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Abstract 

 

In this work, traveling wave solutions of (1+1)-dimensional Landau-Ginzburg-Higgs and 

Duffing nonlinear partial differential equations, which are examples of mathematical 

modeling, are obtained and analyzed using the modified exponential function method. In 

order to facilitate the physical interpretation of the mathematical models represented by 

these equations, simulations of the behavior of the mathematical model as three-

dimensional, contour, density and two-dimensional graphics are given using a package 

program with the help of appropriate parameters. It has been shown that the modified 

exponential function method effectively investigates the solutions of (1+1)-dimensional 

Landau-Ginzburg-Higgs and Duffing equations. 

 

Keywords: Traveling wave solutions, (1+1)-dimensional Landau-Ginzburg-Higgs 

equation, Duffing equation, the modified exponential function method. 

 

 

Lineer olmayan matematiksel modellerin hareketli dalga 

çözümlerinin genişletilmiş üstel fonksiyon metodu kullanılarak 

incelenmesi 
 

Öz 

 

Bu çalışmada, matematiksel modelleme örnekleri olan (1+1)-boyutlu Landau-Ginzburg-

Higgs ve Duffing doğrusal olmayan kısmi diferansiyel denklemlerin yürüyen dalga 

çözümleri elde edilmiş ve genişletilmiş üstel fonksiyon metodu kullanılarak analiz 

edilmiştir. Bu denklemlerin temsil ettiği matematiksel modellerin fiziksel yorumunu 

kolaylaştırmak için uygun parametreler yardımıyla bir paket program kullanılarak 
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matematiksel modelin davranışının üç boyutlu, kontur, yoğunluk ve iki boyutlu grafikleri 

olarak simülasyonları verilmiştir. Genişletilmiş üstel fonksiyon metodunun (1+1)-boyutlu 

Landau-Ginzburg-Higgs ve Duffing denklemlerinin çözümlerinin araştırılmasında etkili 

bir yöntem olduğu gösterilmiştir. 

 

Anahtar kelimeler: Yürüyen dalga çözümleri, (1+1)-ölçülü Landau-Ginzburg-Higgs 

denklemi, Duffing denklemi, genişletilmiş üstel fonksiyon metodu. 

 

 

1.  Introduction 

 

The mathematical models, understanding and interpreting phenomena related to physics, 

chemistry, biology, engineering, fluid mechanics, ocean engineering, and health have 

been an advantage. By investigating the solutions of nonlinear partial differential 

equations, an example of mathematical modeling, depending on different parameters, it 

has become easier to comprehend and interpret various events. Therefore, the search for 

analytical solutions to nonlinear partial differential equations used as mathematical 

modeling has become an increasingly important research area. Various methods exist in 

the literature to solve such equations [1-7]. 

 

The Landau-Ginzburg-Higgs equation founded by Lev Davidovich Landau and Vitaly 

Lazarevich Ginzburg explains superconductivity in a radially inhomogeneous plasma and 

entrained cyclotron waves for coherent ion-cyclotron waves [8]. The Duffing equation is 

a nonlinear quadratic differential equation used to model certain damped and driven 

oscillators [9]. It is important to investigate the solutions of these two important equations 

with a different method and bring them to the literature. When the literature is analyzed, 

solutions of (1+1) dimensional Landau-Ginzburg-Higgs equation and Duffing equation 

have been obtained by various methods. (1+1)-dimensional Landau-Ginzburg-Higgs 

equation: the improved Bernoulli sub-equation function method (IBSEFM) [11], first 

integral method [12], the tanh function method [13], the multi-symplectic Runge-Kutta 

method [14], (𝐺′/𝐺, 1/𝐺)-expansion method [15], the solitary wave ansatz method [16]. 

Duffing equation: first integral method [12], Jacobi elliptic functions [17], Daftardar-

Jafari method (DJM) [18], exp-function method [19], improved Taylor matrix method 

[20], the quotient trigonometric function expansion method [21], differential transform 

method [22]. It has been observed that the solution functions get in this paper are different 

from the functions found in the above studies and this has contributed to the literature to 

obtain the traveling wave solutions of these equations. 

 

 

2.  Method 

 

2.1. The modified exponential function method 

In this section, information about the modified exponential function method is given and 

the method is introduced: 

 

𝑃(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑡𝑥 , 𝑢𝑥𝑥𝑥, … ) = 0, (2.1.1) 

 

in view of the general expression of the nonlinear partial differential equation, if an 

unknown function 𝑢 = 𝑢(𝑥, 𝑡) is accepted to find the wave solutions of this equation, the 

wave transform is applied to the equation (2.1.1) as follows: 
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𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡). (2.1.2) 

 

In order to find the necessary derivative terms for the equation (2.1.1), the derivatives 

with respect to 𝜉 are taken in the wave transform (2.1.2). If these terms are substituted in 

the equation (2.1.1): 

 

𝑁(𝑢, 𝑢2, 𝑢′, 𝑢′′, … ) = 0, (2.1.3) 

 

the general term of the nonlinear ordinary differential equation is obtained. It is assumed 

that the solution function 𝑢 of this equation is as follows: 

 

𝑢 =
∑ 𝐴𝑖[𝑒−𝜗(𝜉)]

𝑖𝑝
𝑖=0

∑ 𝐵𝑗[𝑒−𝜗(𝜉)]𝑗𝑞
𝑗=0

=
𝐴0 + 𝐴1𝑒−𝜗(𝜉) + 𝐴2𝑒−2𝜗(𝜉) + ⋯ + 𝐴𝑝𝑒−𝑝𝜗(𝜉)

