xm,n) is triangular
A-statistically bounded with the rate of O(αm) if for every ε > 0,

sup
m

1
αm

∑
n∈Lm(ε)

am,n < ∞,

where

Lm(ε) := { n ∈ N : n≤ m, |xm,n| ≥ ε } .

In this case, we write xm,n = stT
A −O(αm) as m→ ∞.

We now use the modulus of continuity ω( f ;δ ), expressed as below:

ω ( f ;δ ) := sup
{
| f (u,v)− f (s, t)| : (u,v) ,(s, t) ∈ R2,

√
(u− s)2 +(v− t)2 ≤ δ

}
where f ∈C∗

(
R2) and δ > 0. We will use the fundamental inequality to obtain our main result, for all f ∈C∗

(
R2) and for λ ,δ > 0,

ω ( f ;λδ )≤ (1+[λ ])ω ( f ;δ ) (4.1)

where [λ ] is defined to be the greatest integer less than or equal to λ .
To obtain our main result we require the following theorem.

Theorem 4.3. Let (Lm,n) be a double sequence of positive linear operators acting from C∗
(
R2) into itself and let A= (am,n) be a nonnegative

regular summability matrix, and let (αm) and (βm) be positive non-increasing sequences. Then, for all f ∈C∗
(
R2) ,

‖Lm,n( f )− f‖C∗(R2) = stT
A −o( γm), as m→ ∞, with γm := max{αm,βm} for each m ∈ N

provided that the following conditions hold:
(i) ‖Lm,n ( f0)− f0‖C∗(R2) = stT

A −o(αm) as m→ ∞, with f0(u,v) = 1,

(ii) ω ( f ;δm,n) = stT
A −o(βm) as m→ ∞, where δm,n :=

√
‖Lm,n(Ψ)‖C∗(R2) with Ψ(u,v) = sin2 u−s

2 + sin2 v−t
2 for each (s, t) , (u,v) ∈ R2.

Also, analogue results holds when the symbol “o” is replaced by “O”.

Proof. To express it, we first assume that (s, t) ∈ [−π,π]× [−π,π] and f ∈C∗
(
R2) be fixed, and that (i) and (ii) hold. Let δ > 0. Also, it

is as in the the proof Theorem 9 in [26]. Using the definition of modulus of continuity and the linearity and the positivity of the operators
Lm,n for all (m,n) ∈ N2, we get

|Lm,n( f ;s, t)− f (s, t)| ≤Lm,n (| f (u,v)− f (s, t)| ;s, t)+ | f (s, t)| |Lm,n ( f0;s, t)− f0(s, t)|

≤ω ( f ;δ )Lm,n ( f0,s, t)+π
2 ω ( f ;δ )

δ 2 Lm,n (Ψ;s, t)+ | f (s, t)| |Lm,n ( f0,s, t)− f0 (s, t)| .

Taking supremum over (s, t) on the both-sides of the above inequality and δ := δm,n :=
√
‖Lm,n(Ψ)‖C∗(R2), then we get

‖Lm,n ( f )− f‖C∗(R2) ≤ ω ( f ;δ )‖Lm,n ( f0)− f0‖C∗(R2)+
(

1+π
2
)

ω ( f ;δ )+M ‖Lm,n ( f0)− f0‖C∗(R2) (4.2)

where the quantity M := ‖ f‖C∗(R2) is a finite number since f ∈C∗
(
R2) . Then, given ε > 0, define the following sets:

Dm : =
{

n ∈ N : n≤ m, ‖Lm,n ( f )− f‖C∗(R2) ≥ ε

}
,

D1
m : =

{
n ∈ N : n≤ m, ω ( f ;δ )‖Lm,n ( f0)− f0‖C∗(R2) ≥

ε

3

}
,

D2
m : =

{
n ∈ N : n≤ m, ω ( f ;δ )≥ ε

3
(
1+π2

)} ,

D3
m : =

{
n ∈ N : n≤ m, ‖Lm,n ( f0)− f0‖C∗(R2) ≥

ε

3M

}
.

