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Abstract

This paper introduces two new integer sequences that are the third-order recurrence relations. These are called Jacobsthal–Narayana and
Jacobsthal-Narayana-Lucas sequences. In particular, great attention is focused on the identification of the Binet type representations for our
new sequence, including the generating functions, some important identities, and generating matrix. Finally, we consider the circulant matrix
whose entries are Jacobsthal–Narayana sequence and present an appropriate formula to find eigenvalues of that matrix.
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1. Introduction

Second-order linear recurrence sequences have received substantial attention because they are regularly encountered in different branches
of modern sciences. As an example, Fibonacci, Lucas, Pell, and Pell-Lucas sequences have been under dense study by a great number of
researchers. Due to the outside of main aim of the paper, no detailed review about the mentioned sequences is given here, but more detailed
information is available in the monographs by Vajda [1] and Koshy [2].
Herein, the scope of this paper is related to the following. The usual Jacobsthal sequence is defined as

J0 = 0, J1 = 1, and Jn+1 = Jn +2Jn−1 for n > 2 (1.1)

and the Jacobsthal-Lucas sequence satisfies the same recurrence relation with the initial terms j2 = 0 and j1 = 1. The Narayana sequence is
a third-order one and is defined as

N0 = 0, N1 = N2 = 1, and Nn+1 = Nn +Nn−2 for n > 3. (1.2)

Besides, the Binet’s formulas for the Jacobsthal and Jacobsthal-Lucas sequences are

Jn =
2n− (−1)n

3
and jn = 2n +(−1)n, (1.3)

respectively. Now, herein, we present the Binet’s formula for the Narayana sequence that has not been given up to now as follows:

Nn =
Aαn +Bβ n +Eεn

∆
(1.4)

where

α =
1+a+b

3
, β =

1− 1
2 (a+b)− i

√
3

2 (a−b)
3

, ε =
1− 1

2 (a+b)+ i
√

3
2 (a−b)

3
, a =

3

√
29+3

√
93

2
, b =

3

√
29−3

√
93

2

∆ = (α−β )(α− γ)(β − ε) , A = (β − ε)(1−β − ε) , B = (ε−α)(1− ε−α) , and E = (α−β )(1−α−β ) .
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The equation given in (1.4) has been obtained after very extensive operations. Here, we do not give any proof, but the similar process will be
applied in next section.
Each sequence in the above has an emergence process and a quite significant character in the current literature so that many researchers
have given a significant attraction on the subject. For example, the solution to the problem about a herd of cows and calves of the great
Indian mathematician Narayana Pandita has been led to obtain a third-order recurrence sequence that is named after himself; the Narayana
sequence. As summarized, the above-stated sequences have many applications in mathematics and the other fields of modern sciences.
We refer to some papers regarding the usual Jacobsthal and Jacobsthal-Lucas sequences in the current literature herein. Horadam [3]
presented a systematic survey for the Jacobsthal and Jacobsthal-Lucas sequences, while Cerin [4] derived some formulas for sums of squares
of their terms and products. Atanassov [5] generalized the mentioned sequences. In [6] and [7], Daşdemir developed a matrix approach and
some interesting identities for the usual Jacobsthal and Jacobsthal-Lucas sequences. Petroudi and Pirouz [8] investigated the eigenvalues
and determinant of special circulant matrix involving (k,h)-Jacobsthal and (k,h)-Jacobsthal-Lucas sequence. Goy [9] gave a very nice
application for the Jacobsthal sequence. In [10], Daşdemir characterized the usual Mersenne, Jacobsthal, and Jacobsthal-Lucas numbers with
negative subscripts. For the sake of not further burdening the reader, a similar literature review for the Narayana sequence is not provided
here, but a few of these can be found in [11, 12, 13].
Based on the current literature, to our knowledge, new third-order integer sequences presented herein have yet to be studied. We recommend
that these are called the Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas sequences due to their special structures. To fill this gap, we
will show a mathematical approach in terms of the theory of the recurrence relation in number theory. Within the scope of this mentality, we
also display the Binet type formulas for our new sequence and derive some important identities, including the generating functions and
generating matrix. In addition to these results, we define a circulant matrix with the Jacobsthal–Narayana and Jacobsthal-Narayana-Lucas
sequences and compute its eigenvalues.

2. Main definitions and results

Our new definitions are as follows.

