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Abstract 

The use of self-driven flows in microfluidic devices attracts many researchers as the external flow-
driving mechanism is diminished or eliminated. One of the mechanisms providing such motions is 
generating a pressure difference across interfaces as in the case of the motion in capillary tubes. The 
capillarity, namely, the pressure difference across the interface due to its curvature drives the motion. 
This pressure depends on the interaction with the capillary walls and is controlled if one varies the 
surface energy of the walls. In this study, we search for the effects of surface energy on the motion of 
interfaces in capillary-driven flows. To this end, we model the motion of fluid particles in a capillary 
channel and integrate the governing equations using the binary lattice Boltzmann Method for the two-
phase flow. We first validate our solver for canonical static and dynamic problems. We then discuss 
two main contributions; we show how to deviate the interface speed from the ones moving in 
channels with uniform wall energies and discuss the conditions under which such an interface 
stagnates (like a passive valve in a channel). Tuning the wettability of the channel walls, we provide 
a simple condition for stopping the interface: the summation of the equilibrium contact angles 

interface make with the channel walls at the bottom and top wall need to satisfy 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 𝜋. 

Configurations and wetting properties of different wettability regions play major roles together. 

Keywords: Capillarity, Wetting, Interfaces, Microfluidics, Lattice Boltzmann Method 

 

Öz 

Mikroakışkan cihazlarda kendinden tahrikli akışların kullanımı, harici akış tahrik mekanizması 
azaltıldığı veya ortadan kaldırıldığı için birçok araştırmacının ilgisini çekmektedir. Bu tür hareketleri 
sağlayan mekanizmalardan biri de, kılcal borulardaki harekette olduğu gibi, arayüzeyler arasında bir 
basınç farkı oluşturmaktır. Kılcallık, yani kanal boyunca arayüzey eğriliği nedeniyle oluşan basınç 
farkı, hareketi yönlendirir. Bu basınç kılcal duvarlarla etkileşime bağlıdır ve duvarların yüzey enerjisi 
değiştirilerek kontrol edilebilir. Bu çalışmada, yüzey enerjisinin kılcal tahrikli akıştaki arayüzeylerin 
hareketi üzerindeki etkileri araştırılmaktadır. Bu amaçla, bir kılcal kanaldaki sıvı parçacıklarının 
hareketi modellenmekte ve iki fazlı akış için ikili Lattice Boltzmann yöntemi kullanılmaktadır. 
Öncelikle standart statik ve dinamik problemler için çözücü doğrulanmaktadır. Sonrasında iki ana 
katkı tartışılmakta; arayüzey hızının, tekdüze duvar enerjilerine sahip kanallarda hareket edenlerden 
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nasıl saptırılacağı gösterilmekte ve böyle bir arayüzeyin durdurulduğu koşullar (bir kanaldaki pasif 
valf gibi) tartışılmaktadır. Kanal duvarlarının ıslanabilirliğini ayarlayarak,  arayüzeyi durdurmak için 
basit bir koşul sağlanmaktadır: Arayüzeyin alt ve üst duvardaki kanal duvarlarıyla yaptığı denge 

temas açılarının toplamı 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 𝜋'yi karşılamalıdır. Farklı ıslanabilirlik bölgelerinin 

konfigürasyonları ve ıslanma özellikleri birlikte önemli rol oynamaktadır. 

Anahtar Kelimeler: Kapilarite, Islatma, Arayüzey, Mikroakışkanlar, Lattice Boltzmann Metodu 

 

Nomenclature 

𝑎 Constant coefficient in Landau model 𝑛𝑦 Number of lattices along 𝑦-axis 

𝐶𝑎 Capillary number (𝜂𝑣/𝛾) ∅ Order parameter (phase field) 

𝜀 Parameter for wetting property  𝑃𝛼𝛽 Pressure tensor 

𝜂 Dynamic viscosity 𝑝𝑔 Gas pressure 

𝐹𝑖  Body (external) force 𝑝𝑙 Liquid pressure 

𝑓𝑖  Distribution function 𝑓 𝑟 Radius of curvature 

𝑔𝑖  Distribution function 𝑔 𝜌 Density 

𝛾 Surface tension between fluids 𝑆 Bounding surface of the corresponding 𝜗 

𝛤 Constant of mobility 𝑡 Time 

ℎ Channel gap thickness 𝜏𝛼  Relaxation time parameter for fluid 1 

𝜅 Coefficient in Landau model 𝜏𝛽  Relaxation time parameter for fluid 2 

𝑙 Capillary filling length 𝜃 Contact angle 

λ Viscosity ratio of fluids 𝜃𝑒𝑞 Equilibrium contact angle 

𝑀 Mobility 𝑣 Velocity 

𝜇 Chemical potential 𝜈𝑔 Kinematic viscosity of gas 

𝒏 Outward unit normal 𝜈𝑙 Kinematic viscosity of liquid 

𝑛𝑥  Number of lattices along 𝑥-axis 𝜗 Volume 
 

 

1. Introduction 

Interface motion in capillary-driven flows and 
wetting phenomena on heterogeneous 
substrates are observed in nature [1], mostly in 
plants-trees [2], lotus leaves [3], desert beetles 
[4], and butterfly wings [5], etc; and in 
engineering applications such as lab-on-chips [6-
8], oil recovery [9], painting, and inkjet printing 
[10-12]. Understanding and controlling the 
motion of such interfaces are important in 
microfluidic devices. Generally, the interfaces 
are controlled with active methods (actuators, 
valves), which require labor and are not scalable, 
autonomous, and easy to adapt and implement 
[13,14]. We, instead, investigate the use of 
different wettability regions, e.g. provided by 
chemical heterogeneity in the control of 
interfaces passively which has plenty of 
advantages [15,16].  

