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Abstract 

Objective: The assessment of lipid profiles in children is critical for the early detection of dyslipidemia. Low-density lipoprotein cholesterol (LDL-C) 

is one of the most often used measures in diagnosing and treating patients with dyslipidemia. Therefore, accurate determination of LDL-C levels is 

critical for managing lipid abnormalities. In this study, we aimed to compare various LDL-C estimating formulas with powerful machine-learning 

(ML) algorithms in a Turkish pediatric population. 

Materials and Methods: This study included 2,563 children under 18 who were treated at Sivas Cumhuriyet University Hospital in Sivas, Türkiye. 

LDL-C was measured directly using Roche direct assay and estimated using Friedewald's, Martin/Hopkins', Chen's, Anandaraja's, and Hattori's 

formulas, as well as ML predictive models (i.e., Ridge, Lasso, elastic net, support vector regression, random forest, gradient boosting and extreme 

gradient boosting). The concordances between the estimates and direct measurements were assessed overall and separately for the LDL-C and TG 

sublevels. Linear regression analyses were also carried out, and residual error plots were created between each LDL-C estimation and direct 

measurement method. 

Results: The concordance was approximately 0.92-0.93 percent for ML models, and around 0.85 percent for LDL-C estimating formulas. The SVR 

formula generated the most concordant results (concordance=0.938), while the Hattori and Martin-Hopkins formulas produced the least concordant 

results (concordance=0.851). 

Conclusion: Since ML models produced more concordant LDL-C estimates compared to LDL-C estimating formulas, ML models can be used in place 

of traditional LDL-C estimating formulas and direct assays. 

Keywords: Cardiovascular Diseases, Cholesterol, Lipoproteins, Low-Density Lipoprotein, Machine Learning 

& 
Öz 

Amaç: Çocuklarda lipid profillerinin değerlendirilmesi, dislipideminin erken saptanması için kritik öneme sahiptir. Düşük yoğunluklu lipoprotein 

kolesterol (LDL-K), dislipidemik hastaların teşhis ve tedavisinde en sık kullanılan ölçümlerden biridir. Bu nedenle, LDL-K düzeylerinin doğru 

belirlenmesi, lipid anormalliklerinin yönetimi için kritik öneme sahiptir. Bu çalışmada, Türk pediatrik popülasyonunda çeşitli LDL-K tahmin 

formüllerini güçlü makine öğrenmesi algoritmalarıyla karşılaştırmayı amaçladık. 

Gereç ve Yöntemler: Bu çalışmaya Sivas Cumhuriyet Üniversitesi Hastanesi'nde tedavi gören 18 yaş altı 2,563 çocuk dahil edildi. LDL-K değerleri 

Roche direkt yöntemi kullanılarak ölçüldü ve Friedewald, Martin/Hopkins, Chen, Anandaraja ve Hattori formülleri ile makine öğrenmesi modelleri 

(Ridge, Lasso, elastic net, destek vektör regresyonu, rastgele orman, gradyan artırma ve aşırı gradyan artırma) kullanılarak tahmin edildi. Tahminler 

ve direkt ölçümler arasındaki uyum hem genel olarak hem de LDL-K ve TG alt seviyeleri için ayrı ayrı değerlendirildi. Ayrıca, doğrusal regresyon 

analizleri gerçekleştirilmiş olup her bir LDL-K tahmini ile direkt ölçüm yöntemi arasındaki fark artık hata grafikleri ile gösterilmiştir. 

Bulgular: Tahminlenen LDL-K değerleri ile Roche direkt metodu ile ölçülen LDL-K değerleri arasındaki uyum, makine öğrenmesi modelleri için 

yaklaşık yüzde 0,92-0,93 ve LDL-K tahmin formülleri için yaklaşık %0,85 idi. Destek vektör regresyonu en uyumlu sonuçları (uyum=0,938) verirken, 

Hattori ve Martin-Hopkins formülleri en az uyumlu sonuçları (uyum=0,851) vermiştir. 

Sonuç: Makine öğrenmesi modelleri, LDL-K tahmin formüllerine kıyasla daha uyumlu LDL-K tahmini yaptığından, makine öğrenmesi modelleri, 

geleneksel LDL-K tahmin formülleri ve doğrudan analizlerin yerine kullanılabilir. 

