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Abstract

In this paper, we study a new nonlinear di�erential problem with nonlocal integral conditions and conver-
gent series. The problem involves three fractional order operators: Riemann-Liouville integral, Caputo and
Riemann-Liouville derivatives. The introduced Caputo derivatives in the problem have neither the commu-
tativity property nor the semi-group one. The considered problem can be seen as a more general case for
the problem considered in the recent paper: [Existence and Mittag-Le�er-Ulam-Stability Results for Du�ng
Type Problem Involving Sequential Fractional Derivatives] that is published in the International Journal
of Applied and Computational Mathematics, (2022). We begin by proving a �rst auxiliary integral result.
Then, we demonstrate an existence and uniqueness result by applying Banach contraction principle. Also, we
establish a new existence result using Leray-Schauder �xed point theorem. We end our paper by presenting
some illustrative examples.
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1. Introduction

Fractional di�erential equations theory is attracting more popularity and increasing importance, due to
its numerous applications in various areas, such as optics, medicine, statistical physics, electrochemistry,
automatics, and control theory, see [5, 6, 7, 9, 14, 15, 17, 20, 22]. To be more speci�c, many models are
discussed; among them: glycolysis [11], viscous nano�uid holding [12, 24, 25], The dynamics of vector�host
infectious diseases[13], the magnetohydrodynamic [33], The second grade �uid �ow for generalized thermal
and molecular di�usion by applying the constant proportional Caputo fractional derivative [10]. Moreover,
the nonlinear case is one of the most important mathematical tools used to model real-world problems in
many domains of science. The reader is invited to consult the paper [1, 4, 8, 23, 26, 27, 31, 32]. In particular,
one of these nonlinear equations called the Du�ng equation that has become very important in engineering
sciences, see [3, 34]. In this context, many authors have been interested in studying the question of the
existence and uniqueness of solutions for certain types of such equations. We refer the interested reader to
[2, 16, 29] for more details.
In [2], the authors were concerned with the following sequential Du�ng problem:

Dα
(
D2−β + λDα

)
x(t) + k1f1 (t, x(t), D

αx(t)) + k2f2 (t, x(t), J
px(t)) = h(t),

x(1) = 0, D1−(α−β)Dα−βx(1) = A∗ ∈ R, x(T ) = 0,

0 ≤ β < α ≤ 1, 0 ≤ α+ β < 1, 0 < p, t ∈ I,

where Dα, D2−β , are the Caputo-Hadamard fractional derivatives, Jp is the Hadamard fractional integral I =
[1, T ], k1, k2 are real constants, and the functions f1, f2 and h are continuous. The authors have investigated
the existence, uniqueness and stability of solutions for a new sequential Van der Pol-Du�ng (VdPD) jerk
fractional di�erential oscillator with Caputo-Hadamard derivatives. Their arguments are based on Banach
contraction principle and Krasnoselskii �xed point theorem. They have also studied Ulam-Hyers stabilities
for their proposed problem.

Also in [18], Y. Gouari et al. have studied the following three sequential fractional problem of Du�ng
type: 

Dα(Dβ(Dδy(t))) + f(t, y(t), Dpy(t)) + g(t, y(t), Iqy(t)) + h(t, y(t)) = l(t),

y(0) = ξ ∈ R,

y(1) =

∫ η

0
y(s)ds, 0 < η < 1,

Iey(θ) = Dδy(1), 0 < u < 1,

0 < α, β, δ, p ≤ 1, q > 0, t ∈ J,

where J := [0, 1], Dα, Dβ, Dδ, Dp are derivatives of Caputo , Iq denotes the Riemann-Liouville fractional
integral of order q, and f, g : J × R2 → R are two given functions, also h : J × R → R is a given function
and l is a function which is de�ned on J. The authors have proved the existence and uniqueness of solutions
by application of Banach contraction principle, then, by means of Schaefer �xed point theorem, they have
studied the existence of at least one solution for the problem.

In [19], by the applications of singular di�erential equations in �uid dynamics, the authors have considered
the following problem:
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

Dαu(t) + λf(u(t), u
′′
(t)) = δg(t, u(t), Dγu(t)) +

∞∑
i=1

νiΦi(t)I
αhi(t, u(t)), t ∈ (0, 1],

u
′′
(0) + u

′′
(1) = κ1

∫ ξ

0
u(s)ds, 0 < ξ < 1,

u
′
(0) + u

′
(1) = κ2

∫ θ

0
u(s)ds, 0 < θ < 1,

u(0) + u(1) = κ3

∫ η

0
u(s)ds, 0 < η < 1,

2 < α ≤ 3, 0 < γ < 1, κ1, κ2, κ3, λ, δ, νi ∈ R,
where we note that J := [0, 1], the functions f , hi and Φi will be speci�ed later, g is singular at t = 0, ξ, θ, η
are constants, the operators Dα and Dγ are the derivatives in the sense of Caputo.