When an interface meets a solid surface, it makes 
a certain angle with the interface which is called 
contact angle. This angle depends on the nature 
of the solid surface and the history of how the 
interface is established. For atomically smooth 
and chemically homogeneous surfaces, this 
angle is unique [17]. However, in nature, there 
are always heterogeneities or the surface can be 
designed as heterogeneous on purpose [18]. In 
this case, the contact angle is not unique; there is 
contact angle hysteresis (CAH) [19-21]. The 
heterogeneities, either physical or chemical, may 
cause contact line pinning/depinning. Because 
the spreading droplets over rough substrates 
and evaporation/condensation of droplets cause 
a natural motion of interfaces, the CAH over 
heterogeneous surfaces for such interfaces takes 
the great attention of many researchers [22-24]. 
The capillaries also provide such motion for the 
interfaces. For a liquid filling a capillary, the 
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motion of the interface is driven only by the 
pressure difference across the liquid interface. 
With the advancement in the understanding of 
wetting phenomena, its use in microfluidic 
devices has been increasing.  

The physics of fluids at micron-scale is affected 
by the surface energy of the interfaces, here, the 
strong interaction between the fluid and solid 
substrate [25,26]. The motion of the contact line 
where the liquid meets the solid surface is 
dominated by viscous and surface tension forces 
rather than inertial and gravitational forces 
[27,28].  The ratio of the two is the Capillary 
number. Any change in the chemical structure of 
the surface over which the contact line moves 
changes the dynamics of the contact line motion. 
We discuss, in this study, the control of interface 
motion within a capillary, driven by capillary 
pressure, with the chemically structured walls. 

We solve hydrodynamic equations to model the 
interface motion in a capillary with lattice 
Boltzmann Method. Navier-Stokes, continuity,  
and phase-field equations are modified into 
lattice Boltzmann equation using Chapman 
Enskog expansion in the limit of long length and 
time scales [29]. Besides, like the structural 
heterogeneities [30,31], similar effects are 
observable with chemical heterogeneities 
[17,32-34]. To do so, we model the motion of 
interfaces with lattice Boltzmann Method (LBM) 
and discuss the effects of chemical heterogeneity 
on the interface motion.  

In the paper's following sections, we begin by 
introducing the method that we use to simulate 
capillary problems. We summarize different 
implementations for the method as Bhatnagar–
Gross–Krook (BGK), Multiple Relaxation Time 
(MRT), etc. [35]. After the methodology, we 
present validations of our solver for static 
(Young equation) and dynamic (Washburn's and 
Cox-Voinov laws) problems. Later, we discuss 
the effect of chemical heterogeneity on the 
interface motion within capillaries. 

2. Methodology  

2.1. Governing equations 

In the continuum regime, the motion of fluid 
particles within the capillary is governed by the 
Navier-Stokes equations of motion and the 
continuity for Newtonian fluid and given by 
equations (1) and (2) in index notation, 
respectively. 

𝜕𝑡(𝜌𝑣𝑖) + 𝜕𝑗(𝜌𝑣𝑗𝑣𝑖) = −𝜕𝑗𝑃𝑗𝑖 +

𝜕𝑗 (𝜂(𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖)) + 𝜌𝐹𝑖 ,  
(1) 

𝜕𝑡𝜌 + 𝜕𝑗(𝜌𝑣𝑗) = 0 (2) 

where 𝜌 is the density, 𝜂  is the dynamic viscosity 
of the fluid, and 𝑣𝑗  is the fluid velocity. In 

equations (1) and (2), the indices i, j vary from 1 
to 2 in two-dimensional problem and twice 
appearing index j in an expression means 
summation over it. On the right-hand-side of 
equation (1), the second term corresponds to the 
viscous forces, the third term is the external 
body force per unit volume. The first term 
includes the pressure tensor 𝑃𝑗𝑖  defined as 

𝑃𝑗𝑖 = (𝑝0 − 𝜅∅∇2∅ −
𝜅
2

|∇∅|2) 𝛿𝑗𝑖

+ 𝜅𝜕𝑗∅𝜕𝑖∅. 
(3) 

Inside the pressure tensor, there are pressure 
forces and surface tension forces, ∅ is an order 
parameter that comes from the Landau Free 
Energy to be defined shortly. The bulk pressure 
in equation (3) is defined as 

𝑝0 =
𝑐3

3
𝜌 + 𝑎 (−

1

2
∅2 +

3

4
∅4). (4) 

We couple interface profile and fluid motion with 
pressure as follows [36]. For non-uniform 
composition, −∅∇𝜇 models the surface tension 
forces which come from the divergence of 𝑃𝑗𝑖  and 

it acts locally in the fluid (chemical potential 
provides the opposite motion of the two phases 
defined as ±∅). 

∅∇𝜇 = 𝜕𝑗𝑃𝑗𝑖 , (5) 

and the phase field is governed by a Cahn-
Hilliard type equation [37,38] 

𝜕𝑡∅ + 𝜕𝑗( ∅𝑣𝑗) = 𝑀∇2𝜇. (6) 

In equation (6), 𝑀 is termed as mobility which 
controls the strength of the diffusion. The phase 
field ∅ responds to gradients by diffusion (as 
given on the right-hand-side); and, it also varies 
in time as it is convected by 𝑣𝑗  (as given on the 

left-hand-side). 
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2.2. Thermodynamics of the fluid: modelling 

free energy 

We use Landau theory to describe the binary 
fluids' free energy. It uses ∅ as an order 
parameter. Landau free energy is defined as 

𝐹 = ∫ (𝜑(∅) +
𝜅
2

|∇∅|2) 𝑑𝜗

+ ∫(𝜀∅)𝑑𝑆 
(7) 

where 𝜗 is the volume and 𝑆 is the bounding 
surface of the corresponding volume, and the 
bulk free energy density 𝜑(∅) is 

𝜑(∅) =
𝑐2

3
𝜌ln𝜌 + 𝑎 (−

1

2
∅2 +

1

4
∅4). (8) 

We take 𝜌 as fluid density and ∅ as the order 
parameter, or phase field, ∅ = ±1 defines 

different fluids; 𝑐 can be written as 
∆𝑥

∆𝑡
 (∆𝑥 

spacing between the points or lattices and ∆𝑡 
time step) and 𝑎 is a constant. The 𝜅 term in 
equation (7) defines the surface tension of the 
interfaces by penalizing non-uniformities 
(penalizes sharp gradients) in ∅. Surface tension 
between the phases can be computed with 𝛾𝑙𝑣 =

√8𝜅𝑎/9 [39]. 

