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ABSTRACT Short memory and long memory terms are excellently explained using the concept of piecewise
fractional order derivatives. In this research work, we investigate dynamical systems addressing COVID-19
under piecewise equations with fractional order derivative (FOD). Here, we study the sensitivity of the proposed
model by using some tools from the nonlinear analysis. Additionally, we develop a numerical scheme to
simulate the model against various fractional orders by using Matlab 2016. All the results are presented
graphically.
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INTRODUCTION

Fractional calculus has been recognized as a powerful tool to inves-
tigate various dynamical problems with more detail and a realistic
approach. The foundation of this branch was laid by Newton and
some known mathematicians of that time. Later on Reimann, Li-
ouville, Hadamard, Hilfer and other researchers developed this
branch further by introducing various differential and integral
operators (Machado et al. 2011). The great advantage of using frac-
tional calculus instead of classical in the description of real-world
problems is its global nature. By fractional derivatives, we can
describe global dynamics for various evolutionary processes in a
more realistic way. Also, the mentioned operators are keeping a
greater degree of freedom as compared to ordinary operators of
derivatives which are local in nature, (see some detail in (Hilfer
et al. 2008) and (Agarwal et al. 2010)).

Keeping the mentioned characteristics in mind researchers have
increasingly used the concept of fractional calculus in the math-
ematical modeling of various phenomena and processes. In this
regard, we can find literature full of such types of articles, books,
and monographs addressing the applications of fractional calcu-

Manuscript received: 26 November 2022,
Revised: 18 February 2023,
Accepted: 22 February 2023.

1 sinanmathematics@gmail.com
2 kamalshah408@gmail.com
3 tabdeljawad@psu.edu.sa
4 aliakgul00727@gmail.com (Corresponding Author)

lus. Here we remark that fractional derivative has not a unique
definition. There have been introduced various definitions by re-
searchers including singular and non-singular operators (Rahman
et al. 2021). Recently in this connection, see more work as (Ahmad
et al. 2021c; Alqahtani et al. 2021; Ojo and Goufo 2022, 2023). Both
forms have been used extensively in various research problems.
Both operators have merits and sometimes some de-merits which
have been discussed by researchers. For instance, authors have in-
vestigated fractal fractional chaotic attractor behavior in (Saifullah
et al. 2021), a physical model in (Ahmad et al. 2021b), and using the
Caputo-Fabrizio derivative in (Ahmad et al. 2021c).

On the other hand, for epidemiological purposes, the said con-
cept has been used very well. Large numbers of models have been
investigated under the concept of fractional order derivatives and
integrals. As we know that infectious diseases have greatly af-
fected our society from ancient times. Due to this disease, millions
of people have lost their lives in the past as well as in the recent
two-three years. Currently, the outbreak of COVID-19 has greatly
destroyed the world and more than fifty million people have died
within two years all over the globe. The said infection has also
affected the economic situation of various countries around the
globe. Further, to control the disease researchers, physicians and
authorities are working day and night to overcome or control this
disease from further spreading.
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In this regards various procedures have been introduced in
the last two years to overcome the infection. Some work done on
mathematical models of COVID can be seen as (Atangana and
İğret Araz 2020), (Arfan et al. 2021), and (Abdo et al. 2020). Among
one which is very important of vaccine which has been prepared
and is now available in the market. Further, to aware people
of the individual measures to save their lives and their family.
Various measures for safety have been implemented by various
countries including keeping social distance, regularly washing
mouth, hands, etc, and wearing a face mask in gatherings, avoiding
joining the huge crowd.

One important tool from a research perspective to investi-
gate the transmission dynamics of the disease in the community
through a scientific approach is devoted to mathematical model-
ing. In this regards various models have been introduced to study
the mentioned process, for instance, authors investigated the time
fractal-Klein-Gordon equation in (Saifullah et al. 2022), the complex
behavior of multi-structure dynamical system (Ahmad et al. 2021a),
Zika virus model in (Zhou et al. 2017) and some heat problems
in(Doungmo Goufo 2016). For this purpose, various differential
operators have been used properly. Along the same line fractional
calculus has been used extensively. In the same fashion authors
(Doungmo Goufo 2016) have discussed the dynamics of the KDV-
Berger equation. Also in (Doungmo Goufo 2015), the authors have
applied the concept of fractal-fractional to investigate the cellulose
degradation model.