Very recently, M. Houas et al. [21] have studied the existence, uniqueness and Mittag-Le�er-Ulam-
stability of solutions for sequential Caputo-Riemann-Liouville fractional Du�ng problem, given by

CD
η[CD

ω[RLD
θv(s)]] = m(s)−Ap(s, v(s),RLDµv(s))− q(s, v(s),RL Iγv(s)),

v(0) = 0,

CD
ω[RLD

θv(1)]] = 0,

RLD
θv(1)]−RL Dαv(β)] = 0,

with s ∈ Ω := [0, 1], η, ω, θ, β ∈ (0, 1), µ < θ, γ, α ≥ 0, A > 0,
and CD

ϑ, ϑ ∈ {η, ω},RLDθ denote the Caputo and Riemann-Liouville fractional derivatives, RLI
ς , ς ∈ {γ, α}

is the Riemann-Liouville fractional integral of order ς, p, q : Ω × R2 → R and m : Ω → R are given contin-
uous functions. A uniqueness result for solutions of the underlying Du�ng problem has been presented by
the authors with the aid of Banach �xed point theorem, while the existence result has been derived from
Leray-Schauder alternative. Also the Mittag-Le�er-Ulam stability has been obtained by using generalized
singular Gronwall inequality.

The present paper deals with the existence and uniqueness of solutions to the following sequential frac-
tional problem: 

CD
α1 [CD

α2 [CD
α3 ...[CD

αn [RLD
βu(s)]]...]] = Λ1f(t, u(t),RLDγu(t))

+Λ2g(t, u(t), I
ζu(t)) +

∞∑
j=1

Φj(t)I
ζ [hj(t, u(t)) + lj(t)], t ∈ [0, 1],

u(0) = 0,

CD
α2 [CD

α3 [CD
α4 ...[CD

αn [RLD
βu(0)]]...]] = θ, θ > 0,

CD
α3 [CD

α4 [CD
α5 ...[CD

αn [RLD
βu(0)]]...]] = 0,

CD
α4 [CD

α5 [CD
α6 ...[CD

αn [RLD
βu(0)]]...]] = 0,

.

.

.

CD
αn−1 [CD

αn [RLD
βu(0)]] = 0,

CD
αn [RLD

βu(0)] =

∫ η

0
u(s)ds, 0 < η < 1,

RLD
βu(1) =RL Dφu(τ), 0 < τ < 1.

(1)

For (1), we take J := [0, 1], 0 ≤ β, φ < 1, 0 ≤ αi < 1; γ < αi, i = 1, 2, ..., n, and γ,Λ1,Λ2 > 0, the sequential
derivatives are in the sense of Caputo and Riemann-Liouville, Iζ denotes the Riemann-Liouville fractional
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integral of order ζ, and f, g : J × R2 → R are two given functions, also hj : J × R → R is a given functions
and lj ,Φj are functions which are de�ned on J , j ∈ N∗.
We think that our problem is more general than the problem considered in [21], since it includes several
parameters of sequential Caputo derivations. The parameters allow us to introduce a new sequential problem
with ACSG; absence of commutativity and semi group properties between Caputo derivatives. So, to study
the problem, we shall �nd new arguments to overcome this type of ACSG problems.
In general, the aim is to present a new contribution in this �eld of interest and try to �ll this gap. Especially,
we study the question of existence and uniqueness of solutions by using both Banch �xed point theorem
and integral inequalities, then we pass to the investigate the existence of solutions by using Leray-Schauder
�xed point theorem. Another particularity of the above problem is the introduction of the Riemann-Liouville
derivative in both sides of the problem. Also, we introduce the Riemann-Liouville integral in one nonlinearity
of the right hand side of the sequential problem.
To the best of our knowledge this is the �rst time in the literature where problem, involving fractional
calculus and convergent series on Riemann-Liouville integrals and other nonlinear terms, is investigated.
The paper is organised as follow: in section 2, we recall some results and de�nitions that are used for the
proof of our main results. In section 3, we prove the main theorems of this paper, and we discuss some
illustrative examples.

2. Fractional Calculus

We recall some de�nitions and lemmas [28].