Definition 2.1. We define the Jacobsthal-Narayana sequence JNr by the recursive relation

JNr = JNr−1 +2JNr−3 (2.1)

with the initial values JN0 = 0 and JN1 = JN2 = 1.

The first values of Jacobsthal-Narayana sequence are 0,1,1,1,3,5,7,13,23,37,63,109 . . . .

Definition 2.2. We define the Jacobsthal-Narayana-Lucas sequence jNr by the recursive relation

jNr = jNr−1 +2 jNr−3 (2.2)

with the initial values jN0 = 2 and jN1 = jN2 = 1.

The first values of Jacobsthal-Narayana-Lucas sequence are 2,1,1,5,7,9,19,33,51,89,155 . . . . . . .
According to our definitions, Eqs. (2.1) and (2.2) are a third-order linear homogeneous difference equation, with constant coefficients, in the
form of

xn = xn−1 +2xn−3 (2.3)

We can then explore a solution to Eq. (2.3) as xn = φ n, which φ is a unknown constant. On the substitution of this linear solution into our
difference equation, we, therefore, obtain

φ
3 = φ

2 +2. (2.4)

From the cubic formula for the roots, we find three independent solutions as follows:

α =
1+λ1 +λ2

3
, β =

2−λ1−λ2

6
+ i

λ1−λ2

2
√

3
, and γ =

2−λ1−λ2

6
− i

λ1−λ2

2
√

3
, (2.5)

where i =
√
−1, λ1 =

3
√

28+3
√

87 and λ2 =
3
√

28−3
√

87. Furthermore, since a linear combination of the solutions in Eq. (2.5) satisfies
Eq. (2.4); i.e. JNn = c1αn + c2β n + c3γn, with the initial terms, we can write

c1 + c2 + c3 = 0

c1α + c2β + c3γ = 1

c1α
2 + c2β

2 + c3γ
2 = 1

and obtain the solution

c1 =
α

(α−β )(α− γ)
, c2 =

β

(β −α)(β − γ)
, and c3 =

γ

(γ−β )(γ−α)
, (2.6)

respectively. Besides, repeating the same technique for the Jacobsthal-Narayana-Lucas sequence gives the solution

c̃1 =
α +2βγ

(α−β )(α− γ)
, c̃2 =

β +2αγ

(β −α)(β − γ)
, and c̃3 =

γ +2αβ

(γ−β )(γ−α)
, (2.7)

respectively.
As summarized, we can write the following main results of the paper without the proof.
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Theorem 2.3 (Binet’s formulas). Let n be any integer. Binet’s formulas for the Jacobsthal-Narayana sequence and the Jacobsthal-Narayana-
Lucas sequence are

JNr =
αr+1

(α−β )(α− γ)
+

β r+1

(β −α)(β − γ)
+

γr+1

(γ−α)(γ−β )
(2.8)

and

jNr =
α +2βγ

(α−β )(α− γ)
α

r +
β +2αγ

(β −α)(β − γ)
β

r +
γ +2αβ

(γ−α)(γ−β )
γ

r, (2.9)

respectively.

By the way, there are many interesting properties between the roots of the cubic equation x3− x2−2 = 0. We can give some of the ones in
the following.

Remark 2.4. For α , β , and γ , we can write the following.

• α +β + γ = 1
• αβγ = 2
• αβ +αγ +βγ = 0
• k1 + k2 + k3 = 0
• k1 + k2 =

−γ

(α−γ)(β−γ)
, k1 + k3 =

−β

(α−β )(γ−β )
, k2 + k3 =

−α

(β−α)(γ−α)

• (k1 + k3)β +(k2 + k3)α +(k1 + k2)γ =−(αk1 +βk2 + γk3)

• k1
α
+ k2

β
+ k3

γ
= 0

where k1 =
α

(α−β )(α−γ)
, k2 =

β

(β−α)(β−γ)
, and k3 =

γ

(γ−α)(γ−β )
.

Theorem 2.5. The generating functions for the Jacobsthal-Narayana sequence and the Jacobsthal-Narayana-Lucas sequence are

∞

∑
r=0

JNrxr =
x

1− x−2x3 and
∞

∑
r=0

jNrxr =
3−2x− x2

1− x−2x3 (2.10)

respectively.