𝐵0 + 𝐵1𝑒−𝜗(𝜉) + 𝐵2𝑒−2𝜗(𝜉) + ⋯ + 𝐵𝑞𝑒−𝑞𝜗(𝜉)
. (2.1.4) 

 

Here, 𝐴𝑖 , 𝐵𝑗(0 ≤ 𝑖 ≤ 𝑝, 0 ≤ 𝑗 ≤ 𝑞) are the coefficients. To get the coefficients 𝑝 and 𝑞,  

the balancing principle between the highest order nonlinear term in equation (2.1.3) and 

the term with the highest derivative is used. In this way, the limits of equation (2.1.4) are 

determined. 

The 𝜗 function used in the method is in the form: 

 

𝜗′(𝜉) = 𝑒−𝜗(𝜉) + 𝜇𝑒𝜗(𝜉) + 𝜆. (2.1.5) 

 

This equation has the following families of solutions according to the states of the roots. 

Where 𝜆 and 𝜇 are constants to be determined later. [10]: 

 

Family 1: 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0, 

𝜗(𝜉) = ln (
−√𝜆2 − 4𝜇

2𝜇
tanh (

√𝜆2 − 4𝜇

2
(𝜉 + 𝐸)) −

𝜆

2𝜇
) . (2.1.6) 

Family 2: 𝜆2 − 4𝜇 < 0, 𝜇 ≠ 0, 

𝜗(𝜉) = ln (
√−𝜆2 + 4𝜇

2𝜇
tan (

√−𝜆2 + 4𝜇

2
(𝜉 + 𝐸)) −

𝜆

2𝜇
) . (2.1.7) 

Family 3: 𝜆2 − 4𝜇 > 0, 𝜆 ≠ 0, 𝜇 = 0, 

𝜗(𝜉) = −ln (
𝜆

𝑒𝜆(𝜉+𝐸) − 1
) . (2.1.8) 

Family 4: 𝜆2 − 4𝜇 = 0, 𝜆 ≠ 0, 𝜇 ≠ 0, 

𝜗(𝜉) = ln (−
2𝜆(𝜉 + 𝐸) + 4

𝜆2(𝜉 + 𝐸)
) . (2.1.9) 

Family 5: 𝜆2 − 4𝜇 = 0, 𝜆 = 0, 𝜇 = 0, 
𝜗(𝜉) = ln(𝜉 + 𝐸) . (2.1.10) 

 

Where E is an integral constant. After the limits of equation (2.1.4) are determined by the 

balancing principle as explained above, the necessary derivative terms are obtained and 

written into the equation (2.1.3). As a result, when the 𝑒−𝜗(𝜉) exponential function is 

classified, a system of equations consisting of 𝐴0, 𝐴1, 𝐴2, … 𝐴𝑝, , 𝐵0, 𝐵1, … , 𝐵𝑞  

coefficients is obtained. When this system of equations is solved with a package program, 
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the coefficients 𝐴0, 𝐴1, 𝐴2, … 𝐴𝑝, , 𝐵0, 𝐵1, … , 𝐵𝑞 in equation (2.1.4) are get. These 

coefficients and the 𝜗(𝜉) functions in the solution families are written together in the 

equation (2.1.4), and the solution functions are found. It is shown with the package 

program that these solution functions provide both the ordinary differential equation and 

the partial differential equation. Thus, the traveling wave solution functions of the 

nonlinear partial differential equation, the mathematical model are found. 

 

3.  Application of the method 

 

3.1. (1+1)-dimensional Landau-Ginzburg-Higgs equation 

In this section, by applying wave transform to (1+1)-dimensional Landau-Ginzburg-

Higgs equation, traveling wave solutions are obtained with the modified exponential 

function method. 

The (1+1)-dimensional Landau-Ginzburg-Higgs equation looks like this [11]: 

 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 𝑚2𝑢 + 𝑛2𝑢3 = 0. (3.1.1) 

 

Later tha 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡)n wave transform is done, if the derivative terms 

required for the equation (3.1.1) are found and replaced in the equation, the following 

nonlinear ordinary differential equation is get to: 

 

𝑘2(𝑐2 − 1)𝑢′′ − 𝑚2𝑢 + 𝑛2𝑢3 = 0. (3.1.2) 

 

In equation (3.1.2), if the balancing principle is used between the nonlinear highest order 

term and the term with the highest order derivative: 

 

𝑢3 ≅ 𝑢′′ 
𝑝 ≅ 𝑞 + 1 

for 𝑞 = 1, 𝑝 = 2 is obtained. In this case, equation (2.1.4) is as follows: 

𝑢 =
𝐴0 + 𝐴1𝑒−𝜗(𝜉) + 𝐴2𝑒−2𝜗(𝜉)

𝐵0 + 𝐵1𝑒−𝜗(𝜉)
. (3.1.3) 

 

If the derivative terms in equation (3.1.2) are obtained from equation (3.1.3) and 

substituted, the algebraic equation system is found. After this system of equations is 

solved with the package program and the coefficients are found, the solution functions 

are obtained according to the situations in the solution family. Three-dimensional, 

contour, density, and two-dimensional graphics of these solution functions were also 

drawn with the help of the package program. 