De�nition 2.1. Let α > 0, and f : [0, 1] → R be a continuous function. The Riemann-Liouville integral of

order α > 0 is de�ned by:

Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ,

where, Γ(α) :=
∫∞
0 e−uuα−1du.

De�nition 2.2. For a function f ∈ Cn([0, 1],R) and n − 1 < α ≤ n, the Caputo fractional derivative is

de�ned by:

CD
αf(t) = In−α dn

dtn
(f(t))

=
1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds.

De�nition 2.3. For a function f ∈ Cn([0, 1],R), the Riemann-Liouville fractional derivative of f is de�ned

by:

RLD
αf(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1f(s)ds,

where, n = [α] + 1 and [α] denotes the integer part of α.

To study (1), we need the following lemmas [28]:

Lemma 2.4. Let n ∈ N∗, and n− 1 < α < n. Then, the solutions of the equation Dαy(t) = 0, t ∈ [0, 1] are:

y(t) =

n−1∑
i=0

cit
i, ci ∈ R, i = 0, 1, 2, .., n− 1.
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Lemma 2.5. If n ∈ N∗, and n− 1 < α < n, then, we have

IαDαy(t) = y(t) +
n−1∑
i=0

cit
i,

such that ci ∈ R, i = 0, 1, 2, .., n− 1.
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Lemma 2.6. Suppose that 0 < λ ≤ 1. Then for y ∈ C(0, 1) ∩ L1(0, 1) and RLD
λy ∈ C(0, 1) ∩ L1(0, 1), we

have

Iλ[RLD
λy(t)] = y(t) + e0t

λ−1.

Lemma 2.7. Let B : W → W be a completely continuous operator and

F (B) := {x ∈ W : x = σ Bx, σ ∈]0, 1[}.

Then either the set F (B) is unbounded, or B has at least one �xed point.

Now, we prove the following auxiliary integral result.

Lemma 2.8. Let Υ in C(]0, 1]), (Ψj)j=1,...,r and (Φj)j=1,...,r in C(J), r ∈ N∗, such that MΦ =

∞∑
j=1

∥Φj∥∞ <

+∞.

Then, the di�erential problem

CD
α1 [CD

α2 [CD
α3 ...[CD

αn [RLD
βu(s)]]...]] = Υ(t) +

∞∑
j=1

Φj(t)I
ζΨj(t), t ∈ [0, 1],

u(0) = 0,

CD
α2 [CD

α3 [CD
α4 ...[CD

αn [RLD
βu(0)]]...]] = θ, θ > 0,

CD
α3 [CD

α4 [CD
α5 ...[CD

αn [RLD
βu(0)]]...]] = 0,

CD
α4 [CD

α5 [CD
α6 ...[CD

αn [RLD
βu(0)]]...]] = 0,

.

.

.

CD
αn−1 [CD

αn [RLD
βu(0)]] = 0,

CD
αn [RLD

βu(0)] =

∫ η

0
u(s)ds, 0 < η < 1,

RLD
βu(1) =RL Dφu(τ), 0 < τ < 1,

(2)
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has as an integral solution the following expression:

u(t) = I

β+

n∑
i=1

αi

Υ(t) +

∞∑
j=1

I

β+

n∑
i=1

αi

[Φj(t)I
ζΨj(t)] +

θt

β+

n∑
i=2

αi

Γ(β +

n∑
i=2

αi + 1)

+
[
I

n∑
i=1

αi

Υ(1)

+
∞∑
j=1

I

n∑
i=1

αi

[Φj(1)I
ζΨj(1)] + χ1 − I

φ+β+

n∑
i=1

αi

Υ(τ)−
∞∑
j=1

I

φ+β+

n∑
i=1

αi

[Φj(τ)I
ζΨj(τ)]

− χ2 +Q1ι
∗
(∫ η

0
I

β+

n∑
i=1

αi

Υ(s)ds+

∫ η

0

∞∑
j=1

I

β+

n∑
i=1

αi

[Φj(s)I
ζΨj(s)]ds+ χ3

)]

× tβ+αn

ΠΓ(β + αn + 1)
+
[Q2ι

∗

Π

(
I

n∑
i=1

αi

Υ(1) +
∞∑
j=1

I

n∑
i=1

αi

[Φj(1)I
ζΨj(1)] + χ1

+ I

φ+β+

n∑
i=1

αi

Υ(τ) +
∞∑
j=1

I

φ+β+

n∑
i=1

αi

[Φj(τ)I
ζΨj(τ)] + χ2 +

(Q2Q1ι
∗2

Π
− ι∗

))