Proof. Define g(x) =
∞

∑
n=0

JNrxn. Then, summing the statements g(x), −xg(x), and 2x3g(x), with some mathematical manipulations, the

proof can be completed.

Theorem 2.6. Let r > 0 be an integer and k be an arbitrary integer. Then,

• JNr+k + JNr−k =
[

α2k+1
(α−β )(α−γ)

]
αr−k+1 +

[
β 2k+1

(β−α)(β−γ)

]
β r−k+1 +

[
γ2k+1

(γ−α)(γ−β )

]
γr−k+1

• JNr+k− JNr−k =
[

α2k−1
(α−β )(α−γ)

]
αr−k+1 +

[
β 2k−1

(β−α)(β−γ)

]
β r−k+1 +

[
γ2k−1

(γ−α)(γ−β )

]
γr−k+1

• jNr+k + jNr−k =
[
(3α+1)(α−1)(α2k+1)

(α−β )(α−γ)

]
αr−k +

[
(3β+1)(β−1)(β 2k+1)

(β−α)(β−γ)

]
β r−k +

[
(3γ+1)(γ−1)(γ2k+1)

(γ−α)(γ−β )

]
γr−k

• jNr+k− jNr−k =
[
(3α+1)(α−1)(α2k−1)

(α−β )(α−γ)

]
αr−k +

[
(3β+1)(β−1)(β 2k−1)

(β−α)(β−γ)

]
β r−k +

[
(3γ+1)(γ−1)(γ2k−1)

(γ−α)(γ−β )

]
γr−k

Proof. They can be proved by direct calculations according to Theorem 2.3.

In particular, for k = 1 in the last theorem, we get the following cases.

• JNr+1 + JNr−1 =
[

α2+1
(α−β )(α−γ)

]
αr +

[
β 2+1

(β−α)(β−γ)

]
β r +

[
γ2+1

(γ−α)(γ−β )

]
γr

• JNr+1− JNr−1 =
[

α2−1
(α−β )(α−γ)

]
αr +

[
β 2−1

(β−α)(β−γ)

]
β r +

[
γ2−1

(γ−α)(γ−β )

]
γr

• jNr+1 + jNr−1 =
[
(3α2−2α−1)(α2+1)

(α−β )(α−γ)

]
αr−1 +

[
(3β 2−2β−1)(β 2+1)

(β−α)(β−γ)

]
β r−1 +

[
(3γ2−2γ−1)(γ2+1)

(γ−α)(γ−β )

]
γr−1

• jNr+1− jNr−1 =
[
(3α2+4α+1)(α−1)2

(α−β )(α−γ)

]
αr−1 +

[
(3β 2+4β+1)(β−1)2

(β−α)(β−γ)

]
β r−1 +

[
(3γ2+4γ+1)(γ−1)2

(γ−α)(γ−β )

]
γr−1

Theorem 2.7 (Vajda identity). Let n, r, and s be a positive integer. Then, we have

JNn+rJNn+s− JNnJNn+r+s =
−i

2
√

29

[
(αr−β r)(αs−β s)

α−β
(αβ )n+1 +

(γr−αr)(γs−αs)

γ−α
(αγ)n+1 +

(β r− γr)(β s− γs)

β − γ
(γβ )n+1

]
(2.11)

Proof. Since the proof has very extensive and complex operations, we omit the details.

This theorem can be reduced to the following cases.
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• For r =−s, the Catalan’s identity is obtained:

JNn−sJNn+s− JNn
2 =

i
2
√

29

[
(αs−β s)2

α−β
(αβ )n−s+1 +

(γs−αs)2

γ−α
(γα)n−s+1 +

(β s− γs)2

β − γ
(βγ)n−s+1

]
(2.12)

• For s =−r = 1, the Cassini’s identity is obtained:

JNn−1JNn+1− JNn
2 =

i
2
√

29
[(α−β )(αβ )n +(γ−α) (γα)n +(β − γ)(βγ)n] (2.13)

• For s = m−n and r = 1, the d’Ocagne’s identity is obtained:

JNn+1JNm− JNnJNm+1 =
−i

2
√

29

[(
α

m−n−β
m−n)(αβ )n+1 +

(
γ

m−n−α
m−n) (γα)n+1 +

(
β

m−n− γ
m−n)(βγ)n+1

]
(2.14)

3. Matrix approach

In this section, we explore some identities using matrix technique. First, define the matrix

ϕ =

 0 1 0
0 0 1
2 0 1

 . (3.1)

This is a special matrix that satisfies the characteristic equation in (8), i.e. ϕ3−ϕ2−2I = 0, where I is the identity matrix. This result can be
seen from the well-known Cayley Hamilton theorem.
We can, thus, start with the following main result.

