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Abstract: In this study, the control of a non-linear system was realized by using a linear system control strategy. According to the strategy 

and by using the controller coefficients, system outputs were controlled for all reference points with the same coefficients via focused 

references. In the framework of this study, the Lorenz chaotic system as non-linear structure, and the discrete-time PI algorithm as the 

control algorithm has selected. The genetic algorithm and particle swarm optimization methods have used in the optimization process, and 

the success of both methods has been discussed among themselves. Closed-loop control system has run simultaneously under the Matlab / 

Simulink programmer. The results have discussed by using the ISE, IAE, ITAE error criteria, and improved dTISDSE purpose functions. 
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1. Introduction 

The use of the optimal parameters of the controllers affects the 

performances of the controllers [1]. Therefore, the optimal 

parameters of the controller can be determined by using many 

different optimization algorithms. The optimization process is an 

important determination factor for performance criteria like the 

obtained settling time and steady state error. In other words, the 

optimization process is a significant effect on steady-state and 

transient behaviours of the system. The Genetic algorithm and PSO 

technique used in the literature is still widely preferred for the 

optimization process of the controller [2]. 

In the 1970, John Holland invented genetic algorithm at Michigan 

University. Theory of evolution has used for optimization in 

genetic algorithms by Holland. Genetic algorithms create a 

solution set consisted of different solution instead of creating one 

solution for the problems.  Thus, a lot of points can be regarded at 

the same time at search space and as a result, possibility of reaching 

holistic solutions has been raised [3-14]. In the 1995, Dr. Eberhart 

and Dr. Kennedy developed Particle swarm optimization (PSO). 

Particle swarm optimization (PSO) is a population based stochastic 

optimization technique, inspired by social behaviour of bird 

flocking or fish schooling [4]. Besides, the PSO unlike GA, it has 

no evolution operators such as crossover and mutation. In PSO, the 

potential solutions, called particles, fly through the problem space 

by following the current optimum particles.  

Compared to the GA, the advantages of PSO are that PSO is easy 

to implement and there are few parameters to adjust. PSO has been 

successfully applied in many areas: function optimization, 

artificial neural network training, fuzzy system control, and other 

areas where GA can be applied [5].  

Nedjah et al. developed parallel Implementations of the 

cooperative particle swarm optimization on many-core and multi-

core architectures [6]. Mehdinejad et al. have been proposed for 

the solution of optimal reactive power dispatch of power systems 

using hybrid particle swarm optimization and imperialist 

competitive algorithms [7].  Geng et al. improved to multi-

objective operation optimization of ethylene cracking furnace 

based on an AMOPSO algorithm [8]. Zhang et al. propesed to 

particle swarm optimization algorithm based on ontology model to 

support cloud computing applications [9]. Wu et al. have practiced 

to the parallel particle swarm optimization on a graphics 

processing unit with application to trajectory optimization [10]. 

Jeyalakshmi and Subburaj have conducted to the particle swarm 

optimization-based fuzzy logic controller (PSO FLC) design for 

load frequency control in a two-area interconnected hydrothermal 

power system [11]. Saxena and Kumar have performed for reactive 

power control in a decentralized hybrid power system with 

STATCOM using GA, ANN and ANFIS methods [12]. Noshadi et 

al. have used for optimal PID-type fuzzy logic controller for a 

multi-input multi-output active magnetic bearing system [13]. 

Olszewski discusses the methodology for optimizing analysis of a 

complex pumping system with a set of parallel centrifugal pumps 

[14].  

In this study, the optimal coefficients of the PI controller have been 

obtained by two different optimization algorithms. The chaotic 

system control has been performed by using the achieved 

coefficients and then the obtained results are compared with each 

other. 

2. Optimization Methodology 

Two different algorithms as GA and PSO was used for 

optimization. The studies related to genetic algorithm are 

described in detail in conducted a study earlier. In this study; 

genetic algorithm coefficients, flow diagram and the obtained 

results can be studied in detail [15]. 

2.1. PSO  

The Particle Swarm Optimization (PSO) algorithm is an 

optimization technique based on swarm intelligence. The search 

process in the PSO algorithm likes genetic algorithm, and it is 

performed by the generation number. Each individual is called as 

the particles, and the swarm is occurred by the particles. Each 

individual is set own position toward the best position in the swarm 

via previously own experiences. The process continues until stop 
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criteria. The velocity of the each individual is a state performing 

randomly [16].  

PSO algorithm has a basic two process such as location and 

velocity, Eq. (1) and Eq. (2). 
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The equation parameters are given below. 

 

ix : The swarm, and location of swarm elements,  

iv : The swarm, and velocity of swarm elements,  

ip : The best location of swarm elements,  

sp : The best location of swarm,  

w : Swarm and  inertia weight of swarm elements, 0 1w  , 

21,cc : Scaling  coefficients, 1 20 ,c c  
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c  coefficients was defined like the Eq. (3) by 

Kenedy ve Eberhart. 
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The flow chart of the PSO optimization process of the Kp and Ki 

parameters of discrete-time PI based closed-loop control system 

are given in Figure 1. The parameters used in the flow diagram are 

given below. 

 

sT
     : Sampling period, 

 f e
: Objective function, 

sume
  : The total error value.  