×
(∫ η

0
I

β+

n∑
i=1

αi

Υ(s)ds+

∫ η

0

∞∑
j=1

I

β+

n∑
i=1

αi

[Φj(s)I
ζΨj(s)]ds+ χ3

)] tβ

ΠΓ(β + 1)
,

(3)

where,

χ1 =
θ

Γ(

n∑
i=2

αi + 1)

, χ2 =
θτ

φ+β+

n∑
i=2

αi

Γ(φ+ β +

n∑
i=2

αi + 1)

, χ3 =
θη

β+

n∑
i=2

αi + 1

Γ(β +

n∑
i=2

αi + 2)

,

Q1 =
τφ+β

Γ(φ+ β + 1)
− 1, Q2 = 1− ηβ+αn+1

Γ(β + αn + 2)
, ι∗ =

Γ(β + 2)

ηβ+1
,

Π = ι∗Q1Q2 +
τβ+αn+1

Γ(β + αn + 2)
− 1

Γ(αn + 1)
,

and (
ι∗Q1Q2Γ(αn + 1) + 1

)
Γ(β + αn + 2) ̸= τβ+αn+1Γ(αn + 1).

Proof. We apply Lemma 2.5 and Lemma 2.6 to (1). So, we �nd that
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u(t) = I

β+

n∑
i=1

αi

Υ(t) +
∞∑
j=1

I

β+

n∑
i=1

αi

[Φj(t)RLI
ζΨj(t)] +

c0

Γ(

n∑
i=2

αi + β + 1)

t

n∑
i=2

αi + β

+
c1

Γ(
n∑

i=3

αi + β + 1)

t

n∑
i=3

αi + β

+
c2

Γ(
n∑

i=4

αi + β + 1)

t

n∑
i=4

αi + β

+ ...

+
cn−2

Γ(αn + β + 1)
tαn+β +

cn−1

Γ(β + 1)
tβ + cnt

β−1.

(4)

The initial conditions allow us to write:

u(0) = 0 ⇒ cn = 0

CD
α2 [CD

α3 [CD
α4 ...[CD

αn [RLD
βu(0)]]...]] = θ ⇒ c0 = θ,

CD
α3 [CD

α4 [CD
α5 ...[CD

αn [RLD
βu(0)]]...]] = 0 ⇒ c1 = 0,

CD
α4 [CD

α5 [CD
α6 ...[CD

αn [RLD
βu(0)]]...]] = 0 ⇒ c2 = 0,

.

.

.

CD
αn−1 [CD

αn [RLD
βu(0)]] = 0 ⇒ cn−3 = 0.

(5)

Thanks to the following conditions

CD
αn [RLD

βu(0)] =

∫ η

0
u(s)ds, 0 < η < 1,

RLD
βu(1) = RLD

φu(τ),

we end the proof.

We shall use �xed point theory to study the above problem. So, we consider the space

X := {x ∈ C(J,R), Dγx ∈ C(J,R)},

and the norm:
∥x∥X = Max{∥x∥∞ , ∥Dγx∥∞},

where,
∥x∥∞ = sup

t∈J
|x(t)| , ∥Dγx∥∞ = sup

t∈J
|Dγx(t)|.
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Then, we take the nonlinear operator Hβ∗ : X → X that is de�ned by:

Hβ∗u(t) = I

β∗+

n∑
i=1

αi

Υ∗
u(t) +

∞∑
j=1

I

β∗+

n∑
i=1

αi

[Φj(t)I
ζ(Ψj)

∗
u(t)] +

θt

β∗+

n∑
i=2

αi

Γ(β∗ +

n∑
i=2

αi + 1)

+
[
I

n∑
i=1

αi

Υ∗
u(1) +

∞∑
j=1

I

n∑
i=1

αi

[Φj(1)I
ζ(Ψj)

∗
u(1)] + χ1 − I

φ+β+

n∑
i=1

αi

Υ∗
u(τ)

−
∞∑
j=1

I

φ+β+

n∑
i=1

αi

[Φj(τ)I
ζ(Ψj)

∗
u(τ)]− χ2 +Q1ι

∗
(∫ η

0
I

β+

n∑
i=1

αi

Υ∗
u(s)ds

+

∫ η

0

∞∑
j=1

I

β+

n∑
i=1

αi

[Φj(s)I
ζ(Ψj)