 

Case-1: 

𝐴0 =
𝑖√−1+𝑐2𝑘𝜆𝐵0

√2𝑛
, 𝐴1 =

𝑖√−1+𝑐2𝑘(2𝐵0+𝜆𝐵1)

√2𝑛
, 𝐴2 =

𝑖√2√−1+𝑐2𝑘𝐵1

𝑛
, 𝑚 =

𝑖√−1+𝑐2𝑘√𝜆2−4𝜇

√2
, 

with the help of the above coefficients, the solution function 𝑢 given below is obtained: 

𝑢1(𝑥, 𝑡) =
𝑖√−1 + 𝑐2𝑒−𝜗𝑘(2 + 𝑒𝜗𝜆)

√2𝑛
, (3.1.4) 

Family 1: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0 and its graphs: 

𝑢1,1(𝑥, 𝑡) =
𝑖√−1 + 𝑐2𝑘(𝜆2 − 4𝜇 + 𝜆𝜌)

√2𝑛(𝜆 + 𝜌)
, (3.1.5) 
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𝜌 = [√𝜆2 − 4𝜇tanh [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√𝜆2 − 4𝜇]].  

 

 
 

Figure 1. Simulations of the behavior of the model represented by equation (3.1.5) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 3, 𝜇 = 1, 𝑚 = 𝑖√
15

2
, 𝑛 = 1 and 𝐸 = 0.85 

 

 
 

Figure 2. Simulations of the behavior of the model represented by equation (3.1.5) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 3, 𝜇 = 1, 𝑚 = 𝑖√
15

2
, 𝑛 = 1 and 𝐸 = 0.85 

 

 
 

Figure 3. Simulations of the behavior of the model represented by equation (3.1.5) for 

(3.1.5) for 𝑘 = 1, 𝑐 = 2, 𝜆 = 3, 𝜇 = 1, 𝑚 = 𝑖√
15

2
, 𝑛 = 1, 𝐸 = 0.85 and 𝑡 = 1 

 

Family 2: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 < 0, 𝜇 ≠ 0 and its graphs: 

𝑢1,2(𝑥, 𝑡) =
𝑖√−1 + 𝑐2𝑘(𝜆2 − 4𝜇 − 𝜆𝜎)

√2𝑛(𝜆 − 𝜎)
, (3.1.6) 

𝜎 = [√−𝜆2 + 4𝜇tan [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√−𝜆2 + 4𝜇]].  
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Figure 4. Simulations of the behavior of the model represented by equation (3.1.6) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 1, 𝜇 = 1, 𝑚 = −
3

√2
, 𝑛 = 1 and 𝐸 = 0.85 

 

 
 

Figure 5. Simulations of the behavior of the model represented by equation (3.1.6) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 1, 𝜇 = 1, 𝑚 = −
3

√2
, 𝑛 = 1 and 𝐸 = 0.85 

 

 
 

Figure 6. Simulations of the behavior of the model represented by equation (3.1.6) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 1, 𝜇 = 1, 𝑚 = −
3

√2
, 𝑛 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Family 3: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 > 0, 𝜆 ≠ 0, 𝜇 = 0 and its graphs: 

𝑢1,3(𝑥, 𝑡) =
𝑖√−1 + 𝑐2𝑘𝜆coth[𝜏]

√2𝑛
, (3.1.7) 

𝜏 = [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))𝜆].  

 
Figure 7. Simulations of the behavior of the model represented by equation (3.1.7) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 2, 𝜇 = 0, 𝑚 = 𝑖√6, 𝑛 = 1 and 𝐸 = 0.85 
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Figure 8. Simulations of the behavior of the model represented by equation (3.1.7) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 2, 𝜇 = 0, 𝑚 = 𝑖√6, 𝑛 = 1 and 𝐸 = 0.85 

 

 
 

Figure 9. Simulations of the behavior of the model represented by equation (3.1.7) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 2, 𝜇 = 0, 𝑚 = 𝑖√6, 𝑛 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Family 4: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 = 0, 𝜆 ≠ 0, 𝜇 ≠ 0 and its graphs: 

𝑢1,4(𝑥, 𝑡) =
𝑖√2√−1 + 𝑐2𝑘

𝑛 + 𝐸𝑛 − 𝑐𝑘𝑛𝑡 + 𝑘𝑛𝑥
. (3.1.8) 

 

 
Figure 10. Simulations of the behavior of the model represented by equation (3.1.8) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 2, 𝜇 = 1, 𝑚 = 0, 𝑛 = 1 and 𝐸 = 0.85 

 

 
Figure 11. Simulations of the behavior of the model represented by equation (3.1.8) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 2, 𝜇 = 1, 𝑚 = 0, 𝑛 = 1 and 𝐸 = 0.85 
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Figure 12. Simulations of the behavior of the model represented by equation (3.1.8) for 

𝑘 = 1, 𝑐 = 2, 𝜆 = 2, 𝜇 = 1, 𝑚 = 0, 𝑛 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Family 5: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 = 0, 𝜆 = 0, 𝜇 = 0 and its graphs: 

𝑢1,5(𝑥, 𝑡) =
𝑖√2√−1 + 𝑐2𝑘

𝑛(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))
. (3.1.9) 

 

 
Figure 13. Simulations of the behavior of the model represented by equation (3.1.9) for 

𝑘 = 1, 𝑐 = 2,   𝜆 = 0,   𝜇 = 0, 𝑚 = 0, 𝑛 = 1 and 𝐸 = 0.85 

 