While the first terms describe a second-order 
phase transition in the Landau function, the 
second integral in equation (7) defines the solid-
fluid interactions and models the surface tension 
between them. We control the contact angle with 
the 𝜀 parameter. For controlling the contact 
angle, we take partial derivative for ∅ at the 
boundary, with respect to the normal of the 
surface 𝜕⊥∅|𝑤 = 𝜀/𝜅. 

We show the order parameter in Figure 1 with 
the minimum points defining the equilibrium 
state at fixed volume and temperature, 
equilibrium states are given by global minima of 
the free energy,  𝐹. The variation of equation (7) 
with respect to ∅, on the other hand, defines the 
chemical potential which is constant in 
equilibrium as 

𝜇 =
𝛿𝐹

𝛿∅
= 𝑎(−∅ + ∅3) − 𝜅∇2∅. (9) 

 

Figure 1. Phase separation, equilibrium values 
at ±∅. 

Şekil 1. Faz ayrımı, ±∅'da denge değerleri. 

For the numerical solution of the governing 
equations, we use lattice Boltzmann Method. 
Applying Chapman-Enskog expansion [29] 
shows that the lattice Boltzmann method 
recovers the hydrodynamic (governing) 
equations. 

2.3. Lattice Boltzmann implementation 

We solve the hydrodynamic equations stated in 
equations (1) and (2) with lattice Boltzmann 
method. 

For the rest of the study, the dimensions are 
given in lattice units. As we analyze the physical 
behavior of interfaces for a binary fluid system, 
we use two distribution functions as 𝑓𝑖(𝑟, 𝑡) and  
𝑔𝑖(𝑟, 𝑡). The subscript 𝑖 shows the directions 
defined in a vector 𝑒𝑖 , that the lattice point can 
travel. The values are as follows:   𝑒0 =
(0,0), 𝑒1 = (+𝑐, 0), 𝑒2 = (−𝑐, 0), 𝑒3 = (0, +𝑐), 
𝑒4 = (0, −𝑐), 𝑒5 = (+𝑐, +𝑐), 𝑒6 = (−𝑐, −𝑐), 𝑒7 =
(−𝑐, +𝑐), 𝑒8 = (+𝑐, −𝑐). The physical quantities 
can be constructed from the distribution 
functions by 

𝜌 = ∑ 𝑓𝑖

𝑖

, ∅ = ∑ 𝑔𝑖

𝑖

, 𝜌𝑣 = ∑ 𝑓𝑖𝑒𝑖

𝑖

. (10) 

In LBM, we separate the collision (equations (11-
12)) and streaming (equations (13-14)) 
operations [40] as given by  

𝑓𝑖
′(𝑟, 𝑡) = 𝑓𝑖(𝑟, 𝑡) − 𝑖𝑛𝑣[𝑀] (𝑆(𝑀[𝑓𝑖

− 𝑓𝑖
𝑒𝑞

])), 
(11) 

-1.5 -1 -0.5 0 0.5 1 1.5
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𝑔𝑖
′(𝑟, 𝑡) = 𝑔𝑖(𝑟, 𝑡) −

1

𝜏∅
[𝑔𝑖 − 𝑔𝑖

𝑒𝑞
], (12) 

𝑓𝑖(𝑟 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
′(𝑟, 𝑡), (13) 

𝑔𝑖(𝑟 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑔𝑖
′(𝑟, 𝑡). (14) 

For the collision part, there is a collision operator 
parameter which includes a time constant 𝜏 as 
"relaxation time" parameter and describes the 
speed of the system to reach its equilibrium. The 
viscosity and heat diffusivity are affected by the 
relaxation time. Actually, Boltzmann’s original 
collision operator is non-trivial. It includes all 
the possibilities for a collision of two particles. 
However, there is a simple operator that directly 
captures the relaxation of the distribution 
function using single relaxation time (SRT) 𝜏, to 
its equilibrium. Bhatnagar, Gross and Krook 
(BGK) collision operator [41] is given by 

𝛺(𝑓) = −
1

𝜏
(𝑓 − 𝑓𝑒𝑞). (15) 

Though the BGK operator is simple and efficient, 
it has lower accuracy and stability problems 
compared to Two-Relaxation-Time and 
Multiple-Relaxation-Time operators. We 
implement Multiple-Relaxation-Time (MRT) 
operator because it consists of more than two 
free parameters (relaxation times) to be 
arranged for more stable and accurate results. 

In the BGK operator, we define only one 
relaxation parameter for the Boltzmann 
equation; but, in the multiple relaxation time, we 
define multiple relaxation parameters inside 𝑆 
matrix, 𝑀 matrix and its inverse [42].  

The equilibrium distribution functions can be 
shown as 𝑓𝑖

𝑒𝑞
 and 𝑔𝑖

𝑒𝑞
. The relations between 𝑓𝑖  

and 𝑔𝑖  is provided with 𝑓𝑖
𝑒𝑞

  and 𝑔𝑖
𝑒𝑞

. We choose 

the equilibrium functions and gradients in a way 
to reduce spurious velocities around the 
interfaces [43]. 