Applications of the newly introduced ABC derivative have
been discussed in (Atangana 2020). The existence and uniqueness
of the epidemiological model has been studied in (Shah et al. 2023).
Some authors investigated different TB models under the concept
of the fractional derivative with simulation in (Shatanawi et al.
2021). Authors (Nawaz et al. 2022) established some computational
and theoretical analysis for TB model by using ABC derivative of
fractional order.

We should keep in mind that many evolutionary processes often
suffer from abrupt changes in their dynamics, which can be deter-
mined by ordinary derivatives and even fractional derivatives also.
For such a situation, we need to use a fractional type derivative
with piecewise nature which has the ability to clarify the crossover
behavior of the dynamics more properly. In this regard recently
some authors have introduced the concept of piecewise derivative
to detect the said behavior in the dynamical problems (Atangana
and Araz 2021). For further details on piecewise derivatives, recent
contributions can be seen as (Shah et al. 2022a,b,c).

Motivated by the said analysis, literature, and features of frac-
tional calculus, we will investigate the following models of COVID-
19 under the global piecewise derivative of fractional order. Our
concerned model is given by

pABC
0 Dχ

t S (t) = β − ξS (t)I (t)− (τ + θ)S (t) + ηR(t),

pABC
0 Dχ

t E (t) = ξS (t)I (t)− (δ + τ + θ) E (t),

pABC
0 Dχ

t I (t) = δE (t)− (θ + τ + ∆ + ω)I (t),

pABC
0 Dχ

t V (t) = θI (t)− (τ + κ)V (t) + θE (t) + θS (t),

pABC
0 Dχ

t R(t) = ∆I (t) + κV (t)− (τ + η)R(t).
(1)

Here we remark in determinacy form the model (8) is given as

dS (t)
dt = β − ξS (t)I (t)− (τ + θ)S (t) + ηR(t),

dE (t)
dt = ξS (t)I (t)− (δ + τ + θ) E (t),

dI (t)
dt = δE (t)− (θ + τ + ∆ + ω)I (t),

dV (t)
dt = θI (t)− (τ + κ)V (t) + θE (t) + θS (t),

dR(t)
dt = ∆I (t) + κV (t)− (τ + η)R(t).

(2)

The complete detailed description and explanations of compart-
ments and parameters are given in Tables 2 and 3 respectively.
We obtained the basic reproduction number (R0) using the next-
generation matrix on the disease-free equilibrium point and in-
vestigated the global sensitivity analysis of the basic reproduction
number (R0). Then, we focused on some numerical techniques
based on the Euler method to simulate the given model under the
concept of piecewise fractional order derivatives. We use some
real values of parameters to present results graphically.

PRELIMINARIES

Here we recall some definitions results, lemmas from
(Doungmo Goufo 2015).

Definition 0.1. If f (t) ∈ H 1(0, T) and χ ∈ (0, 1], then the ABC
derivative is defined as

ABC
0 Dχ

t u(t) =
ABC(χ)

1 − χ

∫ t

0
Eχ

[
−χ

1 − χ
(t − τ)χ

]
d

dτ
u(τ)dτ, ε (3)

Definition 0.2. Let u(t) ∈ L[0, T], then the fractional integral in
ABC sense as:

ABC
0 Iχ

t u(t) =
1 − χ

ABC(χ)
u(t) +

χ

ABC(χ)Γ(χ)

∫ t

0
(t − ζ)χ−1u(ζ)dζ. (4)

Definition 0.3. Let, u(t) is a differentiable function at interval
[0, t1] and [t1, t], then the piecewise derivative is defined as:

pABC
0 Du(t) =


du
dt , 0 < t < t1

pABC
0 Dχ

t u. t1 < t < t2

=

g(t, u(t)),

t ∈ [0, t2]

(5)

Definition 0.4. Suppose, we consider the generic piecewise frac-
tional order differential equation with fractional order χ, such
that

pABC
0 Dχ

t u(t) = ρ(t, u(t)), with u(0) = u0. (6)

For the differential equation (6) we propose a numerical Euler’s
scheme that is

u(tn+1) =

{
yn+h f (tn−1,u(tn−1)), 0<t<t1

u(t1)+
(1−χ)

ABC(χ) f (tn ,un)+
hχ (1−χ)
ABC(Ø) f (tn ,un), t1<t<t2, 0<χ<1.