Anahtar Kelimeler: Kardiyovasküler Hastalıklar, Kolesterol, Lipoproteinler, Düşük-Yoğunluklu Lipoprotein, Makine Öğrenimi 

Atıf/Cite as: Koçhan, N. (2023). Estimation of LDL-C using machine learning models and its comparison with directly measured and calculated 

LDL-C in Turkish pediatric population. Abant Tıp Dergisi, 12 (1) , 63-75 . DOI: 10.47493/abantmedj.1217478 

Copyright © Published by Bolu Abant Izzet Baysal University, Since 2022 – Bolu 

https://doi.org/10.47493/abantmedj.1217478
https://orcid.org/0000-0003-2355-4826


Necla KOÇHAN 

 
Abant Tıp Dergisi - https://dergipark.org.tr/tr/pub/abantmedj 

        
  

64 

Introduction 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Dyslipidemia, a condition 

caused by abnormal lipoprotein metabolism, is a significant risk factor for CVDs. It produces 

atherosclerotic lesions in children ages 2 to 16, leading to an elevated risk of CVDs later in their lives (1,2). 

Indeed, fatty lines and other early symptoms of atherosclerosis have been observed in children as young 

as two years old (1). Therefore, if the symptoms of CVD development are detected in childhood, CVDs can 

be prevented later in their adulthoods with earlier interventions, such as lowering lipid levels or regulating 

lipid status, which have been shown as effective interventions not only for primary but also for secondary 

preventions (3–5). 

The serum level of low-density lipoprotein cholesterol (LDL-C) is one of the most critical markers used for 

CVD risk assessment (6,7). The gold standard for LDL-C measurement is β-quantification, where 

lipoprotein particles are separated by ultracentrifugation (8). However, β-quantification is inappropriate 

for routine use because it is costly, time-consuming, necessitates a large cohort and some specialized tools 

(9–12). Therefore, except in a few laboratories, the use of this method has remained limited (12) and other 

direct methods or various equations such as Friedewald and Martin/Hopkins equations are mostly 

preferred to measure LDL-C levels.  

LDL-C estimate using the Friedewald formula was a brand-new method that was introduced in 1972. Due 

to its benefits over β-quantification methods, including cost effectiveness and time savings, it established a 

new norm in clinical guidelines worldwide (9). This method, despite its extensive use in clinical 

laboratories, has several limitations. First, Friedewald uses TG/5 formula (TG: triglycerides) to calculate 

very-low-density lipoprotein cholesterol (VLDL-C), which does not always provide an accurate estimate. 

Second, the Friedewald formula necessitates fasting serum for accurate LDL-C estimation. The 

chylomicrons present in the fed state lead to an overestimated VLDL-C (8). The use of Friedewald's 

equation is not recommended in the presence of high TG concentrations (TG>400) and type III 

hyperlipidemia. The third limitation is that in cases where LDL-C is <70 and TG ≥150 mg/dL, it may lead 

to underestimation of LDL-C and inadequate treatment of patients (13). To overcome such limitations, 

others have developed new formulas. Martin/Hopkins formula is one of those formulas that estimates an 

adjustable ratio using triglyceride and non-high-density lipoprotein (non-HDL-C) levels (14). Thus, with a 

more accurate estimate of VLDL-C, the LDL-C calculation is assumed to be more reliable. The use of the 

Martin/Hopkins formula was recommended in 2018 by the American College of Cardiology and American 

Heart Association guidelines for those with low LDL-C due to the advantages of the formula (15). 

Additionally, other formulas such as Chen (16), Anandaraja (17), and Hattori (18) have been developed. 

Even though these formulas have been validated in various populations, additional research is still 

required (19). Recently, machine learning (ML) methods such as gradient boosting, random forest, and 

support vector machines, etc., have been investigated for LDL-C estimation in different populations (19–

22). However, the literature on the pediatric population particularly in Turkish pediatric population 

regarding LDL-C estimation is limited, and while ML approaches are employed, their application to the 

pediatric population is limited, as well.  