The relaxation parameters seen in equation (12) 
and in matrix 𝑆 in equation (11) are 𝜏𝜌 and 𝜏∅. 

While the 𝜏∅ is fixed and unity, 𝜏𝜌 varies from one 

lattice node to another by 

𝜏𝜌 = 𝜏𝛽 +
∅ + 1

2
(𝜏𝛼 − 𝜏𝛽) (16) 

where 𝜏𝛼  and 𝜏𝛽  are the relaxation parameters 

that describe the fluids' viscosities. These 

relaxation parameters are related to the 
kinematic viscosity and mobility as 

𝜈 = ∆𝑡
𝑐2

3
(𝜏𝜌 −

1

2
), (17) 

𝑀 = ∆𝑡𝛤 (𝜏∅ −
1

2
) (18) 

where 𝛤 is a parameter that we set in the 
equilibrium to change mobility. 

Finally, we use the halfway bounce-back method 
[44] (𝑓𝑖(𝑥𝑁, 𝑡 + ∆𝑡) = 𝑓𝑜𝑝𝑝(𝑖)

∗ (𝑥𝑁 , 𝑡)) to apply no-

slip boundary condition on the walls and use 
periodic boundary conditions as needed within 
the streaming step. 

3. Interfaces with Chemically Homogeneous 

Surfaces: Validation 

We devote this section to interfaces meeting 
chemically homogeneous surfaces for validation 
purposes. The capability of our solver for an 
interface to attain the correct equilibrium angle 
(static angle) is crucial for the moving interfaces. 
We first validate our solver for static wetting 
problems on chemically homogeneous 
substrates for different surface energies. We 
measure the contact angles of certain droplet-
substrate combinations to compare with the 
Young value. Second, we analyze the motion of 
interfaces within a capillary. 

3.1. Static validation 

When a droplet meets a clean surface and 
remains in hydrostatic equilibrium, the contact 
angle it makes with the surface is given by the 
Young [45] value as 

cos 𝜃𝑒𝑞 =
𝛾𝑠𝑣 − 𝛾𝑠𝑙

𝛾𝑙𝑣
 (19) 

where  𝛾𝑠𝑣 , 𝛾𝑠𝑙 and 𝛾𝑙𝑣 are the surface tensions 
between solid-vapor, solid-liquid and liquid-
vapor interfaces, respectively. 

For a given liquid with fixed 𝛾𝑙𝑣, we vary the 
surface energy by tuning the normal gradient of 
∅ at the boundary and setting the equilibrium 
contact angle given by 

√
2𝜅

𝑎
𝜕⊥∅|𝑤 = 2sgn (𝜃𝑒𝑞 −

𝜋

2
) ×

[cos (
Θ

3
) (1 − cos (

Θ

3
))]

1

2
  

(20) 
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where Θ = arccos((sin 𝜃𝑒𝑞)2) [39]. 

We place a droplet on a flat substrate that is 
atomically smooth and chemically 
homogeneous. No external forces are acting on 

the droplets and the surface tension is treated to 
be uniform. We initialize the droplets as a 
semicircle and let them converge to their 
equilibrium shape. 

 

Figure 2. (a) The variation of equilibrium contact angle with gradient of ∅ at the wall, 𝜕⊥∅|𝑤 , for the 
same and different viscosities, respectively. Circles and triangles are simulation results obtained 

using MRT lattice Boltzmann. We show the theoretical expression given in equation 20 with a solid 
line. (b), (c) and (d) show the equilibrium shapes of the droplets with 60°, 90° and 120° respectively. 

Şekil 2. (a) Sırasıyla aynı ve farklı viskoziteler için denge temas açısının duvardaki ∅ gradyanı 
𝜕⊥∅|𝑤 ile değişimi. Daireler ve üçgenler, MRT lattice Boltzmann kullanılarak elde edilen simülasyon 

sonuçlarıdır. Denklem 20'de verilen teorik ifadeyi düz bir çizgi ile gösteriyoruz. (b), (c) ve (d) 
sırasıyla 60°, 90° ve 120° ile damlacıkların denge şekillerini göstermektedir. 

In Figure 2(a), we compare the computed 
equilibrium contact angles with equation (20) 
and show the interface profiles for both partial 
wetting and non-wetting cases through Figure 
2(b)-(d). We perform the contact angle 
measurement by fitting a circle to the interface 
which is defined at the transition of ∅ from −1 to 
1.  The theory and computation match for the 
range of contact angles studied using MRT lattice 
Boltzmann method for both equal and different 
viscosity fluids. Using BGK instead of MRT ends 
up with a deviation from the theory for different 
viscosities. A similar observation can be seen in 
C.M. Pooley et al. [42]. 

3.2. Dynamic validation 

Capillary filling is one of the examples of moving 
contact line problems due to pressure difference 
across the moving interface. Because the motion 
does not require an external driving mechanism, 
it is one of the promising methods used in 
microfluidics. Washburn [46] defines the filling 
of a smooth capillary with constant surface 

energy. By neglecting the inertial effects,  end 
effects and viscous effects due to displaced fluid 
(e.g. gas) by the filling liquid, the motion of the 
penetrating incompressible liquid is defined by 
Poiseuille flow. The position, z, of the interface as 
a function of time can be shown to obey the 
following power law relation 

𝑧(𝑡)2 − 𝑧0
2 = 𝑙(𝑡)2

= (
𝛾𝑙𝑣ℎcos𝜃(𝑡)

3𝜂
) 𝑡 

(21) 

with 𝑧(𝑡 = 0) = 𝑧0 and 𝑙 being the filling length. 
The dynamic viscosity of the liquid is 𝜂, the 
channel gap thickness is ℎ and 𝜃 is the contact 
angle the liquid makes with the channel walls. 