 
Figure 14. Simulations of the behavior of the model represented by equation (3.1.9) for 

𝑘 = 1, 𝑐 = 2,   𝜆 = 0,   𝜇 = 0, 𝑚 = 0, 𝑛 = 1 and 𝐸 = 0.85 

 

 
 

Figure 15. Simulations of the behavior of the model represented by equation (3.1.9) for 

𝑘 = 1, 𝑐 = 2,   𝜆 = 0,   𝜇 = 0, 𝑚 = 0, 𝑛 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Case-2: 

𝐴0 = −
2(−1+𝑐2)𝑘2𝐵0

2

𝑛2𝐴2
, 𝐴1 =

2√2√−((−1+𝑐2)𝑘2)𝐵0

𝑛
, 𝐵1 =

𝑛𝐴2

√2√−((−1+𝑐2)𝑘2)
, 𝜆 =

2√2√−((−1+𝑐2)𝑘2)𝐵0

𝑛𝐴2
, 
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𝜇 =
𝑚2

2(−1+𝑐2)𝑘2 −
2(−1+𝑐2)𝑘2𝐵0

2

𝑛2𝐴2
2 ,  

with the help of these coefficients; 

𝑢2(𝑥, 𝑡) =
√2𝑒−𝜗√−((−1 + 𝑐2)𝑘2)𝑛 −

2(−1 + 𝑐2)𝑘2𝐵0

𝐴2

𝑛2
, (3.1.10)

 

solution function is reached. 

Family 1: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0 and its graphs: 

𝑢2,1(𝑥, 𝑡) =
𝜑 −

2√2√−((−1 + 𝑐2)𝑘2)𝑛𝜇

𝜆 + 𝜌

𝑛2
, (3.1.11)

 

𝜌 = [√𝜆2 − 4𝜇tanh [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√𝜆2 − 4𝜇]] , 𝜑 = [−

2(−1+𝑐2)𝑘2𝐵0

𝐴2
].  

 

 
 

Figure 16. Simulations of the behavior of the model represented by equation (3.1.11) 

for 𝐴2 = 𝑖, 𝐵0 = 1, 𝑘 = 1, 𝑐 = 2, 𝑚 = 𝑖, 𝑛 = 1, 𝜆 = 2√6, 𝜇 =
35

6
 and 𝐸 = 0.85 

 

 
  

Figure 17. Simulations of the behavior of the model represented by equation (3.1.11) 

for 𝐴2 = 𝑖, 𝐵0 = 1, 𝑘 = 1, 𝑐 = 2, 𝑚 = 𝑖, 𝑛 = 1, 𝜆 = 2√6, 𝜇 =
35

6
 and 𝐸 = 0.85 

 

 
 

Figure 18. Simulations of the behavior of the model represented by equation (3.1.11) 

for 𝐴2 = 𝑖, 𝐵0 = 1, 𝑘 = 1, 𝑐 = 2, 𝑚 = 𝑖, 𝑛 = 1, 𝜆 = 2√6, 𝜇 =
35

6
, 𝐸 = 0.85 and 

𝑡 = 1 
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Family 2: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 < 0, 𝜇 ≠ 0 and its graphs: 

𝑢2,2(𝑥, 𝑡) =
𝜑 −

2√2√−((−1 + 𝑐2)𝑘2)𝑛𝜇

𝜆 − 𝜎
𝑛2

, (3.1.12)
 

𝜎 = [√−𝜆2 + 4𝜇tan [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√−𝜆2 + 4𝜇]] , 𝜑 = [−

2(−1+𝑐2)𝑘2𝐵0

𝐴2
].  

 

 
 

Figure 19. Simulations of the behavior of the model represented by equation (3.1.12) 

for 𝐴2 = 1, 𝐵0 =
1

2
, 𝑘 = 1, 𝑐 = 2, 𝑚 = 1, 𝑛 = 1, 𝜆 = 𝑖√6, 𝜇 = −

4

3
 and 𝐸 = 0.85 

 

 
 

Figure 20. Simulations of the behavior of the model represented by equation (3.1.12) 

for 𝐴2 = 1, 𝐵0 =
1

2
, 𝑘 = 1, 𝑐 = 2, 𝑚 = 1, 𝑛 = 1, 𝜆 = 𝑖√6, 𝜇 = −

4

3
 and 𝐸 = 0.85 

 

 
 

Figure 21. Simulations of the behavior of the model represented by equation (3.1.12) 

for 𝐴2 = 1, 𝐵0 =
1

2
, 𝑘 = 1, 𝑐 = 2, 𝑚 = 1, 𝑛 = 1, 𝜆 = 𝑖√6, 𝜇 = −

4

3
, 𝐸 = 0.85 and 

𝑡 = 1 

Family 3: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 > 0, 𝜆 ≠ 0, 𝜇 = 0 and its graphs: 

𝑢2,3(𝑥, 𝑡) =

√2√−((−1 + 𝑐2)𝑘2)𝑛𝜆

−1 + 𝑒(𝐸−𝑐𝑘𝑡+𝑘𝑥)𝜆 + 𝜑

𝑛2
, (3.1.13)

 

𝜑 = [−
2(−1+𝑐2)𝑘2𝐵0

𝐴2
].  
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Figure 22. Simulations of the behavior of the model represented by equation (3.1.13) 

for 𝐴2 = 1, 𝐵0 = 𝑖, 𝑘 = 1, 𝑐 = 2, 𝑚 = 6𝑖, 𝑛 = 1, 𝜆 = −2√6, 𝜇 = 0 and 𝐸 = 0.85 

 