Therefore, the purpose of this study was to examine the validity of the LDL-C levels estimated by various 

LDL-C estimating formulas (i.e., Friedewald, Martin-Hopkins, Chen, Anandaraja, Hattori) and powerful 

ML algorithms with the directly measured LDL-C levels by Roche commercial kits in the pediatric 

population of Türkiye. 

Materials and Methods 

Study Population 

The study was conducted in a retrospective design and the study cohort consisted of 2,356 lipid profile 

samples collected between March 3, 2011, and December 31, 2019. The LDL-C, HDL-C, TG, and total 
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cholesterol (TC) lipid profiles that were directly measured between these dates were analyzed. The study 

was carried out in compliance with the Declaration of Helsinki and followed Good Clinical Practice 

guidelines. This study was approved by Sivas Cumhuriyet University of medical sciences with document 

no: 2022-06/02 (date: 22.06.2022). 

Lipid Measurements 

Roche (Mannheim-Germany) Cobas 8000, c-702 and c-501 modules were utilized to directly measure HDL-

C, LDL-C, TG and TC. The colorimetric enzymatic reaction is used for all other measures. The analytical 

coefficient of variation (CV) for each parameter on each module was calculated by using two-level internal 

quality control results over a one-year period and pooled CV results were established using these data. The 

bias for each parameter on each module was given as the average absolute % deviation determined from 

the external quality assessment over the same year period. Bias and CV values for Cobas c501 were found 

as follows, respectively; 3.34 and 3.49 for TC; 2.77 and 3.92 for HDL-C; 3.51 and 2.85 for LDL-C; 3.25 and 

2.69 for TG. Bias and CV values for Cobas c702 were found as follows, respectively; 4.0 and 3.29 for TC; 

3.05 and 2.90 for HDL-C; 3.63 and 3.58 for LDL-C; 3.30 and 2.86 for TG. 

Lipid Estimations by Formulas and Machine Learning Models 

To estimate LDL-C concentration, we used both traditional LDL-C estimating formulas and ML algorithms. 

For traditional formulas, we used Friedewald (9), Martin/Hopkins (14), Chen (16), Anandaraja (17) and 

Hattori (18). These formulas are listed below.  

Friedewald’s LDL-C estimation formula, which is denoted by LDL-C_F, is defined as follows: 

LDL-C_F=TC-HDL-C-(TG/5) 

Martin/Hopkins LDL-C estimation formula denoted by LDL-C_M is defined as follows: 

LDL-C_M=TC-HDL-C-(TG/Ϛ) 

In this formula, Ϛ denotes the adjustable factor that is used to estimate the TG/VLDL-C ratio. As stated in 

(14), 180-cell strata-specific median TG/VLDL-C ratio table was generated to estimate Ϛ. These median 

ratios range between 3 to 12 and are calculated using the TG and non-HDL-C sublevels. For more details 

and the 180-cell strata table, the readers are referred to see (14).   

Chen’s LDL-C estimation formula, which is denoted by LDL-C_C, is defined as   

LDL-C_C   =(0.9*TC) -(0.9*HDL-C) -(0.1*TG) 

Anandaraja’s LDL-C estimation formula, which is denoted by LDL-C_A, is defined as   

LDL-C_A   =(0.9*TC) -(0.9*TG/5)-28 

Hattori’s LDL-C estimation formula, which is denoted by LDL-C_H, is defined as   

LDL-C_H   =(0.94*TC) -(0.94*HDL-C) -(0.19*TG) 

For ML algorithms, we implemented Ridge, Lasso, elastic net, random forest (RF), gradient boosting 

(GBM), extreme gradient boosting (XGBoost), and support vector regression (SVR), algorithms using TC, 

TG and HDL-C to predict the LDL-C concentrations. Ridge, Lasso and elastic net are three widely used 

penalized regression models, each of which aim to decrease the number of regression coefficients by 

shrinking the coefficients towards zero. Ridge regression penalizes the regression model with a penalty 

term called L2-norm, whereas Lasso penalizes the regression model with a penalty term called L1-norm. 