Theorem 3.1. Let r be a positive integer. Then, we have

ϕ
n =

 2JNn−2 2JNn−3 JNn−1
2JNn−1 2JNn−2 JNn
2JNn 2JNn−1 JNn+1

 . (3.2)

Proof. Considering the recurrence relation in Eq. (2.1), the proof is completed easily.

Theorem 3.2. For an integer n, we have

det(ϕn) = 2n. (3.3)

Proof. Using the determinant properties of a matrix leads to complete the proof.

Next theorem presents an interesting result.

Theorem 3.3. For the matrix ϕ , we have the matrix-polynomial identity

ϕ
n+5 = ϕ

n+4−ϕ
n+3 +3ϕ

n+2 +2ϕ
n (3.4)

Proof. From the equation ϕ3−ϕ2−2I = 0, we can write

I =
1
2

(
ϕ

3−ϕ
2
)
=

1
2

ϕ
2 (ϕ− I) =

1
2

ϕ
2
(

ϕ
3−ϕ

2 +ϕ−3I
)
=

1
2

(
ϕ

5−ϕ
4 +ϕ

3−3ϕ
2
)
.

Multiplying both sides of the above equality by ϕn, the proof is completed.

Theorem 3.2 gives us the following interesting results for the Jacobsthal-Narayana and Jacobsthal-Narayana-Lucas sequences.

Theorem 3.4. Let r > 0 be an integer. Then, we have

JNr+5 = 2JNr +3JNr+2− JNr+3 + JNr+4

and

jNr+5 = 2 jNr +3 jNr+2− jNr+3 + jNr+4.

Proof. We apply the induction method on n. Since JN1+5 = 2JN1 +3JN1+2 + JN1+4− JN1+3, the result is true for n = 1. Now based on
the assumption that JNt+5 = 2JNt +3JNt+2 + JNt+4− JNt+3a is satisfied for all t < n. Then, we write

JNn+5 = JNn+4 +2JNn+2

= (2JNn−1 +3JNn+1 + JNn+3− JNn+2)+2(2JNn−3 +3JNn−1 + JNn+1− JNn)

= 2(JNn−1 +2JNn−3)+3(JNn+1 +2JNn−1)+(JNn+3 +2JNn+1)− (JNn+2− JNn)

= 2JNn +3JNn+2 + JNn+4− JNn+3,

which is desired result.
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This theorem shows that the representations of our integer sequences are not unique. Furthermore, using this strategy, we can find another
representation of them. For instance, after similar mathematical operations, the following can be obtained:

ϕ
n+r =

1
4

[
ϕ

n+r+10−2ϕ
n+r+9 +3ϕ

n+r+8−8ϕ
n+r+7 +7ϕ

n+r+6−6ϕ
n+r+5 +9ϕ

n+r+4
]

JNn+r =
1
4
[JNn+r+10−2JNn+r+9 +3JNn+r+8−8JNn+r+7 +7JNn+r+6−6JNn+r+5 +9JNn+r+4]

jNn+r =
1
4
[ jNn+r+10−2 jNn+r+9 +3 jNn+r+8−8 jNn+r+7 +7 jNn+r+6−6 jNn+r+5 +9 jNn+r+4]

It should be noted these recurrence relations are a seventh-order finite difference equations and accordingly an another Binet type formulas
can also be given.

4. An application of Jacobsthal-Narayana sequence

As known, a Circulant matrix C =
[
ci, j
]
∈Mn×n is denoted briefly by C =Circ(c0,c1, . . . ,cn−1) and is defined as

C =


c0

cn−1

c1
c0

c2
c1

· · · cn−2 cn−1
· · · cn−3 cn−2

...
...

... · · ·
...

...
c2 c3 c4 · · · c0 c1
c1 c2 c3 · · · cn−1 c0

 .

In addition, we recall the following lemma.