 
 

Figure 23. Simulations of the behavior of the model represented by equation (3.1.13) 

for 𝐴2 = 1, 𝐵0 = 𝑖, 𝑘 = 1, 𝑐 = 2, 𝑚 = 6𝑖, 𝑛 = 1, 𝜆 = −2√6, 𝜇 = 0 and 𝐸 = 0.85 

 

 
 

Figure 24. Simulations of the behavior of the model represented by equation (3.1.13) 

for 𝐴2 = 1, 𝐵0 = 𝑖, 𝑘 = 1, 𝑐 = 2, 𝑚 = 6𝑖, 𝑛 = 1, 𝜆 = −2√6, 𝜇 = 0, 𝐸 = 0.85 and 

𝑡 = 1 

 

Family 4: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 = 0, 𝜆 ≠ 0, 𝜇 ≠ 0 and its graphs: 

𝑢2,4(𝑥, 𝑡) =

16√2√−((−1 + 𝑐2)𝑘2)𝑛(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))

4 + 8𝑖(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))
+ 𝜑

𝑛2
, (3.1.14)

 

𝜑 = [−
2(−1+𝑐2)𝑘2𝐵0

𝐴2
].  
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Figure 25. Simulations of the behavior of the model represented by equation (3.1.14) 

for 𝐴2 = 1, 𝐵0 =
2

√6
, 𝑘 = 1, 𝑐 = 2, 𝑚 = 0, 𝑛 = 1, 𝜆 = 4𝑖, 𝜇 = −4 and 𝐸 = 0.85 

 

 
 

Figure 26. Simulations of the behavior of the model represented by equation (3.1.14) 

for 𝐴2 = 1, 𝐵0 =
2

√6
, 𝑘 = 1, 𝑐 = 2, 𝑚 = 0, 𝑛 = 1, 𝜆 = 4𝑖, 𝜇 = −4 and 𝐸 = 0.85 

 

 
 

Figure 27. Simulations of the behavior of the model represented by equation (3.1.14) 

for 𝐴2 = 1, 𝐵0 =
2

√6
, 𝑘 = 1, 𝑐 = 2, 𝑚 = 0, 𝑛 = 1, 𝜆 = 4𝑖, 𝜇 = −4, 𝐸 = 0.85 and 

𝑡 = 1 

 

Family 5: Solution of equation (3.1.1) for 𝜆2 − 4𝜇 = 0, 𝜆 = 0, 𝜇 = 0 and its graphs: 

𝑢2,5(𝑥, 𝑡) =

√2√−((−1 + 𝑐2)𝑘2)𝑛

𝐸 − 𝑐𝑘𝑡 + 𝑘𝑥
+ 𝜑

𝑛2
, (3.1.15)

 

𝜑 = [−
2(−1+𝑐2)𝑘2𝐵0

𝐴2
].  
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Figure 28. Simulations of the behavior of the model represented by equation (3.1.15) 

for 𝐴2 = 1, 𝐵0 = 0, 𝑘 = 1, 𝑐 = 2, 𝑚 = 0, 𝑛 = 1, 𝜆 = 0, 𝜇 = 0 and 𝐸 = 0.85 

 

 
 

Figure 29. Simulations of the behavior of the model represented by equation (3.1.15) 

for 𝐴2 = 1, 𝐵0 = 0, 𝑘 = 1, 𝑐 = 2, 𝑚 = 0, 𝑛 = 1, 𝜆 = 0, 𝜇 = 0 and 𝐸 = 0.85 

 

 
 

Figure 30. Simulations of the behavior of the model represented by equation (3.1.15) 

for 𝐴2 = 1, 𝐵0 = 0, 𝑘 = 1, 𝑐 = 2, 𝑚 = 0, 𝑛 = 1, 𝜆 = 0, 𝜇 = 0, 𝐸 = 0.85 and 𝑡 =
1 

3.2. Duffing equation 

In this section, traveling wave solutions are found by using the extended exponential 

function method by making wave transformation to the Duffing equation. 

 

𝑢𝑡𝑡 + 𝑎𝑢 + 𝑏𝑢3 = 0. (3.2.1) 

 

Duffing equation is as above [12]. 

After applying the 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡) wave transform, if the derivative terms 

needed for the equation (3.2.1) are obtained and written in the equation: 

 

𝑘2𝑐2𝑢′′ + 𝑎𝑢 + 𝑏𝑢3 = 0, (3.2.2) 

 

it is degraded to its nonlinear ordinary differential form. 

In the equation (3.2.2), if the balancing principle between the nonlinear highest order term 

and the term with the highest order derivative is analyzed: 

𝑢3 ≅ 𝑢′′ 
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𝑝 ≅ 𝑞 + 1  

for 𝑞 = 1, 𝑝 = 2 is assumed. In this case, equation (3.1.4) becomes: 

𝑢 =
𝐴0 + 𝐴1𝑒−𝜗(𝜉) + 𝐴2𝑒−2𝜗(𝜉)

𝐵0 + 𝐵1𝑒−𝜗(𝜉)
. (3.2.3) 

 

By finding the derivative terms in equation (3.2.2) from equation (3.2.3) and writing them 

in equation (3.2.2), the algebraic equation system is solved and the solution functions 𝑢 

are obtained according to the solution family. Three-dimensional, contour, density and 

two-dimensional graphics of these solution functions were also drawn with the package 

program. 