The penalty can be fine-tuned using a constant known as lambda (λ). Elastic net, on the other hand, is a 

convex combination of Ridge and Lasso models. For more details, readers are referred to (23,24). RF is an 

ensemble learning model that combines multiple decision trees to produce more accurate predictions or 

results. It has numerous advantages, including the avoidance of overfitting (23). Gradient boosting is a 
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boosting learning algorithm that learns from the previous mistakes-residual errors and XGBoost is an 

optimized GBM with high speed and performance. Support Vector Regression (23) operates on the same 

principle as the support vector machines. The main goal is to find the line that fits the data the best. This 

line is called as hyperplane. 

For ML algorithms, the original dataset was randomly split into training (70%) and test (30%) sets. The 

model was trained using the training set, and the model's performance was evaluated using the test set. 

The models’ hyperparameters were fine-tuned using 10-fold- cross-validation. The caret package in R 

(version 4.0.4) was used to implement ML models (25).    

Statistical Analysis 

To assess the performance of the regression models, standard error of the estimate (SEE) was calculated 

using the following formula: 

SEE = √
(Observed − Predicted)2

𝑁
 

 

where N is the number of observations in the data. The 95% confidence interval for each model was also 

calculated using chi-square distribution with N-1 degrees of freedom:  

 

√
∑(𝑁 − 1)SEE2

𝜒0.025
2 < SEE < √

∑(𝑁 − 1)SEE2

𝜒0.975
2  

 

The overall concordance statistic was used to determine the consistency between estimated LDL-C and 

directly measured LDL-C. The concordance statistic, which was calculated as the ratio of direct LDL-C 

within a specific range as estimated LDL-C levels in the same range as direct LDL-C, was mathematically 

defined as follows: 

Concordance =  
# 𝑜𝑓 𝐴 ∩ 𝐵

# 𝑜𝑓 𝐵
  

 

where A and B denote the samples with estimated LDL-C within a specific range and the samples with 

directly measured LDL-C in the same range as A, respectively. The concordance statistics for TG and non-

HDL-C sublevels were also computed. In order to compare the estimated and directly measured LDL-C 

levels, ordinary least squares regression analyses were employed for each method and Roche direct assay. 

Moreover, residual error plots were produced to demonstrate the difference between measured and 

estimated LDL-C levels based on TG levels. R 4.0.4 (www.r-project.org) was used to perform all statistical 

analyses. 

Results 

Patient Characteristics 

Table 1 summarizes the patient characteristics. The study included a total of 2,356 children, with 57.85% 

being females and 42.15% being males. The median age of all individuals participated in this study was 

13(9-16). The mean values of directly LDL-C, TC, TG, and HDL-C levels were 94.36±32.26 mg/dL, 
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152.96±36.80 mg/dL, 118.05±67.69 mg/dL, and 45.64±12.39 mg/dL, respectively. Patient characteristics for 

both the training and the test sets were also given (see Table 2). 

Table 1 

Characteristics of the study population (N = 2,356) 

Characteristics Values 

Age (years) 13(9-16) 

Sex  

  Female 1363 (57.85) 

  Male 993 (42.15) 

Lipid values  

  TC (mg/dL) 152.96±36.80 

  TG (mg/dL) 118.05±67.69 

  HDL-C (mg/dL) 45.64±12.39 

  Non-HDL-C (mg/dL) 107.32±34.89 

  LDL-CD (mg/dL) 94.36±32.26 

Values are presented as N (%), mean±SD or median (1st – 3rd quartiles). TC: total cholesterol; TG: triglycerides; 

HDL-C: high-density lipoprotein cholesterol; LDL-CD: low-density lipoprotein cholesterol measured by Roche 

direct assay 

 

Table 2 

Characteristics Of the Training and Test Sets  

Characteristics Values (Training) Values (Test) 

Age (years) 13(9-16) 13(10-15.5) 

Sex   

  Female 709 (43) 284 (40.17) 

  Male 940 (57) 423 (59.83) 

Lipid values   

  TC (mg/dL) 152.9±37.34 153.20±35.52 

  TG (mg/dL) 118.40±67.69 117.30±67.73 

  HDL-C (mg/dL) 45.46±12.35 46.08±12.50 

  Non-HDL-C (mg/dL) 107.40±35.62 107.10±33.15 

  LDL-CD (mg/dL) 94.30±33.06 94.510±30.32 

Values are presented as N (%), mean±SD or median (1st – 3rd quartiles). TC: total cholesterol; TG: triglycerides; 