∗
u(s)]ds+ χ3

)] tβ
∗+αn

ΠΓ(β∗ + αn + 1)
+
[Q2ι

∗

Π

×
(
I

n∑
i=1

αi

Υ∗
u(1) +

∞∑
j=1

I

n∑
i=1

αi

[Φj(1)I
ζ(Ψj)

∗
u(1)] + χ1 + I

φ+β+

n∑
i=1

αi

Υ∗
u(τ)

+
∞∑
j=1

I

φ+β+

n∑
i=1

αi

[Φj(τ)I
ζ(Ψj)

∗
u(τ)] + χ2

)
+
(Q2Q1ι

∗2

Π
− ι∗

)(∫ η

0
I

β+

n∑
i=1

αi

Υ∗
u(s)ds+

∫ η

0

∞∑
j=1

I

β+

n∑
i=1

αi

[Φj(s)I
ζ(Ψj)

∗
u(s)]ds+ χ3

)] tβ
∗

ΠΓ(β∗ + 1)
,

where

Υ∗
u(t) = Λ1f(t, u(t),RLDγu(t)) + Λ2g(t, u(t)RLI

ζu(t)), (Ψj)
∗
u(t) = hj(t, u(t)) + lj(t).

Remark 2.9. We have RLD
γHβu(t) = Hβ−γu(t).

Now, we are ready to prove our main results.

3. Main Results

We need the following hypotheses:

(A1) : The given functions of (1) are continuous.

(A2) : There exist nonnegative real ϖf1, ϖf2, ϖg1, ϖg2 such that, for any t ∈ J , si, s
∗
i ∈ R,

|f(t, s1, s2)− f(t, s1
∗, s2

∗)| ≤ ϖf1|s1 − s1
∗|+ϖf2|s2 − s2

∗|, (6)

|g(t, s1, s2)− g(t, s1
∗, s2

∗)| ≤ ϖg1|s1 − s1
∗|+ϖg2|s2 − s2

∗|, (7)
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and there exists positive numbers Kj such that, for any t ∈ J , s, s
′ ∈ R,

|hj(t, s)− hj(t, s
′
)| ≤ Kj |s− s

′ |, (8)

and
∞∑
j=1

Kj ≤ K. (9)

We take:
ϖ1 := Max(ϖf1, ϖf2), ϖ2 := Max(ϖg1, ϖg2). (10)

(A3) : We take:
∞∑
j=1

∥lj∥∞ = Ol.

(A4) : There exist real constants ϵi, εi ≥ 0 (i = 0, 1, 2) such that for any x, y ∈ R, we have
|f(t, x, y)| ≤ ϵ0 + ϵ1|x|+ ϵ2|y|,
|g(t, x, y)| ≤ ε0 + ε1|x|+ ε2|y|,
and, there exist real constants ρj , ρ

′
j , such that for any x ∈ R, we have

|hj(t, x)| ≤ ρj + ρ
′
j |x| and

∞∑
j=1

ρj → ρ0,

∞∑
j=1

ρ
′
j → ρ1.

Also, we consider the quantity:

Θβ∗ =

[
2Λ1ϖ1 + Λ2

(
ϖ2 +

ϖ2

Γ(ζ + 1)

)
+MΦK

][
1

Γ(

n∑
i=1

αi + β∗ + 1)

+
1

Γ(

n∑
i=1

αi + 1)

+
1

Γ(
n∑

i=1

αi + β + φ+ 1)

+
Q1ι

∗η

Γ(
n∑

i=1

αi + 1)

]
1

|Π|Γ(β∗ + αn + 1)
+

[
2Λ1ϖ1

+ Λ2

(
ϖ2 +

ϖ2

Γ(ζ + 1)

)
+MΦK

][
|Q2|ι∗

(
1

Γ(
n∑

i=1

αi + 1)

+
1

Γ(
n∑

i=1

αi + β + φ+ 1)

)

+ |Q1Q2(ι
∗)2

Π
− ι∗| η

Γ(
n∑

i=1

αi + β + 1)

]
1

|Π|Γ(β∗ + 1)
.

(11)

The �rst main result is given by the following theorem:

Theorem 3.1. Let the conditions (Ai)i=1,2 be satis�ed and Θ < 1, where, Θ := max {Θβ,Θβ−γ} . Then, the
problem (1) has a unique solution on J.