(7)
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MATHEMATICAL MODEL OF COVID-19

We investigate the mathematical model given in (2) by using the
Caputo and Atangana-Baleanu piecewise differential operators.
We formulated the proposed model in the aforementioned opera-
tors form with 0 < χ ≤ 1, t ∈ [0, T], 0 ≤ t ≤ T, T < ∞ as

pABC
0 Dχ

t S (t) = β − ξS (t)I (t)− (τ + θ)S (t) + ηR(t),
pABC
0 Dχ

t E (t) = ξS (t)I (t)− (δ + τ + θ) E (t),
pABC
0 Dχ

t I (t) = δE (t)− (θ + τ + ∆ + ω)I (t),
pABC
0 Dχ

t V (t) = θI (t)− (τ + κ)V (t) + θE (t) + θS (t),
pABC
0 Dχ

t R(t) = ∆I (t) + κV (t)− (τ + η)R(t).


(8)

In more explicit form the model (8) can also be write as

pABC
0 Dχ

t (S (t))

=


dS (t)

dt = H1(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (S (t)) = H1(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (E (t))

=


dE (t)

dt = H2(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (E (t)) = H2(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (I (t))

=


dI (t)

dt = H3(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (I (t)) = H3(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (V (t))

=


dV (t)

dt = H4(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (V (t)) = H4(S , E , I , V , R, t), t1 < t ≤ T.

pABC
0 Dχ

t (R(t))

=


dR(t)

dt = H5(S , E , I , V , R, t), 0 < t ≤ t1,

ABC
0 Dχ

t (R(t)) = H5(S , E , I , V , R, t), t1 < t ≤ T.


(9)

EQUILIBRIUM POINT AND BASIC REPRODUCTION NUM-
BER (R0)

The Disease–Free equilibrium point is computed as:

E0 =
(
S 0, 0, 0, V 0, R0

)
. (10)

Where,

S 0 =
β(η τ+η κ+τκ+τ2)

η τ2+τ2ξ+τ2κ+τ3−θη κ+η τξ+η τκ+η ξκ+τξκ
,

V 0 =
θ β(η +τ)

η τ2+τ2ξ+τ2κ+τ3−θη κ+η τξ+η τκ+η ξκ+τξκ
,

R0 =
θ βκ

η τ2+τ2ξ+τ2κ+τ3−θη κ+η τξ+η τκ+η ξκ+τξκ
.

(11)

The basic reproduction number at disease-free equilibrium point
for the model (8) is computed such that considering the equation:

dZ
dt

∣∣∣∣
E0

= f − v. (12)

The non–linear and linear terms from the infected classes in matrix
f and v, respectively:

f =

ξS I

0

 , v =

 (δ + τ + θ) E (t)

(θ − τ − ∆ − ω)I (t)− δE (t)

 . (13)

Now, the jacobian matrix of f and v is given by:

F =

0 ξS 0

0 0

 , V =

θ + δ + τ 0

−δ θ + τ + ∆ + ω

 . (14)

Calculating the inverse of matrix V and the next generation matrix
G, such that:

V −1 =

 1
θ+δ+τ 0

δ
(θ+δ+τ) (θ+τ+∆+ω)

1
θ+τ+∆+ω

 . (15)

Thus, the non-zero and largest eigenvalue is the basic reproduction
number R0 is:

R0 =
δ ξS 0

(θ + δ + τ) (θ + τ + ∆ + ω)
. (16)

Where,

S 0 =
β
(
η τ + η κ + τ κ + τ2)

η τ2 + τ2ξ + τ2κ + τ3 − θη κ + η τξ + η τ κ + η ξκ + τξκ
.

SENSITIVITY ANALYSIS

It is vital to understand the relative relevance of the many elements
involved in COVID-19 transmissions and prevalence in order to
determine how best to decrease human mortality and morbidity
as a result of the virus. The endemic equilibrium point is directly
connected to R0, and the initial illness transmission is directly re-
lated to R0. The infectious human percentage, I (t), is particularly
noteworthy since it reflects persons who may get clinically sick
and is proportional to the overall number of COVID-19 fatalities.
The reproductive number, R0, and sensitivity indices to the model
parameters are calculated. These indices indicate the importance of
each parameter in disease transmission and prevalence. To assess
the resilience of model predictions to parameter values, sensitivity
analysis is widely performed (since there are usually errors in data
collection and presumed parameter values). Using the explicit for-
mula for R0, we derive an analytical expression for the sensitivity
of R0

sR0
(p) =

p
R0

[
∂R0
∂p

]
. (17)