HDL-C: high-density lipoprotein cholesterol; LDL-CD: low-density lipoprotein cholesterol measured by Roche 

direct assay 

 

The Results of Hyperparameter Tuning 
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All ML methods were applied as recommended in the documentation and hyperparameters were tuned 

using 10-fold cross validation and grid search. In Ridge, Lasso, and elastic net models, the parameter that 

was tuned was lambda (range 0-1). The optimal lambda values for Ridge, Lasso, and elastic net were 0, 1, 

and 1e-08, respectively. Two parameters, sigma (range 0-1) and C (tradeoff between decision boundary and 

misclassification error, range 0.25-1), were fine-tuned in SVR. The best values for sigma and C were 0.001 

and 1, respectively. We note here that radial basis kernel was chosen for SVR. The hyperparameters that 

were tuned in RF were number of trees (found 2000) and mtry, which is the number of variables randomly 

sampled as candidates at each split (found 3). For GBM, interaction depth (range 1-7), number of trees 

(range 500-5000), shrinkage or eta (learning rate, 0.01-0.1) and the minimum number of observations in the 

terminal nodes of trees (n.minobsinnode, range 10-15) were tuned. The optimal values for interaction 

depth, number of trees, learning rate and n.minobsinnode were 1, 5000, 0.01 and 10, respectively. For 

XGBoost, the number of rounds was set to 1000, gamma was set to 0 and maximum depth of tree 

(max.depth, range 1-5), the percentage of columns to be randomly sampled for each tree (colsample_bytree, 

range 1-3), learning rate (eta, range 0.025-0.1) and subsample (range 0.5-1) were fine-tuned. The optimal 

parameters for XGBoost were found to be 1 for max.depth, 0.1 for eta, and 1 for subsample. 

Comparison of LDL-C Concentrations Calculated by Various Formulas and ML Models versus Roche 

Direct Assay 

To assess and compare the performance of the formulas and predictive ML models, standard error of 

estimate was used. The SEE and 95% confidence intervals for the LDL-C estimating formulas and ML 

models are provided in Figure 1. While ML models performed comparably, they all outperformed the LDL-

C estimating formulas. Ridge, Lasso, and elastic net models, on the other hand, outperformed all other ML 

models, with the lowest SEE (Figure 1). Furthermore, Chen's formula has the lowest SEE when compared 

to other LDL-C estimating formulas. 

 
Figure 1. Standard error of estimate and 95% confidence intervals for each LDL-C estimating model. Each 

bar in the graph shows the lower confidence interval for SEE, SEE and the upper confidence for SEE from 

bottom to top, respectively. While x axis represents each model used for estimating LDL-C levels, y axis 

represents the SEE for each method (i.e., LDL-C estimating formulas and ML models). 

Overall Concordances of Each Method Used for LDL-C Estimation 

The concordance statistic was used to assess the consistency between estimated LDL-C and directly 

measured LDL-C. Figure 2 shows the overall concordances for each formula and ML models. The 

concordance was about 0.92-0.93 percent for ML models, while it was around 0.85 percent for LDL-C 

estimating formulas. The SVR formula generated the most concordant results (concordance=0.938), while 

the Hattori and Martin-Hopkins formulas produced the least concordant results (concordance=0.851), as 

shown in Figure 2. 
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Figure 2. Overall concordance of each method used for LDL-C estimation. Overall concordances of each 

method (i.e., LDL-C estimating formulas and ML models) used for LDL-C estimation are shown in a bar 

chart, with each bar displaying the concordance of LDL-C concentrations by each LDL-C estimating 

formulas or predictive ML models with the Roche direct assay. 