Proof. It is su�cient for us to prove that Hβ is a contraction mapping.
Let (x, y) ∈ X2. Then, we can write
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∥Hβ∗y −Hβ∗x∥∞ ≤
[
2Λ1ϖ1 + Λ2

(
ϖ2 +

ϖ2

Γ(ζ + 1)

)
+MΦK

][
1

Γ(
n∑

i=1

αi + β∗ + 1)

+
1

Γ(
n∑

i=1

αi + 1)

+
1

Γ(
n∑

i=1

αi + β + φ+ 1)

+
Q1ι

∗η

Γ(
n∑

i=1

αi + 1)

]

× 1

|Π|Γ(β∗ + αn + 1)
∥y − x∥X

+

[
2Λ1ϖ1 + Λ2

(
ϖ2 +

ϖ2

Γ(ζ + 1)

)
+MΦK

][
|Q2|ι∗

(
1

Γ(
n∑

i=1

αi + 1)

+
1

Γ(
n∑

i=1

αi + β + φ+ 1)

)
+ |Q1Q2(ι

∗)2

Π
− ι∗| η

Γ(
n∑

i=1

αi + β + 1)

]

× 1

|Π|Γ(β∗ + 1)
∥y − x∥X .

(12)

We deduce that

∥Hβ∗y −Hβ∗x∥∞ ≤ Θβ∗∥x− y∥X .

Thanks to (12), we obtain
∥Hβy −Hβx∥∞ ≤ Θβ∥x− y∥X ,

∥Hβ−γy −Hβ−γx∥∞ ≤ Θβ−γ∥x− y∥X ,

and

∥RLD
γHβy −RL DγHβx∥∞ ≤ Θβ−γ∥x− y∥X .

Thus,

∥Hβy −Hβx∥X ≤ Θ∥x− y∥X .

The proof is thus achieved.

We prove also the following theorem that guarantees the existence of at least one solution.

Theorem 3.2. Under the hypotheses (A1), (A3) and (A4), if
Λ1(ϵ1 + ϵ2) + Λ2(ε1 + ε2) +MΦρ1 < Ξ−1

β∗ , where Ξβ∗ are given by (14), then problem (1) has at least one

solution u(t), t ∈ J.

Proof. Let us prove the result by considering the following three steps:

Step 1. Firstly, we will prove that the operator Hβ : X → X is completely continuous.
Let Σ ⊂ X be bounded. Then there exist positive constants Mf ,Mg,Mh, such that, for any t ∈ J , x ∈
R2, y ∈ R, we take

|f(t, x)| ≤ Of , |g(t, x)| ≤ Og,
∞∑
j=1

|hj(t, y)| ≤ Oh,
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Thus, for any u ∈ X, we observe that

∥Hβ∗u∥∞ ≤
[
Λ1Of + Λ2Og +MΦ(Oh +Ol)

]
Ξβ∗ +

θ

Γ(β∗ +

n∑
i=2

αi + 1)

+
χ1,2,3

ΠΓ(β∗ + αn + 1)
+

χ∗
1,2,3

ΠΓ(β∗ + 1)
< +∞,

(13)

where,

Ξβ∗ =

[
1

Γ(

n∑
i=1

αi + β∗ + 1)

+
1

Γ(

n∑
i=1

αi + 1)

+
1

Γ(

n∑
i=1

αi + β + φ+ 1)

+
Q1ι

∗η

Γ(

n∑
i=1

αi + 1)

]

× 1

|Π|Γ(β∗ + αn + 1)
+

[
|Q2|ι∗

(
1

Γ(

n∑
i=1

αi + 1)

+
1

Γ(

n∑
i=1

αi + β + φ+ 1)

)

+|Q1Q2(ι
∗)2

Π
− ι∗| η

Γ(
n∑

i=1

αi + β + 1)

]
1

|Π|Γ(β∗ + 1)
.

(14)

χ1,2,3 = χ1 + χ2 +Q1ι
∗χ3,

χ∗
1,2,3 = |Q2|ι∗

(
χ1 + χ2

)
+ |Q1Q2(ι

∗)2

Π
− ι∗|χ3.

which yields to the following inequalities:

∥Hβu∥∞ ≤ +∞,

∥Hβ−γu∥∞ ≤ +∞,

and
∥RLD

γHβu∥∞ ≤ +∞.

We conclude that

∥Hβu∥X ≤ +∞.