 

Case-1: 

𝐴0 =
𝑖√2𝑐𝑘𝐵0

2

√𝑏𝐵1

, 𝐴1 =
2𝑖√2𝑐𝑘𝐵0

√𝑏
, 𝐴2 =

𝑖√2𝑐𝑘𝐵1

√𝑏
, 𝑎 =

2𝑐2𝑘2(𝐵0
2 − 𝜇𝐵1

2)

𝐵1
2 , 𝜆 =

2𝐵0

𝐵1
, 

the following solution function is found by means of the coefficients: 

𝑢3(𝑥, 𝑡) =
𝑖√2𝑐ⅇ−𝜗𝑘(ⅇ𝜗𝐵0+𝐵1)

√𝑏𝐵1
. (3.2.4)

Family 1: For 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0 the solution of the equation (3.2.1) and its graphs 

are: 

𝑢3,1(𝑥, 𝑡) =
𝑖√2𝑐𝑘(−2𝜇𝐵1 + 𝐵0(𝜆 + 𝜌))

√𝑏𝐵1(𝜆 + 𝜌)
, (3.2.5) 

𝜌 = [√𝜆2 − 4𝜇tanh [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√𝜆2 − 4𝜇]].  

 

 
 

Figure 31. Simulations of the behavior of the model represented by equation (3.2.5) for 

𝐵0 = 2, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 1, 𝑎 = 6, 𝜆 = 4, 𝑏 = 1 and 𝐸 = 0.85 

 
 

Figure 32. Simulations of the behavior of the model represented by equation (3.2.5) for 

𝐵0 = 2, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 1, 𝑎 = 6, 𝜆 = 4, 𝑏 = 1 and 𝐸 = 0.85 
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Figure 33. Simulations of the behavior of the model represented by equation (3.2.5) for 

𝐵0 = 2, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 1, 𝑎 = 6, 𝜆 = 4, 𝑏 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Family 2: For 𝜆2 − 4𝜇 < 0, 𝜇 ≠ 0 the solution of the equation (3.2.1) and its graphs 

are: 

𝑢3,2(𝑥, 𝑡) =
𝑖√2𝑐𝑘(−2𝜇𝐵1 + 𝐵0(𝜆 − 𝜎))

√𝑏𝐵1(𝜆 − 𝜎)
, (3.2.6) 

𝜎 = [√−𝜆2 + 4𝜇tan [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√−𝜆2 + 4𝜇]].  

 

 
 

Figure 34. Simulations of the behavior of the model represented by equation (3.2.6) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 2, 𝑎 = −2, 𝜆 = 2, 𝑏 = 1 and 𝐸 = 0.85 

 

 
 

Figure 35. Simulations of the behavior of the model represented by equation (3.2.6) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 2, 𝑎 = −2, 𝜆 = 2, 𝑏 = 1 and 𝐸 = 0.85 

 

 
 

Figure 36. Simulations of the behavior of the model represented by equation (3.2.6) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 2, 𝑎 = −2, 𝜆 = 2, 𝑏 = 1, 𝐸 = 0.85 and 𝑡 = 1 
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Family 3: For 𝜆2 − 4𝜇 > 0, 𝜆 ≠ 0, 𝜇 = 0 the solution of the equation (3.2.1) and its 

graphs are: 

𝑢3,3(𝑥, 𝑡) =
𝑖√2𝑐𝑘 (

𝜆
−1 + 𝑒(𝐸−𝑐𝑘𝑡+𝑘𝑥)𝜆 +

𝐵0

𝐵1
)

√𝑏
. (3.2.7) 

 

 
 

Figure 37. Simulations of the behavior of the model represented by equation (3.2.7) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 0, 𝑎 = 2, 𝜆 = 2, 𝑏 = 1 and 𝐸 = 0.85 

 

 

 
 

Figure 38. Simulations of the behavior of the model represented by equation (3.2.7) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 0, 𝑎 = 2, 𝜆 = 2, 𝑏 = 1 and 𝐸 = 0.85 

 

 
 

Figure 39. Simulations of the behavior of the model represented by equation (3.2.7) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 0, 𝑎 = 2, 𝜆 = 2, 𝑏 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Family 4: For 𝜆2 − 4𝜇 = 0, 𝜆 ≠ 0, 𝜇 ≠ 0 the solution of the equation (3.2.1) and its 

graphs are: 

𝑢3,4(𝑥, 𝑡) = −
𝑖√2𝑐𝑘 (1 −

1
1 + 𝐸 − 𝑐𝑘𝑡 + 𝑘𝑥

−
𝐵0

𝐵1
)

√𝑏
. (3.2.8) 
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Figure 40. Simulations of the behavior of the model represented by equation (3.2.8) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 1, 𝑎 = 0, 𝜆 = 2, 𝑏 = 1 and 𝐸 = 0.85 

 

 
 

Figure 41. Simulations of the behavior of the model represented by equation (3.2.8) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 1, 𝑎 = 0, 𝜆 = 2, 𝑏 = 1 and 𝐸 = 0.85 

 

 
 

Figure 42. Simulations of the behavior of the model represented by equation (3.2.8) for 

𝐵0 = 1, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 1, 𝑎 = 0, 𝜆 = 2, 𝑏 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Family 5: For 𝜆2 − 4𝜇 = 0, 𝜆 = 0, 𝜇 = 0 the solution of the equation (3.2.1) and its 

graphs are: 