Concordances of Each Method Used for LDL-C Estimation by LDL-C Sublevels 

The concordances of each method (i.e., LDL-C estimating formulas and ML models) used for LDL-C 

estimation by LDL-C sublevels (< 110 mg/dL, 110 to 129 mg/dL and ≥ 130 mg/dL) are provided in Figure 3 

and Supplementary File (Results.xlsx). When LDL-C was less than 110 mg/dL, the overall performance of 

LDL-C estimating formulas was superior to ML models. However, Anandaraja’s formulas showed the least 

concordant result compared to LDL-C estimating formulas. Even though the Friedewald’s formula was 

slightly better than Anandaraja’s formula, the most concordant results were achieved with Hattori’s 

formula. When LDL-C levels were between 110 and 129 mg/dL, each method’s overall concordance 

decreased. However, the ML models gave the most concordant results. In contrast to the LDL-C<110 

sublevel, Hattori had the lowest concordancy and Martin-Hopkins had the second lowest when LDL-C 

was between 110 and 129 mg/dL. It can be seen from figure that ML models outperformed the LDL-C 

estimating formulas and for ML models, the highest performances were achieved with SVR and RF models. 

When LDL-C was higher than 129 mg/dL, ML models performed better than LDL-C estimating formulas. 

Among LDL-C estimating formulas, Anandaraja’s formula performed best, while SVR performed best 

among ML models. 

Concordances of Each Method Used for LDL-C Estimation by Triglycerides Sublevels 

The concordances of each method (i.e., LDL-C estimating formulas and ML models) used for LDL-C 

estimation by triglycerides sublevels (<75 mg/dL, 75 to 129 mg/dL and ≥ 130 mg/dL) are given in Figure 4 

and Supplementary File (Results.xlsx). The results showed that ML models gave higher concordant results 

overall for each TG sublevels. The performance of ML models varies depending on TG sublevel. When 

TG<75 mg/dL, RF produced the most concordant results, whereas Anandaraja produced the least 

concordant results. The results of ML models such as SVR, Ridge, Lasso, and elastic net were quite similar. 

When the TG was between 75 mg/dL and 129 md/dL, ML models outperformed the LDL-C estimating 

formulas in terms of concordance. SVR and RF performed the best among all ML models, and Anandaraja 

performed the best among all LDL-C estimating formulas. When TG was above 129 mg/dL, Ml models 

produced the most concordant results, with SVR being the best. However, the overall concordance for each 

model decreased when TG≥130. 



Necla KOÇHAN 

 
Abant Tıp Dergisi - https://dergipark.org.tr/tr/pub/abantmedj 

        
  

70 

 
Figure 3. Concordance of each method used for LDL-C estimation by LDL-C sublevels. Concordances of 

each method (i.e., LDL-C estimating formulas and ML models) for LDL-C estimation by LDL-C sublevels 

are shown in a bar chart, with each bar displaying the concordance of LDL-C concentrations by each LDL-

C estimating formulas or predictive ML models with the Roche direct assay. 

 
Figure 4. Concordance of each method used for LDL-C estimation by triglycerides sublevels. 

Concordances of each method (i.e., LDL-C estimating formulas and ML models) for LDL-C estimation by 

triglycerides sublevels are shown in a bar chart, with each bar displaying the concordance of LDL-C 

concentrations by each LDL-C estimating formulas or predictive ML models with the Roche direct assay 

for each triglycerides sublevel. 

Regression Analysis Between Estimated and Directly Measured LDL-C Levels 

Linear regression analyses were performed to investigate the relationship between estimated LDL-C levels 

and directly measured LDL-C levels. Figure 5 shows the regression plots between estimated and directly 

measured LDL-C levels for each formula and ML model. It is obvious to see that ML models display a 

better correlation with directly measured LDL-C levels overall.   

The residual error plots, showing the difference between LDL-C estimations and direct measurements 

varies according to triglyceride levels, are given in Figure 6. It can be seen from the figure that LDL-C 

estimating formulas underestimated the LDL-C levels when TG level elevated. It was observed that the 

difference for ML models, particularly for Ridge, Lasso and elastic net was close to zero.   
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Figure 5. Regression analysis between estimated and directly measured LDL-C levels. Correlations 

between LDL-C levels estimated by different formulas or ML predictive models with LDL-C levels 

measured by Roche direct assay. 