Then, thanks to (4.2) that Dm ⊂ D1
m∪D2

m∪D3
m. Also, defining

D4
m : =

{
n ∈ N : n≤ m, ω ( f ;δ )≥

√
ε

3

}
,

D5
m : =

{
n ∈ N : n≤ m, ‖Lm,n ( f0)− f0‖C∗(R2) ≥

√
ε

3

}
,

we have D1
m ⊂ D4

m∪D5
m, which yields

Dm ⊆
5⋃

r=2
Dr

m.
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Therefore, since γm := max{αm,βm} , we get the result for all m ∈ N,

1
γm

∑
n∈Dm

am,n ≤
1

βm
∑

n∈D2
m

am,n +
1

αm
∑

n∈D3
m

am,n +
1

βm
∑

n∈D4
m

am,n +
1

αm
∑

n∈D5
m

am,n. (4.3)

Letting m→ ∞ on both sides of (4.3), we get

lim
m→∞

1
γm

∑
n∈Dm

am,n = 0.

Thus ends the proof.

Now, having experienced from Theorem 4.3, we can introduce the ordinary rates of convergence of a sequence of positive linear operators
defined on the space C∗

(
R2) . Firstly, we should point out if we choose αm = βm = 1 for all m ∈ N, then Theorem 3.2 is get from Theorem

4.3 at once. So our theorem gives us the rate of triangular A-statistical convergence in Theorem 3.2.

5. An Application to Theorem 4.3

Let A = (am,n) be a nonnegative regular summability matrix. Then, we consider the following operators defined by (3.8) on C∗
(
R2) :

Lm,n( f ;s, t) = (1+um,n)σm,n( f ;s, t). (5.1)

Then, we take A =C1 := (cm,n) , the Cesáro matrix. Then, setting (αm) =
(

1√
m

)
, we get, for any ε > 0,

1
αm

∑
n:|ui, j |≥ε

cm,n =
√

m ∑
n:|um,n|≥ε

1
m
≤ 2
√

m
m

=
2√
m
. (5.2)

Taking the limit as m→ ∞ in (5.2), we get, for any ε > 0,

lim
m

1
αm

∑
n:|um,n|≥ε

cm,n = 0

which gives,

um,n = stT
A −o(

1√
m
) as m→ ∞. (5.3)

Also, observe that

Lm,n ( f0;s, t) =(1+um,n) ,

Lm,n ( f1;s, t) =(1+um,n)
m−1

m
f1 (s, t) ,

Lm,n ( f2;s, t) =(1+um,n)
n−1

n
f2 (s, t) ,

Lm,n ( f3;s, t) =(1+um,n)
m−1

m
f3 (s, t) ,

Lm,n ( f4;s, t) =(1+um,n)
n−1

n
f4 (s, t) ,

where f0(s, t) = 1, f1(s, t) = sins, f2(s, t) = sin t, f3(s, t) = coss and f4(s, t) = cos t. Since ‖Lm,n ( f0)− f0‖C∗(R2) = um,n, we obtain from
(5.3)

‖Lm,n ( f0)− f0‖C(R2) = stT
A −o(αm) as m→ ∞. (5.4)

Now, we calculate the quantity Lm,n(Ψ;s, t), where Ψ(u,v) = sin2 u−s
2 + sin2 v−t

2 . After some calculations, we have

Lm,n(Ψ;s, t) =
1+um,n

2

(
1
m
+

1
n

)
.

So, we get δm,n :=
√
‖Lm,n(Ψ)‖C∗(R2) =

√
1+um,n

2
( 1

m + 1
n
)
. In this case, setting (βm) =

(
1

4√m

)
, we have, for any ε > 0,

1
βm

∑
n:|δm,n|≥ε

ck,l,m,n =
4
√

m ∑
n:|δm,n|≥ε

1
m
≤ 2 4
√

m
m

=
2

4
√

m3

which gives that

lim
m

1
βm

∑
n:|δm,n|≥ε

ck,l,m,n = 0.
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Hence, we obtain δm,n = stT
C1
−o( 1

4√m ) as m→ ∞. By the uniform continuity of f on R2, we can write as follows:

ω ( f ;δm,n) = stT
C1
−o(

1
4
√

m
) as m→ ∞. (5.5)

Then, the sequence of positive linear operators (Lm,n) satisfy all hypotheses of Theorem 4.3 from (5.4) and (5.5). So, we have, for all
f ∈C∗

(
R2) ,
‖Lm,n( f )− f‖C∗(R2) = stT

C1
−o(

1
4
√

m
) as m→ ∞.
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