When the viscosity of the displaced fluid is 
comparable to the fluid viscosity filling the 
capillary, we use the modified version of  
Washburn's equation. In equation (22), both 
viscosities affect the filling (in equation (21), the 
small one is neglected). 
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𝜂𝛼
𝑙(𝑡)2

2
+ 𝜂𝛽 (𝐿𝑙(𝑡) −

𝑙(𝑡)2

2
) =

(
𝛾𝑙𝑣ℎcos𝜃(𝑡)

6
) (𝑡 + 𝑡0)  

(22) 

For fluids having the same viscosity, equation 
(22) reduces to equation (23). 

𝑙(𝑡) = (
𝛾𝑙𝑣ℎcos𝜃(𝑡)

6𝜂𝛼𝐿
) (𝑡 + 𝑡0) 

(23) 

In equations (22) and (23), 𝑡0 is the integration 
constant which can be adjusted depending on 
the initial position of the interface. It is zero if 
𝑙(0)=0. While equation (23) scales linearly with 
time, equation (22) scales as ½ power of time. 

In Figure 3, we show the problem setup. The 
channel walls of length 𝐿 are shown in black. The 
periodic inlet and outlet boundaries ensure mass 

conservation while the top and bottom periodic 
sides provide us with a flat interface mimicking 
infinite reservoirs at both ends. All dimensions 
are given in lattice units. 

We use 𝑁𝑥 = 700 and 𝑁𝑦 = 42 lattices along 𝑥 

and 𝑦-directions, respectively; and place the 
capillary walls in the middle of the domain at the 
top and bottom. We set 𝜅 = 0.04, 𝑎 = 0.04 and 
𝑀 = 1 in the MRT lattice Boltzmann 
implementation. For different viscosity cases, we 
set the kinematic viscosities to 𝜈𝑙 = 0.83 and 
𝜈𝑔 = 0.067 (this corresponds to 𝜏𝛼 = 3, 𝜏𝛽 =

0.7 as in [43] with viscosity ratio of 𝜆 = 12.4). 

 

 

Figure 3. Capillary filling problem setup. The wall length is 𝐿, the green fluid is liquid and the other 
one is gas. Filling length (𝑙) is the distance that liquid penetrates into the capillary tube. For the rest 

of the study, the contact angle on black-colored regions on capillary walls is equal to 𝜃𝑒𝑞 = 60°. 

Şekil 3. Kılcal dolum problem düzeneği. Duvar uzunluğu 𝐿, yeşil akışkan sıvı ve diğeri gazdır. 
Doldurma uzunluğu (𝑙), sıvının kılcal boruya girdiği mesafedir. Çalışmanın geri kalanı için kılcal 

duvarlardaki siyah renkli bölgelerdeki temas açısı 𝜃𝑒𝑞 = 60°'ye eşittir. 

The differences are, where we observe 
deviations from initial conditions, Poiseuille flow 
profile and inertial effects. In Figure 4(a), solid 
lines come from modified Washburn's equation 
[33] and dashed lines are theoretical values with 
a refinement of 𝑙𝑒𝑓𝑓 = 𝑙 + 𝐻/2. So, we add 
imaginary walls with a length of H/2 at both ends 
of the capillary tube to get rid of inlet/outlet 
effects. A similar approach can be seen in Pooley 
et al.[43]. The filling length data form straight 
lines because the viscous dissipation occurs in 
capillary at the same rate. So we observe, it is 
independent of the interface position. As shown 
in Figure 4(b), after the interface passes the 
beginning of the capillary, the results agree with 
Washburn's equation. For the filling distances at 
a certain time, as we expect, the interface moves 
faster for lower wetting angles. 

Because the capillary-driven flow is a contact 
line motion problem, we also validate if the 
dynamic contact angles satisfy the Cox-Voinov 
[47,48] relation which states there is a linear 

relationship between the cube of dynamic 
contact angle and the Capillary number. 

We show in Figure 5 this linear variation of 𝐶𝑎 
with the cube of the dynamic contact angle for 
four different surface energies. Considering each 
individual case, as the viscosities of the filling 
and displaced liquids are different, the contact 
angle of the filling liquid decreases with time and 
as a result, the speed of the filling slows down 
[49]. But if we compare all cases for different 
contact angles, the speed of the capillary 
increases with increasing wettability (with 
lower 𝜃𝑒𝑞) as shown in Figure 4.  

For comparison, see the mean velocities (using 
𝐶𝑎 values above) for different wettabilities with 
constant viscosity and surface tension in Figure 
6. Apart from these validations, we compare the 
velocity of the interface with the one given in 
Figure 6 of C.M. Pooley and Yeomans [43] and it 
matches well.  

 

 

L
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Figure 4. The simulation result of filling length as a function of time, comparison with Washburn's 
equation for same (a) and different (b) viscosities. Magenta color is used for 𝜃𝑒𝑞 = 75°, blues for 

𝜃𝑒𝑞 = 60°, reds for 𝜃𝑒𝑞 = 45°  and blacks for 𝜃𝑒𝑞 = 30°. The symbols are our computations, the solid 

lines in (a) are modified theoretical values for the same viscosity fluid flow (equation (23)) and in 
(b) are theoretical values for different viscosity fluid flow (equation (21)) which are calculated with 

dynamic angles. The dashed lines in (a) are corrected values for the same viscosity cases. 