 
Figure 6. Residual error plots for LDL-C by either different formulas or ML predictive models with 

respect to Roche direct assay. The values on the x-axis demonstrate TG levels, while the values on the y-

axis demonstrate the difference between estimated LDL-C (i.e., LDL-C estimating formulas and ML 

predictive models) and directly measured LDL-C.   
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Discussion 

The standard error of estimate, which assesses the predictive power of the model, is a statistical measure 

used to estimate the accuracy of predictions or estimates made by a statistical model (26). It represents the 

average amount by which the observed values deviate from the predicted values, which helps us 

understand the variability of the data points around the regression line. We calculated the SEE for each 

model and the results showed that ML models outperformed the LDL-C estimating formulas in terms of 

SEE (Figure 1).   

While studies investigating the association between LDL-C levels and cardiovascular risk in children and 

adolescents are relatively common, studies using machine learning algorithms for LDL-C estimation are 

limited. However, studies in adult populations have shown that ML algorithms can provide more accurate 

and reliable estimates of LDL-C levels compared to traditional equations (19,20,21,22), and our results 

suggest that this may also be true in the pediatric population. Our study demonstrated that ML algorithms 

outperformed the traditional LDL-C estimating equations in estimating LDL-C levels in a pediatric 

population, suggesting that ML algorithms may provide a more accurate and reliable approach for LDL-C 

estimation in the Turkish pediatric population. These findings highlight the potential utility of ML 

algorithms in improving cardiovascular risk assessment and management in children and adolescents. 

However, further studies are needed to confirm these findings and to evaluate the clinical utility of ML-

based LDL-C estimation in the pediatric population. 

Due to the Friedewald formula's limitations, such as the requirement for fasting serum and an 

underestimation of LDL-C values less than 70 and greater than 150 mg/dL, new formulas such as Chen, 

Anandaraja, Hattori, and Martin-Hopkins formulas were developed. Recently, researchers have started to 

explore ML algorithms for the purpose of LDL-C estimation due to the fact that they can learn the natural 

structure of the data as well as the relationship between variables that produces more accurate predictions 

(19,21,22,27). However, very little research has been conducted in the pediatric population to assess the 

validity of traditional LDL-C estimating equations and powerful ML algorithms. In this study, we 

investigated the validity of ML algorithms, as well as several LDL-C estimating equations for the Turkish 

pediatric population. The performance of the ML algorithms was also compared with these conventional 

LDL-C estimating equations. The results showed that ML algorithms predict LDL-C levels more accurately 

than the LDL-C estimating formulas. However, there is no single model that we can call the best among 

ML algorithms. The performance of ML models varies according to LDL-C levels.   

Recently, it has been demonstrated that ML techniques can be used to replace existing LDL-C estimation 

models, particularly for higher TG levels. In the presence of high TG levels, chylomicrons accumulate at 

high levels, which may potentially alter the association between TG and cholesterol levels. In order to assess 

the impact of high TG levels on the precision of each method developed for LDL-C estimation in the 

children and adolescence, we used the cut-off value of ≥130 mg/dL, abnormally high TG levels in children 

and adolescents (28). The results showed that SVR gave the highest concordance for TG≥130 mg/dL. Given 

that SVR and RF had the most concordant results overall, and SVR performed best at higher TG levels, we 

believe that ML models can be used as an alternative method to the conventional LDL-C estimating 

equations for accurate LDL-C estimation.   

There are three limitations of our study. First, we did not use beta quantification as a reference method 

because it is an expensive and labor-intensive manual technique. However, using this method instead of 

the Roche direct assay could yield more accurate results. Second, we did not analyze the results for fasting 

and non-fasting subjects separately. The concentrations of TG-enriched chylomicrons were shown to be 

higher in non-fasting samples than in fasting samples, which may result in an increased ratio of TG to 

cholesterol in VLDL (20,29). As a result, Friedewald's underestimation of LDL-C may have been overstated. 

Third, the study scope is limited due to the absence of external validation, and to enhance the applicability 

of the findings, further validation is necessary. It is crucial to validate the study results not only in other 
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Turkish pediatric populations but also across diverse pediatric populations from different ethnicities. This 

will enable researchers to verify whether the results are consistent across a broader population and promote 

the external validity of the study. 

Conclusion 

In conclusion, it has been demonstrated that ML algorithms outperformed traditional LDL-C estimating 

equations in the Turkish pediatric population. SVR and RF models, among ML algorithms, provided more 

accurate LDL-C estimates in the Turkish pediatric population. 
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