The first operation performed in the flow diagram is to obtain the 

discrete time difference equations of the discrete-time PI-based 

closed-loop control system. Then, the number of swarm member 

is determined. The location, the speed, and error values for each 

particle in the swarm is kept constant. The position and velocity 

data format of the each swarm element for the PI controller is a 

vector format that is in the form of 2x1 size. For each particle in 

the swarm, the error value is calculated by using differential 

equations. The next step, the calculated the new error value is 

compared with the previous error value. If the error calculation 

gives the smaller value according to the comparison, then, the new 

location and speed value is calculated. This process for each of the 
swarm particles is repeated.  
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Figure 1. The flow chart of the PSO optimization algorithm 

2.2. Cost Function 

In this study, the cost function has used for two different processes. 

The first purpose of the using functions is the error minimization 

process which has been effective realized at the iterative GA and 

PSO optimization algorithm; The second purpose during the 

control process, the system controller success with optimized 

coefficients of the controller is to perform a more thorough detailed 

analysis. 

The results of the ISE, IAE, and ITAE error criteria frequently used 

in the literature has been observed to be inadequate for the 

controller coefficient optimization. The objective function called 

as the discrete time integral sample based double square error 

(dTISDSE) is improved to obtain a more optimal results from the 

GA and PSO optimization. The equation is given below in Eq. (4). 
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2.3. Results of Optimizitaion 

The change of the cost function, and  the parameter Ki of the PI 

controller during the GA optimization process is given in Figure 2 

and Figure 3. 

 



 
Figure 2. The logarithmic change of the cost function during the GA 

optimization process  

 

Figure 3. The Ki change in the GA optimization process  

 

On the other hand, the change of the cost function, and the 

parameter Kp of the PI controller during the PSO optimization 

process is given in Figure 4 and Figure 5. 

 

 
Figure 4. The logarithmic change of the cost function during the PSO 

optimization process  

 
Figure 5. The Kp change in the PSO optimization process  

 

3. Proposed Methodology 

The mathematical model of the Lorenz chaotic system has given in 

Eq. (5) where x , y and z are state variables; a, b and c are 

positive constant parameters.  
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The system has been added to the controller state variable ( )(sxU

) for controlling of the Lorenz chaotic system given in Eq. 5. Then 

the Laplace transform is applied to the system, as a result, Eq. 6 is 

obtained. 
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Before the integral operators, the controller signal has been 

integrated with the closed-loop control system. Non-linear Lorenz 

chaotic system structure block diagram with the inclusion of the 

system and measurement noise is shown in Figure 6. 

 

 

 
Figure 6. The Lorenz MATLAB/SIMULINK chaos control model for x  

state variable  
 

 

Equation 7, PI(s) has been converted to PI(z) block diagram. 
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The 2D simulation results are shown in Fig. 7, and Fig. 8. 
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Figure 7. The xzxy, and yz phase portraits of the Lorenz chaotic system 

base on GA optimization algorithm 
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Figure 8. The xzxy, and yz phase portraits of the Lorenz chaotic system 

base on PSO optimization algorithm 

In order to assess of the Kp and Ki coefficients based on GA and 

PSO algorithms of the PI controller, 4 different objective functions 

given in the Table 1, were used. As shown Table1, the GA, which 

is an iterative optimization algorithm, was found more optimal 
parameter values than the PSO. However, if maximum overshoot 

value will be close to zero in the control process, the PSO 

optimization algorithm should be used with simulation results 

given in Figure 11. 
 

 

 

 

 

 

 

 

 

The performance success was given in Figure 9 for the four 

different objective functions of the PI algorithm based on PSO that 

activated control process at 25 seconds.  

 

Figure 9. The performance success of the x state variable of the PI 

controller based on PSO optimization algorithm  

Table 1. The error performance criteria of controller  

Controller Opt. with IAE ISE ITEA dISDSE 

 
GA 0.2793 1.169 0.1358 4.27e-11 

PSO 0.8594 3.102 0.4947 6.467e-9 

 



4. Results and Discussion 

The lowest value of cost value was calculated 15:42 by the genetic 

algorithm. Besides, Kp and Ki controller coefficients were 

determined as 318.28 and 10000, respectively. The x state variable 

of the Lorenz nonlinear system and the control process of 

controller coefficient optimized by the GA was given in Figure 10. 

Here, the overshoot was % 50 and the settling time for %1 error 

band was 25 ms. In addition, the steady-state error was observed 

as zero. 

 

 

Figure 10. The performance of the PI controller base on GA optimization 

algorithm for x state variable  

The lowest value of  the cost function was calculated as 1.8138e4  

by the PSO algorithm. Besides, Kp and Ki controller coefficients 

were determined as 96.58 and 1112.7 respectively. The x state 

variable of the Lorenz nonlinear system and the control process of 

controller coefficient optimized by the PSO was given in Figure 

11. Here, the overshoot was % 2.5 and the settling time for %1 

error band was 250 ms. In addition, the steady-state error was 

observed as zero. 

 

 

Figure 11. The performance of the PI controller base on PSO 

optimization algorithm for x state variable 

5. Conclusion 

The control process in a non-linear system was illustrated the 

behavior like a basic linear system control process by using 

discrete-time PI algorithm via the propose control strategy. During 

the control of the non-linear system, the control process was not 

performed around the required operating points. Only one time 

calculating of the PI coefficients were used for all of the operating 

points and the output dynamics of the control system also was 

saved. Besides, in the control of the non-linear system with 

classical control methods, the process swapping the system output 

to around of reference points and the run strategy of control 

mechanism was left.  The performance of the proposed control 

strategy was evaluated with the synchronously simulations. The 

optimum values of the parameters were found than obtained values 

with the ISE, IEA and ITAE error functions by using the proposed 

objective function (dISDSE) for using optimization algorithms like 

GA and PSO, and it was illustrated with the results of simulation. 
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