Şekil 4. Doldurma uzunluğunun zamanın bir fonksiyonu olarak simülasyon sonucu, aynı (a) ve farklı 
(b) viskoziteler için Washburn denklemiyle karşılaştırma. 𝜃𝑒𝑞 = 75° için macenta, 𝜃𝑒𝑞 = 60° için 

mavi, 𝜃𝑒𝑞 = 45°  için kırmızı ve 𝜃𝑒𝑞 = 30° için siyah kullanılmıştır. Semboller bizim 

hesaplamalarımızdır, (a)'daki kesintisiz çizgiler aynı viskoziteli sıvı akışı (denklem (23)) için 
değiştirilmiş teorik değerlerdir ve (b)'deki farklı viskoziteli sıvı akışı (denklem (21)) için teorik 

değerlerdir; dinamik açılarla hesaplanmıştır. (a)'daki kesikli çizgiler, aynı viskozite durumları için 
düzeltilmiş değerlerdir. 
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Figure 5. Variation of dynamic contact angle with Ca, (a) 𝜃𝑒𝑞 = 75°, (b) 𝜃𝑒𝑞 = 60°, (c) 𝜃𝑒𝑞 = 45°, (d) 

𝜃𝑒𝑞 = 30°, arrows show the filling direction. 

Şekil 5. Dinamik temas açısının Ca ile değişimi, (a) 𝜃𝑒𝑞 = 75°, (b) 𝜃𝑒𝑞 = 60°, (c) 𝜃𝑒𝑞 = 45°, (d) 𝜃𝑒𝑞 =

30°, oklar dolum yönünü göstermektedir. 
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Figure 6. Filling length variation with Ca, (a) 𝜃𝑒𝑞 = 75°, (b) 𝜃𝑒𝑞 = 60°, (c) 𝜃𝑒𝑞 = 45°, (d) 𝜃𝑒𝑞 = 30°. 

Şekil 6. Doldurma boyunun Ca ile değişimi, (a) 𝜃𝑒𝑞 = 75°, (b) 𝜃𝑒𝑞 = 60°, (c) 𝜃𝑒𝑞 = 45°, (d) 𝜃𝑒𝑞 =

30°. 

4. Effect of Chemical Heterogeneity 

The roughness and chemical heterogeneity are 
common features of surfaces except the ones 
manufactured in a laboratory as atomically 
smooth and chemically homogeneous. Inspired 
by nature, these features are mimicked to 
control the motion of interfaces. Among the 
various microfluidic devices, capillary-driven 
flows are popular as there is no need for an 
external driving mechanism. We study the 
motion of interfaces in a channel which is driven 
by capillarity. To slow down or stagnate the 
interface motion within some regions, we 
investigate the effects of varying wettability. 
This can be achieved using electrowetting [50-
52] or the channels can be manufactured with 
chemically and/or physically heterogeneous 
patterns to pin/depin the interface as a passive 
control method. We mimic such a surface by 
chemical heterogeneities on the channel walls. 
By chemical heterogeneity we mean the energy 

of the surface is not uniform, it is altered by 
modifying the surface chemistry rather than the 
topology. We achieve this numerically by 
adjusting the normal gradient of 𝜙 within the 
region of interest to achieve the desired 𝜃𝑒𝑞 . 

Using the channel geometry given in Figure 3; we 
first observe the deviation of the interface speed 
from Washburn's law when there is a chemical 
defect on the channel walls. To this end, we 
consider two cases: one with more (𝜃𝑒𝑞 = 30°) 

and one with less hydrophilic (𝜃𝑒𝑞 = 75°) region 

on the top wall than the rest of the channel walls 
which is set to 𝜃𝑒𝑞 = 60°. We show this deviation 

for single defects in Figure  7(a) by plotting the 
time variation of the filling length. We set the 
length of the defect region to 20 lattices and the 
deviation from Washburn's law for 𝜃𝑒𝑞 = 60° 

everywhere is obvious. Within a more 
hydrophilic region, the contact line speeds up 
increasing the filling speed with an increase in 
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the slope until it passes this region and attains 
the regular slope (see squares). The opposite is 
true for a less hydrophilic defect. The contact line 
motion slows down within this region and 
attains the same speed after (see triangles). In 
panel (b) of the same figure, we show, this time, 
the deviation for single patterns on both top and 
bottom walls in overlapped and staggered 
configurations.  

The slowing down of the interface motion is 
more effective if the patterns are placed in an 
overlapped configuration as the contact lines at 
the top and bottom walls slow down at the same 
time.  In the staggered configuration, however, 
the slowing down is limited because one of the 
contact lines moves faster while the other one 
moves slower. We show this in Figure 8 by 
comparing the two configurations. This 
observation suggests that overlapped 
heterogeneities prevail over staggered ones to 
stop the motion of the interfaces.  

With this motivation, we search for the 
equilibrium states of the interface; namely, the 
conditions which flatten the interface resulting 

in no pressure difference across the interface to 
derive the motion so that interface stops. In 
plane, the existence of interface curvature drives 
the motion. Such a flat interface is possible, for 
example, if both top and bottom contact angles 
attain 90°. In Figure 9, we observe a vertical flat 
interface satisfying our claim. For the top and 
bottom defects, we set the surface energies for 
the liquid to have contact angles of 90° while the 
rest of the channel walls remain at 60°. Normal 
stress balance at a local point at the interface 
with uniform surface tension 𝛾 requires 

𝑝𝑙 − 𝑝𝑔 = 𝛾∇ ∙ 𝒏~
𝛾

𝑟
 (24) 

where 𝒏 is the outward unit normal pointing 
from the liquid into the gas and 𝑟 is the radius of 
the curvature of the interface approximated by a 
circular arc. For the flat case, 𝑟 goes to infinity 
and the pressure difference across the interface 
vanishes. This mechanism stops the interface. 

 

 

Figure 7. The divergence of filling length from Washburn for 𝜃𝑒𝑞 = 60°, with (a) single defect on the 

capillary (squares for 𝜃𝑒𝑞 = 30°and triangles for 𝜃𝑒𝑞 = 75°), (b) multi-defects on the capillary (black 

squares for overlapped 𝜃𝑒𝑞 = 30° regions, black triangles for overlapped 𝜃𝑒𝑞 = 75° regions, red 

squares for staggered 𝜃𝑒𝑞 = 30° regions and red triangles for staggered 𝜃𝑒𝑞 = 75° regions), to speed 

up or down the interface. 