Lemma 4.1 (Zhang, [14]). Let C =Circ(c0,c1, . . . ,cn−1) be a n×n circulant matrix. Then, we have

ρ j (C) =
n−1

∑
k=0

ckw− jk, (4.1)

where ρ j is the eigenvalue of the circulant matrix C for j = 0,1,2, · · · ,n−1, w = e
2πi
n , and i =

√
−1.

In this situation, we can give the following important theorem.

Theorem 4.2. Let C =Cir (JN0,JN1, · · · ,JNn−1) be a n×n circulant matrix whose entries are the Jacobsthal-Narayana sequence (JNn).
Then, the eigenvalues of C are

ρ j (C) =
(2JNn−1)w−2 j +(2JNn−1−1)w− j + JNn

2w−3 j +w−2 j−1
,

where j = 0,1,2, · · · ,n−1, w = e
2πi
n , and i =

√
−1.

Proof. By Lemma 4.1 for the eigenvalues of circulant matrix C =Cir (JN0,JN1, · · · ,JNn−1), we have

ρ j (C) =
n−1

∑
k=0

JNkw− jk =
n−1

∑
k=0

[
α

(α−β )(α− γ)
α

k +
β

(β −α)(β − γ)
β

k +
γ

(γ−α)(γ−β )
γ

k
]

w− jk

=
α

(α−β )(α− γ)

n−1

∑
k=0

α
kw− jk +

β

(β −α)(β − γ)

n−1

∑
k=0

β
kw− jk +

γ

(γ−α)(γ−β )

n−1

∑
k=0

γ
kw− jk

= k1

((
αw− j)n−1
αw− j−1

)
+ k2

((
βw− j)n−1
βw− j−1

)
+ k3

((
γw− j)n−1
γw− j−1

)

= k1

(
αn−1

αw− j−1

)
+ k2

(
β n−1

βw− j−1

)
+ k3

(
γn−1

γw− j−1

)

=

k1 (α
n−1)

(
βw− j−1

)(
γw− j−1

)
+ k2 (β

n−1)
(

αw− j−1
)(

γw− j−1
)

+k3 (γ
n−1)

(
αw− j−1

)(
βw− j−1

)
(αw− j−1)(βw− j−1)(γw− j−1)

=

−(k1 + k2 + k3)+(k1αn + k2β n + k3γn)+(k1αnβγ + k2β nα γ + k3γnαβ )w−2 j− (k1αnβ + k2β nα + k3γnα)w− j

−(k1αnγ + k2β nγ + k3γnβ )w− j− (k1βγ + k2αγ + k3αβ )w−2 j +(k1β + k2α + k3α + k1γ + k2γ + k3β )w− j

(αβγ)w−3 j− (αβ +αγ +βγ)w−2 j +(α +β + γ)w− j−1
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and according to Remark 2.4, after some computations we get

ρ j (C) =
(2JNn−1)w−2 j +(2JNn−1− JN1)w− j + JNn

2w−3 j +w−2 j−1

=
(2JNn−1)w−2 j +(2JNn−1−1)w− j + JNn

2w−3 j +w−2 j−1

=
(2JNn−1)w−2 j +(2JNn−1− JN1)w− j + JNn

2w−3 j +w−2 j−1

=
(2JNn−1)w−2 j +(2JNn−1−1)w− j + JNn

2w−3 j +w−2 j−1
.

Thus, the proof is completed.

Example 4.3. The following table represents the eigenvalues of circulant matrix C =Cir (JN0,JN1, · · · ,JNn−1) for some values of n.

n 2 3 4 5 6 7

Eigenvalues

-1 2 3 6 -3 18
-1 -1 -1 −2.6180+1.1755i 11 0.0490+9.4585i

-1 -1 −2.6180−1.1755i 7.1054×10−15 +5.1962i 0.0490−9.4585i
-1 −0.3819+1.9021i 7.1054×10−15−5.1962i −4.6920+2.5504i

−0.3819−1.9021i −4+1.73205i −4.6920−2.5504i
−4−1.73205i −4.3569+1.4258i

−4.3569−1.4258i

5. Conclusion

In this paper, we introduced new integer sequences, named the Jacobsthal-Narayana and Jacobsthal-Narayana-Lucas sequences. We obtained
the Binet-like formula and generating functions for these sequences. We gave some interesting identities and examples about these sequences.
Finally, we represented a formula to find the eigenvalues of the circulant matrix involving the Jacobsthal-Narayana sequence.
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69-76.
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