Now, according to the above relation, we have

sR0
β =

β

R0

[
δ ξ(η + τ)(τ + κ)

(θ + δ + τ)(θ + τ + ∆ + ω)ϕ1

]
, (18)
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sR0
τ =

τ

R0

[
δ β ξ (η + 2 τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω) ϕ1

− δ β ξ ϕ2

(θ + δ + τ) (θ + τ + ∆ + ω)2 ϕ1

− δ β ξ ϕ2

(θ + δ + τ)2 (θ + τ + ∆ + ω) ϕ1

−
δ β ξ ϕ2

(
2 η τ + η ξ + 2 τ ξ + η κ + 2 τ κ + ξ κ + 3 τ2)
(θ + δ + τ) (θ + τ + ∆ + ω) ϕ1

2

]
,

where

ϕ1 = η τ2 + τ2 ξ + τ2 κ + τ3 − θ η κ + η τ ξ + η τ κ + η ξ κ + τ ξ κ,

ϕ2 = η τ + η κ + τ κ + τ2.

sR0
η =

η

R0

[
θ δ β τ ξ κ (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)Φ1
2

]
,

sR0
κ =

κ

R0

[
θ δ β τ ξ κ (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)Φ1
2

]
,

sR0
θ =

θ

R0

[
δ β η ξ κ (η + τ) (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)Φ1
2

− Φ2

(θ + δ + τ)2 (θ + τ + ∆ + ω)Φ1

− Φ2

(θ + δ + τ) (θ + τ + ∆ + ω)2 Φ1

]
,

where

Φ1 = η τ2 + τ2 ξ + τ2 κ + τ3 − θ η κ + η τ ξ + η τ κ + η ξ κ + τ ξ κ,

Φ2 = δ β ξ (η + τ) (τ + κ).

sR0
ξ =

ξ

R0

[
δ β (η + τ) (τ + κ)

(
η τ2 + τ2 κ + τ3 − θ η κ + η τ κ

)
(θ + δ + τ) (θ + τ + ∆ + ω)Φ1

2

]
,

sR0
δ =

δ

R0

[
β ξ (θ + τ) (η + τ) (τ + κ)

(θ + δ + τ)2 (θ + τ + ∆ + z)Φ1

]
,

sR0
∆ = − ∆

R0

[
δ β ξ (η + τ) (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)2 Φ1

]
,

sR0
ω = − ω

R0

[
δ β ξ (η + τ) (τ + κ)

(θ + δ + τ) (θ + τ + ∆ + ω)2 Φ1

]
.

■ Table 1 Sensitivity of the R0 versus proposed parameters

Parameter Sensitivity Index Value Sign

β sR0
(β)

1.0000 +ve

η sR0
(η)

-0.0006 -ve

θ sR0
(θ)

-3.4078 -ve

δ sR0
(δ)

0.9434 +ve

ω sR0
(ω)

-0.0001 -ve

τ sR0
(τ)

0.0010 +ve

κ sR0
(κ)

-0.0004 -ve

ξ sR0
(ξ)

1.5554 +ve

∆ sR0
(∆) -0.0909 -ve
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Figure 1 Plot of Sensitivity Analysis with a graphical representa-
tion of sensitivity indices sR0

(p) bases on the expression (17).

In Table (1), the sensitivity indices are provided for each param-
eter associated with basic reproduction number (R0) computed
based on the expression (17). There is a positive and negative effect
of each parameter in the basic reproduction number (R0) and thus
the parameters with positive signs increase the basic reproduction
number (R0) and negative decreases, respectively. Considering the
Table (1) and Figure (1), we observed that with the increase in the
value parameters β, ξ, δ, and τ cause growth in basic reproduction
number (R0) while decay by parameters θ, ∆, η, κ, and ω. Thus,
having negative indices must be minimized in the environment.

30 | Sinan et al. CHAOS Theory and Applications



NUMERICAL SCHEME

Consider the model (8), we use the proposed Euler’s scheme from
the Definition (7) and implement on the given problem, such that

S (tn+1) =

Sn + h f (tn−1, S (tn−1)), 0 < t < t1

z1, t1 < t < t2, 0 < χ < 1.
(19)

where, z1 = S (t1) +
(1−χ)

ABC(χ)
f (tn, Sn) +

hχ(1−χ)
ABC(χ)

f (tn, Sn).