Thus, it follows from the above inequalities that the operator Hβ is uniformly bounded.
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Step 2. Now we show that the operator Hβ is equicontinuous. For t1, t2 ∈ [0, 1] with t1 < t2, we obtain

∥Hβ∗u(t2) − Hβ∗u(t1)∥∞

≤
Λ1Of + Λ2Og +MΦ(Oh +Ol)

Γ(β∗ +
n∑

i=1

αi + 1

)

(
(t2 − t1)

β∗+

n∑
i=1

αi

+ |t
β∗+

n∑
i=1

αi

2

−t

β∗+

n∑
i=1

αi

1 |

)
+

θ|t
β∗+

n∑
i=2

αi

2 − t

β∗+

n∑
i=2

αi

1 |

Γ(β∗ +
n∑

i=2

αi + 1)

+

([
Λ1Of + Λ2Og +MΦ

×(Oh +Ol)

][
1

Γ(
n∑

i=1

αi + 1)

+
1

Γ(
n∑

i=1

αi + β + φ+ 1)

+
Q1ι

∗η

Γ(
n∑

i=1

αi + 1)

]

+χ1,2,3

)
|tβ

∗+αn
2 − tβ

∗+αn
1 |

|Π|Γ(β∗ + αn + 1)
+

([
Λ1Of + Λ2Og +MΦ(Oh +Ol)

][
|Q2|ι∗

×
(

1

Γ(
n∑

i=1

αi + 1)

+
1

Γ(
n∑

i=1

αi + β + φ+ 1)

)
+ |Q1Q2(ι

∗)2

Π
− ι∗|

× η

Γ(
n∑

i=1

αi + β + 1)

]
+ χ∗

1,2,3

)
|tβ

∗

2 − tβ
∗

1 |
|Π|Γ(β∗ + 1)

.

(15)

Thanks to the above inequality, we can state that ∥Hβu(t2) − Hβu(t1)∥X →0 as s2 − s1 → 0. Therefore,
Hβ : X → X is completely continuous by application of the Arzelá-Ascoli theorem.

Step 3. We show that Aϱ := {u ∈ X : u = ϱ Hβu, ϱ ∈]0, 1[} is bounded.
Let u ∈ Aϱ. Then we have u = ϱHβu, for some 0 < ϱ < 1. Hence, we have

∥u∥∞ ≤

([
Λ1(ϵ1 + ϵ2) + Λ2(ε1 + ε2) +MΦρ1

]
∥u∥∞ + ϵ0 + ε0 +MΦρ0

)
Ξβ

+
θ

Γ(β +
n∑

i=2

αi + 1)

+
χ1,2,3

|Π|Γ(β + αn + 1)
+

χ∗
1,2,3

|Π|Γ(β + 1)
,

(16)

and

∥RLD
γu∥∞ ≤

([
Λ1(ϵ1 + ϵ2) + Λ2(ε1 + ε2) +MΦρ1

]
∥RLD

γu∥∞ + ϵ0 + ε0 +MΦρ0

)
Ξβ−γ

+
θ

Γ(β − γ +

n∑
i=2

αi + 1)

+
χ1,2,3

|Π|Γ(β − γ + αn + 1)
+

χ∗
1,2,3

|Π|Γ(β − γ + 1)
.

(17)
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Therefore,

∥u∥∞

≤

(
ϵ0 + ε0 +MΦρ0

)
Ξβ +

θ

Γ(β +
n∑

i=2

αi + 1)

+
χ1,2,3

|Π|Γ(β + αn + 1)
+

χ∗
1,2,3

|Π|Γ(β + 1)

1−
[
Λ1(ϵ1 + ϵ2) + Λ2(ε1 + ε2) +MΦρ1

]
Ξβ

,

(18)

and

∥RLD
γu∥∞

≤

(
ϵ0 + ε0 +MΦρ0

)
Ξβ−γ +

θ

Γ(β−γ+

n∑
i=2

αi + 1)

+
χ1,2,3

|Π|Γ(β−γ+αn+1) +
χ∗
1,2,3

|Π|Γ(β−γ+1)

1−
[
Λ1(ϵ1 + ϵ2) + Λ2(ε1 + ε2) +MΦρ1

]
Ξβ−γ

.

(19)

These show that Aϱ is bounded. Thus, the operator Hβ has at least one �xed point. Hence, problem (1)
has at least one solution on J . The proof is complete.

In what follows, we present two examples to illustrate the validity of the main results.