Şekil 7. Arayüzeyi hızlandırmak veya yavaşlatmak amacı ile doldurma uzunluğunun 𝜃𝑒𝑞 = 60° için 

Washburn'den sapması, (a) kılcal kanal üzerinde tek kusur (𝜃𝑒𝑞 = 30° için kareler ve 𝜃𝑒𝑞 = 75° için 

üçgenler), (b) kılcal kanal üzerinde çoklu kusurlar (üst üste binen 𝜃𝑒𝑞 = 30° bölgeleri için siyah 

kareler, üst üste binen 𝜃𝑒𝑞 = 75°  bölgeleri için siyah üçgenler, çakışmayacak şekilde ayarlanmış 

𝜃𝑒𝑞 = 30° bölgeleri için kırmızı kareler ve çakışmayacak şekilde ayarlanmış θ_eq=75° bölgeleri için 

kırmızı üçgenler). 

But if the regions are staggered not overlapped, 
then the filling of the capillary may not stop as 

seen in Figure 10. While panel (a) shows the 
deviation of interface position from uniform 
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surface energy surface, panels (b) to (e) show the 
corresponding interface profiles. The flow slows 

down but does not stop because 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
<

180°, it continues to move and only the interface 

can be flat at the intersection of the regions for a 
small time interval. Therefore, at that point, the 

conditions are changed to 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 < 180° 

and the interface again starts to move.

 

Figure 8. Comparison of the effect of wall pattern on the interface motion, the left panel is for the 
overlapped configuration while the right panel is for the staggered configuration, (a) t =50000, (b) t 

=150000, (c) t=400000. 

Şekil 8. Duvar deseninin arayüzey hareketi üzerindeki etkisinin karşılaştırılması, sol panel üst üste 
binen konfigürasyon içindir, sağ panel çakışmayacak şekilde ayarlanmış konfigürasyon içindir, (a) t 

=50000, (b) t =150000, (c) t=400000. 

 

Figure 9. Interface profile within the capillary at 90-degree regions. 

Şekil 9. 90 derecelik bölgelerde kılcal kanal içindeki arayüzey profili. 

 

Figure 10. History of interface movement for staggered configuration with 𝜃𝑒𝑞 = 90° defects. The 

solid line in (a) shows the computed interface position for uniform 𝜃𝑒𝑞 = 60°, dashed line is for 

staggered configuration. The interface shapes at several instants encircled in  (a) are shown in 
panels (b) to (e). 

Şekil 10. 𝜃𝑒𝑞 = 90°  kusurlarla çakışmayacak şekilde ayarlanmış konfigürasyon için arayüzey  

hareketi geçmişi. (a)'daki kesintisiz çizgi, üniform 𝜃𝑒𝑞 = 60°  için hesaplanan arayüzey konumunu 

gösterir, kesikli çizgi çakışmayacak şekilde ayarlanmış yapılandırma içindir. (a)'da daire içine 
alınmış çeşitli anlardaki arayüzey şekilleri, (b) - (e) panellerinde gösterilmektedir.

(a)

(b)

(c)
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Figure 11. Various stopping cases, (a) case 1: Interface of the capillary at 120-degree regions with 
staggered configuration, (b) case 2, (c) case 3, (d) case 5, (e) case 6; see Table 1 for details. 

Şekil 11. Çeşitli durma durumları, (a) durum 1: çakışmayacak şekilde ayarlanmış konfigürasyonla 
120 derecelik bölgelerde kılcal kanal arayüzeyi, (b) durum 2, (c) durum 3, (d) durum 5, (e) durum 6; 

ayrıntılar için Tablo 1'e bakın. 

In Figure 11, we see the stopping condition is 

provided only if 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 180°. This means 

that the flat interface does not have to be vertical. 
As long as, at any point in time, the contact angles 
at the top and bottom walls sum up to 𝜋, the 
interface could be stopped even for staggered 
configurations with hydrophobic regions. 

The use of more hydrophobic regions for 
overlapped configurations does not affect the 
stopping mechanism, namely a vertical interface 
forms. But for the staggered configuration, more 
hydrophobic regions stop the interface at an 
inclined position as seen in Figure 11.

Table 1. Stopping conditions using the same setup as in Figure 11 for different wettability at defect 
regions. Except case 7 (𝜃𝑒𝑞 = 30°), all cases have 𝜃𝑒𝑞 = 60° out of the defects. 

Tablo 1. Kusurlu bölgelerde farklı ıslanabilirlik için Şekil 11'deki ile aynı düzeneği kullanan durdurma 
koşulları. 7. durum (𝜃𝑒𝑞 = 30°) hariç, tüm durumlar kusurlar dışında 𝜃𝑒𝑞 = 60°'ye sahiptir. 

Parameters 
and 
Conditions \ 
Case 
Numbers 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

𝜽𝒆𝒒
𝒃𝒐𝒕 & 𝜽𝒆𝒒

𝒕𝒐𝒑
 120&120 100&100 150&150 90&90 100&90 90&120 90&120 

Vertically,  

𝜽𝒆𝒒
𝒃𝒐𝒕 + 𝜽𝒆𝒒

𝒕𝒐𝒑
 

≥ 𝟏𝟖𝟎° 

Yes No Yes No No 
2𝑛𝑑 
region 

No 

Reaches 𝟐𝒏𝒅 
region? 

No Yes No Yes Yes Yes Yes 

Bottom-side 
contact angle 
(~%1) 

112 100 113 - 100 60 - 

Top-side 
contact angle 
(~%1) 

68 80 67 - 80 120 - 

Pinning at 𝟏𝒔𝒕 
or 𝟐𝒏𝒅 
region? 