𝑢3,5(𝑥, 𝑡) =
𝑖√2𝑐𝑘 ((𝐸 + 𝑘(−𝑐𝑡 + 𝑥))𝐵0 + 𝐵1)

√𝑏(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))𝐵1

. (3.2.9) 

 

 
Figure 43. Simulations of the behavior of the model represented by equation (3.2.9) for 

𝐵0 = 0, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 0, 𝑎 = 0, 𝜆 = 0, 𝑏 = 1 and 𝐸 = 0.85 
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Figure 44. Simulations of the behavior of the model represented by equation (3.2.9) for 

𝐵0 = 0, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 0, 𝑎 = 0, 𝜆 = 0, 𝑏 = 1 and 𝐸 = 0.85 

 

 
 

Figure 45. Simulations of the behavior of the model represented by equation (3.2.9) for 

𝐵0 = 0, 𝐵1 = 1, 𝑘 = 1, 𝑐 = 1, 𝜇 = 0, 𝑎 = 0, 𝜆 = 0, 𝑏 = 1, 𝐸 = 0.85 and 𝑡 = 1 

Case-2: 

𝐴0 = −
2𝑐2𝑘2𝐵0

2

𝑏𝐴2
, 𝐴1 = −

2𝑖√2𝑐𝑘𝐵0

√𝑏
, 𝐵1 =

𝑖√𝑏𝐴2

√2𝑐𝑘
, 𝜆 = −

2𝑖√2𝑐𝑘𝐵0

√𝑏𝐴2
, 𝜇 = −

𝑎

2𝑐2𝑘2 −
2𝑐2𝑘2𝐵0

2

𝑏𝐴2
2 ,  

using the coefficients, the following solution function u is reached: 

𝑢4(𝑥, 𝑡) =
𝑐𝑘 (−𝑖√2√𝑏𝑒−𝜗 −

2𝑐𝑘𝐵0

𝐴2
)

𝑏
. (3.2.10)

 

Family 1: For 𝜆2 − 4𝜇 > 0, 𝜇 ≠ 0 the solution of the equation (3.2.1) and its graphs 

are: 

𝑢4,1(𝑥, 𝑡) =

𝑐𝑘 (−
2𝑐𝑘𝐵0

𝐴2
+

2𝑖√2√𝑏𝜇
𝜆 + 𝜌

)

𝑏
, (3.2.11)

 

𝜌 = [√𝜆2 − 4𝜇tanh [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√𝜆2 − 4𝜇]].  

 

 
 

Figure 46. Simulations of the behavior of the model represented by equation (3.2.11) 

for 𝐵0 = −1, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = 2, 𝑏 = 1, 𝜆 = 2𝑖√2, 𝜇 = −3 and 𝐸 =
0.85 
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Figure 47. Simulations of the behavior of the model represented by equation (3.2.11) 

for 𝐵0 = −1, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = 2, 𝑏 = 1, 𝜆 = 2𝑖√2, 𝜇 = −3 and 𝐸 =
0.85 

 

 
 

Figure 48. Simulations of the behavior of the model represented by equation (3.2.11) 

for 𝐵0 = −1, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = 2, 𝑏 = 1, 𝜆 = 2𝑖√2, 𝜇 = −3, 𝐸 = 0.85 

and 𝑡 = 1 

Family 2: For 𝜆2 − 4𝜇 < 0, 𝜇 ≠ 0 the solution of the equation (3.2.1) and its graphs 

are: 

𝑢4,2(𝑥, 𝑡) =

𝑐𝑘 (−
2𝑐𝑘𝐵0

𝐴2
+

2𝑖√2√𝑏𝜇
𝜆 − 𝜎

)

𝑏
, (3.2.12)

 

𝜎 = [√−𝜆2 + 4𝜇tan [
1

2
(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))√−𝜆2 + 4𝜇]].  

 

 
 

Figure 49. Simulations of the behavior of the model represented by equation (3.2.12) 

for 𝐵0 = −1, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = −6, 𝑏 = 1, 𝜆 = 2𝑖√2, 𝜇 = 1 and 𝐸 =
0.85 
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Figure 50. Simulations of the behavior of the model represented by equation (3.2.12) 

for 𝐵0 = −1, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = −6, 𝑏 = 1, 𝜆 = 2𝑖√2, 𝜇 = 1 and 𝐸 =
0.85 

 
 

Figure 51. Simulations of the behavior of the model represented by equation (3.2.12) 

for 𝐵0 = −1, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = −6, 𝑏 = 1, 𝜆 = 2𝑖√2, 𝜇 = 1, 𝐸 = 0.85 

and 𝑡 = 1 

Family 3: For 𝜆2 − 4𝜇 > 0, 𝜆 ≠ 0, 𝜇 = 0 the solution of the equation (3.2.1) and its 

graphs are: 

𝑢4,3(𝑥, 𝑡) =

𝑐𝑘 (−
𝑖√2√𝑏𝜆

−1 + 𝑒(𝐸−𝑐𝑘𝑡+𝑘𝑥)𝜆 −
2𝑐𝑘𝐵0

𝐴2
)

𝑏
. (3.2.13)

 