E (tn+1) =

En + h f (tn−1, E (tn−1)), 0 < t < t1

z2, t1 < t < t2, 0 < χ < 1.
(20)

where, z2 = E (t1) +
(1−χ)

ABC(χ)
f (tn, En) +

hχ(1−χ)
ABC(χ)

f (tn, En).

I (tn+1) =

In + h f (tn−1, I (tn−1)), 0 < t < t1

z3, t1 < t < t2, 0 < χ < 1.
(21)

where, z3 = I (t1) +
(1−χ)

ABC(χ)
f (tn, In) +

hχ(1−χ)
ABC(χ)

f (tn, In).

V (tn+1) =

Vn + h f (tn−1, u(tn−1)), 0 < t < t1

z4, t1 < t < t2, 0 < χ < 1.
(22)

where, z4 = V (t1) +
(1−χ)

ABC(χ)
f (tn, Vn) +

hχ(1−χ)
ABC(χ)

f (tn, Vn).

R(tn+1) =

Rn + h f (tn−1, R(tn−1)), 0 < t < t1

z5, t1 < t < t2, 0 < χ < 1.
(23)

where, z5 = R(t1) +
(1−χ)

ABC(χ)
f (tn, Rn) +

hχ(1−χ)
ABC(χ)

f (tn, Rn).

NUMERICAL INTERPRETATION AND DISCUSSION

Here we apply the aforesaid scheme to simulate the results for
different fractional order under piecewise derivative to see the
crossover behavior in the transmission dynamics of the disease
and the effect of vaccination.

In Figures 2-6, we have presented the approximate solutions
corresponding to piecewise derivatives using various fractional
orders. We have taken here t1 = 5 and T = 120. The crossover
effect is clearly observed near the point t1 = 5, and the dynamics
after that point shows variation in behavior. This multi-behavior
of the dynamics is known as crossover. This effect cannot be
determined by using a usual derivative of fractional order. As the
vaccination procedure increases more people are giving vaccines,
and the security from the infection is also increasing, and hence
recovered class is growing up.

■ Table 2 Table of description and Initial Condition of Compart-
ment of Population.

Symbols Description of Com-
partment

Initial Condition

S (t) Susceptible Human
Population

N − (E +I + V +R)

E (t) Exposed Human Popu-
lation

10

I (t) Infected Human Popu-
lation

20

V (t) Vaccinated Human
Population

30

R(t) Recovered Human
Population

50

N Total Population 200

■ Table 3 Table of description and values of Parameters.

Symbol Description of Parameter Value

τ Natural Death Rate 1
67.7×365

β Recruitment Rate τ × N

ξ Transmission rate 0.1784

θ Vaccination Rate 0.5

η Lose of Immunity in Recovered Popu-
lation

0.1

δ Rate of Infection of Exposed Popula-
tion

0.03

∆ Recovery Rate of Infected Population 0.05

κ Recovery Rate of Vaccinated Popula-
tion.

0.15

ω Death Rate of Infected Population due
to COVID–19 Infection

0.32
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Figure 2 Plot of susceptible class at various fractional order deriva-
tives.
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Figure 3 Plot of exposed class at various fractional order deriva-
tives.
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Figure 4 Plot of infected class at various fractional order derivatives.

CONCLUSION

We have extended the concept of piecewise ABC fractional order
derivative concept to a dynamical system of COVID-19 with a
vaccinated class. We investigated global sensitivity analysis of pa-
rameters associated with the basic reproduction number (R0) of the
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Figure 5 Plot of recovered class at various fractional order deriva-
tives.
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Figure 6 Plot of vaccinated class at various fractional order deriva-
tives.

given model and as a result, we have some potential parameters on
which the basic reproduction number (R0) depends. Due to both
increase and decrease, there is an associated increase and decrease
in (R0). We present the sensitivity indices graphically using a bar
chart for justification. We have also simulated the results by using
some real values for the parameters and initial data. We see that
at point t1 = 5, the behavior of the dynamics has shown varia-
tion. This is due to the piecewise derivative. Such effect is called
crossover and can be well explained by using piecewise derivative
as compared to ordinary or usual fractional order. Hence we con-
cluded that piecewise derivative can be used as a powerful tool to
investigate the transmission dynamics of infectious diseases that
suffer from abrupt changes in their dynamical evolution.
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