Example 3.3. We consider the following problem:

CD
0.5[CD

0.8[CD
0.9[CD

0.6[RLD
0.5u(s)]]]] = 15

(
cos(u(t))

et+3 + |RLD
1
2 u(t)|

200(1+|RLD
1
2 u(t)|)

+ et
)

+
20

et+4

(
|u(t)|

(1 + |u(t)|)
+ cos(I

1
10u(t))

)
+

∞∑
j=1

6e−jt2

(jπ)4
I

1
10

( e−jt|u(t)|
15j2

[
(t2 + 1) + |u(t)|

] + e−jt2−2

j2

)
, t ∈ [0, 1],

u(0) = 0,

CD
0.8[CD

0.9[CD
0.6[RLD

0.5u(0)]]] = 2,

CD
0.9[CD

0.6[RLD
0.5u(0)]] = 0,

CD
0.6[RLD

0.5u(0)] =

∫ 1
2

0
u(s)ds,

RLD
0.5u(1) =RL D

2
5u( 1

10),

(20)
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where,

f(t, x1, x2) =
cos(x1)
et+3 + |x2|

200(1+|x2|) + et,

g(t, x1, x2) =
1

et+4

(
|x1|

(1 + |x1|)
+ cos(x2)

)
,

hj(t, x) =
e−jt|x|

15j2
[
(t2+1)+|x|

] ,
lj(t) =

e−jt2−2

j2
,

and
α1 = 0.5, α2 = 0.8, α3 = 0.9, α4 = 0.6, β = 0.5, θ = 2,

ζ = 1
10 , τ = 1

10 , φ = 2
5 , η = 1

2 , γ = 1
2 ,

Θ1 = 0.6487, Θ2 = 0.6440,

Θ = max {0.6487, 0.6440} = 0.6487.

So, thanks to Theorem 3.1, we con�rm that this example has a unique solution on [0, 1].

Example 3.4. As a second illustrative example, we consider the following problem:

CD
1
2 [CD

3
4 [CD

1
3 [CD

2
3 [CD

9
10 [CD

4
5 [CD

1
4 [CD

3
4 [CD

0.9[RLD
5
6u(s)]]]]]]]]] =

50

3

×
(
cos(u(t)+D

1
5 u(t))

100et2+1
+ t2

)
+

30

(t2 + 1)

(
cos(πt) +

1

200
u(t) +

1

300
I

1
2u(t)

)
+

∞∑
j=1

12

(jπ)2ejt2
I

1
2

( u(t)

30j2ejt
+

1

j(t2 + 1)

)
, t ∈ [0, 1],

u(0) = 0,

CD
3
4 [CD

1
3 [CD

2
3 [CD

9
10 [CD

4
5 [CD

1
4 [CD

3
4 [CD

0.9[RLD
5
6u(0)]]]]]]]] = 1

2 ,

CD
1
3 [CD

2
3 [CD

9
10 [CD

4
5 [CD

1
4 [CD

3
4 [CD

0.9[RLD
5
6u(0)]]]]]]] = 0,

CD
2
3 [CD

9
10 [CD

4
5 [CD

1
4 [CD

3
4 [CD

0.9[RLD
5
6u(0)]]]]]] = 0,

CD
9
10 [CD

4
5 [CD

1
4 [CD

3
4 [CD

0.9[RLD
5
6u(0)]]]]] = 0,

CD
4
5 [CD

1
4 [CD

3
4 [CD

0.9[RLD
5
6u(0)]]]] = 0,

CD
1
4 [CD

3
4 [CD

0.9[RLD
5
6u(0)]]] = 0,

CD
3
4 [CD

0.9[RLD
5
6u(0)]] = 0,

CD
0.9[RLD

5
6u(0)] =

∫ 1
4

0
u(s)ds,

RLD
5
6u(1) =RL D

1
2u(15),

(21)

where,

f(t, x1, x2) =
cos(x1+x2)

et2+1
+ t2,

g(t, x1, x2) =
1

(t2 + 1)

(
cos(πt) +

1

20
x1 +

1

30
x2

)
,

hj(t, x) =
x

30j2ejt
,

lj(t) =
1

j(t2+1
).

For this example, we have:
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Θ1 = 0.0133, Θ2 = 0.0139,

Θ = max {0.0133, 0.0139} = 0.0139.

Also, by Theorem 3.1, our example has a unique solution.

4. Conclusion

We have introduced a new sequential nonlinear di�erential problem with nonlocal integral conditions. The
problem involves Riemann-Liouville integrals and convergent series on its right-hand side. It involves also
n sequential Caputo derivatives combined to a Riemann Liouville derivative. An existence and uniqueness
result has been established by means of Banach contraction principle. Then, by Leray-Schauder alternative
�xed point theorem, another main result for the existence of one solution has been discussed. At the end,
two illustrative examples have been presented to show the applicability of the main results.
In the future, we will be concerned with the stability analysis and numerical simulations of the problem.
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