 
Figure 52. Simulations of the behavior of the model represented by equation (3.2.13) 

for 𝐵0 = −√2, 𝐴2 = 𝑖, 𝑘 = 1, 𝑐 = 1, 𝑎 = 8, 𝑏 = 1, 𝜆 = 4, 𝜇 = 0 and 𝐸 = 0.85 

 
Figure 53. Simulations of the behavior of the model represented by equation (3.2.13) 

for 𝐵0 = −√2, 𝐴2 = 𝑖, 𝑘 = 1, 𝑐 = 1, 𝑎 = 8, 𝑏 = 1, 𝜆 = 4, 𝜇 = 0 and 𝐸 = 0.85 
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Figure 54. Simulations of the behavior of the model represented by equation (3.2.13) 

for 𝐵0 = −√2, 𝐴2 = 𝑖, 𝑘 = 1, 𝑐 = 1, 𝑎 = 8, 𝑏 = 1, 𝜆 = 4, 𝜇 = 0, 𝐸 = 0.85 and 

𝑡 = 1 

Family 4: For 𝜆2 − 4𝜇 = 0, 𝜆 ≠ 0, 𝜇 ≠ 0 the solution of the equation (3.2.1) and its 

graphs are: 

𝑢4,4(𝑥, 𝑡) =

𝑐𝑘 (−
4√2√𝑏(𝐸 + 𝑘(−𝑐𝑡 + 𝑥))

−𝑖 + 2𝐸 − 2𝑐𝑘𝑡 + 2𝑘𝑥
−

2𝑐𝑘𝐵0

𝐴2
)

𝑏
. (3.2.14)

 

 
 

Figure 55. Simulations of the behavior of the model represented by equation (3.2.14) 

for 𝐵0 = −√2, 𝐴2 = 𝑖, 𝑘 = 1, 𝑐 = 1, 𝑎 = 8, 𝑏 = 1, 𝜆 = 4𝑖, 𝜇 = −4 and 𝐸 = 0.85 

 

 
 

Figure 56. Simulations of the behavior of the model represented by equation (3.2.14) 

for 𝐵0 = −√2, 𝐴2 = 𝑖, 𝑘 = 1, 𝑐 = 1, 𝑎 = 8, 𝑏 = 1, 𝜆 = 4𝑖, 𝜇 = −4 and 𝐸 = 0.85 

 

 
 

Figure 57. Simulations of the behavior of the model represented by equation (3.2.14) 

for 𝐵0 = −√2, 𝐴2 = 𝑖, 𝑘 = 1, 𝑐 = 1, 𝑎 = 8, 𝑏 = 1, 𝜆 = 4𝑖, 𝜇 = −4, 𝐸 = 0.85 and 

𝑡 = 1 
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Family 5: For 𝜆2 − 4𝜇 = 0, 𝜆 = 0, 𝜇 = 0 the solution of the equation (3.2.1) and its 

graphs are: 

𝑢4,5(𝑥, 𝑡) =

𝑐𝑘 (−
ⅈ√2√𝑏

𝐸 + 𝑘(−𝑐𝑡 + 𝑥)
−

2𝑐𝑘𝐵0

𝐴2
)

𝑏
. (3.2.15)

 

 
 

Figure 58. Simulations of the behavior of the model represented by equation (3.2.15) 

for 𝐵0 = 0, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = 0, 𝑏 = 1, 𝜆 = 0, 𝜇 = 0 and 𝐸 = 0.85 

 

 
 

Figure 59. Simulations of the behavior of the model represented by equation (3.2.15) 

for 𝐵0 = 0, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = 0, 𝑏 = 1, 𝜆 = 0, 𝜇 = 0 and 𝐸 = 0.85 

 

 
 

Figure 60. Simulations of the behavior of the model represented by equation (3.2.15) 

for 𝐵0 = 0, 𝐴2 = 1, 𝑘 = 1, 𝑐 = 1, 𝑎 = 0, 𝑏 = 1, 𝜆 = 0, 𝜇 = 0, 𝐸 = 0.85 and 𝑡 = 1 

 

 

5.  Conclusion 

 

This paper applied the modified exponential function method to the (1+1)-dimensional 

Landau-Ginzburg-Higgs and Duffing nonlinear partial differential equations to reach and 

analyze the traveling wave solutions. The solution functions of the  (1+1)-dimensional 

Landau-Ginzburg-Higgs equation,  in case-1 and case-2, family 1, family 2 and family 3 

are hyperbolic, trigonometric and exponential functions and show periodic properties. 

Again in case-1 and case-2, family 4 and family 5 rational solutions have been get. In the 

solutions of the Duffing equation, hyperbolic, trigonometric and exponential functions 
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were reached in case-1 and case-2, family 1, family 2 and family 3. These solution 

functions also have periodic properties. In case-1 and case-2, family 4 and family 5 are 

found to be rational functions. It is an important point in interpreting the behavior of the 

wave motion, especially in understanding the physical phenomenon behind the two 

models discussed, to achieve periodic solution functions with the help of appropriate 

wave transform. In the literature, the solutions of these equations have been obtained by 

using various methods. In this study, it has been observed that the solution functions get 

with the modified exponential function method are different and new. By giving the 

appropriate parameters to the solution functions found, simulations of the behavior of the 

mathematical model as three-dimensional, contour, density and two-dimensional 

graphics were get with the help of the package program. Thus, it provided a prospective 

advantage for researchers to physically interpret the behavior of these two important 

mathematical models. As a result, it is emphasized that the modified exponential function 

method is an effective method in investigating the solutions of nonlinear partial 

differential equations, which is an example of mathematical modeling. 
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