First Second First - Second Second - 

Stopping 
angle side 

Top-side 
Bottom-
side 

Top-side - 
Bottom-
side 

Bottom-
side 

- 

(a)

(b) (c) (d) (e)
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As we summarize in Table 1, stopping conditions 
vary with the wettability of overlapped walls. We 
define a simple relation between the cases as; 

1. If 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 180°, the interface 

stops and the contact line attains the 
𝜃𝑒𝑞 on the hydrophobic side. 

2. Else, 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 < 180°, the interface 

moves but the contact line speed 
decreases. When the contact points are 

on walls that provide 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥

180°, the interface starts to slow down. 
It tries to attain 𝜃𝑒𝑞 for the side that has 

already depinned. 

5. Conclusion 

In this study, we analyze the interface motion in 
a capillary channel driven by capillary pressure 
only. Apart from the importance of such flows in 
microfluidic devices as it does not require an 
external device to drive the motion, it provides 
us with a flow domain to understand and control 
the interface motion. For this purpose, we 
modify the surface energy of the channel walls 
and investigate the passive control mechanism 
of interfaces instead of active methods. 

We model the capillary flow as a two-phase flow 
of Newtonian fluids and integrate the governing 
equations using the lattice Boltzmann Method. 
This method has many advantages for wetting 
applications against traditional solvers such as 
Finite Element Method (FEM) compared to 
computing cost, applicability, mobility between 
cases, etc. We first validate our solver for static 
and dynamic problems and then discuss the 
effects of surface energy on the motion of 
interfaces. 

We discuss two main problems: (i) Accelerating 
or decelerating the interfaces, (ii) interface 
stopping conditions. According to the cases of 
interface motion driven by capillarity, we can 
change the contact line speed and stop the 
interface as needed by playing with the energy of 
the surfaces. For changing the contact line speed, 
we add chemical defects on the walls which have 
different wettability properties. As we expect, 
according to the wettabilities of defects, 
deviation from the Washburn is observed, and 
for stopping conditions, we show that the defects 

should provide 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 180° at the 

contact points of interface. The configurations of 
the defects can alter the stopping position of the 
interface.  

We should, finally, note that if there are two 
interfaces in the capillary with uniform wall 
surface energy, the fluid column cannot move 
because the two interfaces are alike and cancel 
the pressure difference. However, it can be 
moved if the surfaces are modified to generate a 
wetting gradient that we are going to discuss in 
another paper. 

We believe that our simulation would motivate 
further numerical and experimental studies for a 
possible setup including passively driven 
capillary flows to control the interface motion. 

5. Sonuç 

Bu çalışmada, sadece kılcal basınç tarafından 
yönlendirilen bir kılcal kanaldaki arayüzey 
hareketini inceliyoruz. Hareketi yönlendirmek 
için harici bir cihaz gerektirmediği için 
mikroakışkan cihazlarda bu tür akışların 
öneminin yanı sıra, arayüzey hareketini anlamak 
ve kontrol etmek için bize bir akış alanı sağlar. 
Bu amaçla kanal duvarlarının yüzey enerjisini 
modifiye ederek aktif yöntemler yerine 
arayüzeylerin pasif kontrol mekanizmasını 
araştırıyoruz. 

Kılcal akışı Newtonyan sıvılarının iki fazlı akışı 
olarak modelliyoruz ve lattice Boltzmann 
Metodu'nu kullanarak yöneten denklemleri 
entegre ediyoruz. Bu yöntemin, ıslatma 
uygulamaları için Sonlu Elemanlar Yöntemi 
(FEM) gibi geleneksel çözücülere kıyasla 
hesaplama maliyeti, uygulanabilirlik, durumlar 
arasındaki hareketlilik vb. gibi birçok avantajı 
vardır. Önce çözücümüzü statik ve dinamik 
problemler için doğruluyoruz ve ardından 
arayüzeylerin hareketi üzerine yüzey enerjisinin 
etkilerini tartışıyoruz.  

İki ana sorunu tartışıyoruz: (i) Arayüzeylerin 
hızlandırılması veya yavaşlatılması, (ii) 
arayüzeylerin durma koşulları. Kılcallık 
tarafından yönlendirilen arayüzey hareketi 
durumlarına göre, temas hattı hızını 
değiştirebilir ve yüzeylerin enerjisi ile 
oynayarak arayüzeyi  gerektiği gibi 
durdurabiliriz. Temas hattı hızını değiştirmek 
için farklı ıslanabilirlik özelliklerine sahip 
duvarlara kimyasal kusurlar ekliyoruz. 
Beklediğimiz gibi, kusurların ıslanabilirliklerine 
göre Washburn'den sapma gözlenir ve durma 
koşulları için kusurların arayüzeyin temas 

noktalarında 𝜃𝑒𝑞
𝑏𝑜𝑡 + 𝜃𝑒𝑞

𝑡𝑜𝑝
 ≥ 180° sağlaması 

gerektiğini gösteriyoruz. Kusurların 
konfigürasyonları arayüzeyin durma konumunu 
değiştirebilir. 
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Son olarak, kılcalda üniform duvar yüzey 
enerjisine sahip iki arayüzey varsa, sıvı 
kolonunun hareket edemeyeceğini, çünkü iki 
arayüzeyin aynı olduğunu ve basınç farkını iptal 
ettiğini not etmeliyiz. Ancak, başka bir yazıda 
tartışacağımız gibi bir ıslatma gradyanı 
oluşturularak yüzeyler değiştirilirse hareket 
sağlanabilir. 

Simülasyonumuzun, arayüzey hareketini kontrol 
etmek amacı ile pasif olarak yönlendirilen kılcal 
akışlar içeren olası bir düzenek için daha fazla 
sayısal ve deneysel çalışmaları motive edeceğine 
inanıyoruz. 
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