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Abstract
In the present paper, we consider the Sturm–Liouville equation with nonlocal boundary
conditions depending polynomially on the parameter. We obtain a result and give an
algorithm for the reconstruction of the coefficients of the problem using asymptotics of
the nodal points.
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1. Introduction
One of the solution methods for the inverse problems of the Sturm-Liouville operators

is to use the zeros of the eigenfunctions. These zeros are also called nodal points. Trying
to reconstruct the coefficients of the operator from the asymptotic formula of the nodal
points is known as inverse nodal problem. This problem for Sturm-Liouville operator was
first investigated by McLaughlin in [20]. She succeeded in giving a uniqueness theorem for
this type of inverse problems with Dirichlet boundary conditions. Some further numerical
calculations for reconstruction of potential are given in [12]. In 1997, Yang [35] obtained
a definite algorithm for the solution of inverse nodal problems with separated boundary
conditions. Later, similar results for various boundary conditions were obtained in (see
[1,4–7,10,11,14–19,21,28,30–32,36–38] and references therein). On the other hand, it can
be said that the inverse nodal problem for nonlocal boundary conditions is a relatively
new topic. Indeed, there exist only a few studies with these boundary conditions [8, 13,
26,27,33,34].

Nonlocal boundary conditions first appeared in Bitsadze and Samarskii’s paper which
includes some results on elliptic equations [3]. These conditions, which cannot be measured
exactly at the boundary, have various applications in fields such as biology and physics
(see [9, 23]). Various spectral results for differential operators with boundary conditions
of this type are obtained in [2, 22,24,29].
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In this study, we deal with the following boundary value problem L = L (q, αi, βi)
`y := −y′′ + q(x)y = λy, x ∈ (0, 1) (1.1)

B1(y). = a(λ)y′(0) + b(λ)y(0) − γ0(λ)y(ξ0) = 0, (1.2)

B2(y). = c(λ)y′(1) + d(λ)y(1) − γ1(λ)y(ξ1) = 0, (1.3)
where ξi ∈ Q ∩ (0, 1) for i = 0, 1 and λ is the spectral parameter. q(x) is a real valued
continuously differentiable function; a(λ), b(λ), c(λ) and d(λ) are monic polynomials such
that

a(λ) =
k∑

i=0
aiλ

i, b(λ) =
k∑

i=0
biλ

i,

c(λ) =
r∑

i=0
ciλ

i, d(λ) =
r∑

i=0
diλ

i.

Also,

γ0(λ) =
k∑

i=0
αiλ

i, γ1(λ) =
r∑

i=0
βiλ

i.

The main purpose of the present paper is to solve inverse nodal problem for L. We
obtain q(x) which is the potential of operator L from asymptotics of the nodal points and
give an algorithm for the reconstruction of coefficients αk and βr. Consequently, our main
result is a kind of generalization of the first result in [25] in which the polynomials in the
boundary conditions are constant. Moreover, it covers a wide class of nonlocal boundary
conditions.

2. Main results
In this section, we will first give the asymptotics of the nodal points. Then with the

help of this result we will obtain a uniqueness theorem and an algorithm. Let the eigenval-
ues of the problem (1.1)-(1.3) be {λn}n≥0 and the eigenfunctions corresponding to these
eigenvalues be {ϕ(x, λn)}n≥0. The following theorems are the main results in this article.

Theorem 2.1. ϕ(x, λn) has n − k − r nodal points in (0, 1) for sufficiently large n,
namely xj

n, j = 0, 1, 2, ..., n − k − r − 1, and the following asymptotic formula is valid

xj
n = j+1/2

(n−k−r) − (−1)n−m−r [βr cos((n−k−r)πξ1)−αk cos((n−k−r)π(1−ξ0))]
(n−k−r)2π2

(j+1/2)
(n−k−r)+

+
(

Q(xj
n)−1

)
(n−k−r)2π2 + αk cos((n−k−r)πξ0)

(n−k−r)2π2 + o
(

1
n2

)
.

where Q(x) = 1
2
∫ x

0 q(s)ds.

Proof. Let C(x, λ) and S(x, λ) be the solutions of (1.1) under the initial conditions
S(0, λ) = 0, S′(0, λ) = 1
C(0, λ) = 1, C ′(0, λ) = 0

respectively. From [13] and [39], the functions C(x, λ) and S(x, λ) satisfy the following
asymptotic relations for |λ| → ∞,

C(x, λ) = cos
√

λx + sin
√

λx√
λ

Q(x) + cos
√

λx

λ
q1(x) + O

( 1
λ3/2 exp |τ | x

)
,

S(x, λ) = sin
√

λx√
λ

− cos
√

λx

λ
Q(x) + O

( 1
λ3/2 exp |τ | x

)
,

where q1(x) = q(x)−q(0)
4 − 1

8 (
∫ x

0 q(s)ds)2 and τ =
∣∣∣Im√

λ
∣∣∣.
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The characteristic function of L is

∆(λ) = det

 B1 (C) B1(S)
B2 (C) B2(S)

 . (2.1)

Since ∆(λ) is an entire function, L has a discrete spectrum. Also, the eigenvalues of L are
the zeros of the function ∆(λ). From (2.1), we have that

∆(λ) = (b(λ) − γ0(λ)C(ξ0))
(
c(λ)S′(1) + d(λ)S(1) − γ1(λ)S(ξ1)

)
(2.2)

− (a(λ) − γ0(λ)S(ξ0))
(
c(λ)C ′(1) + d(λ)C(1) − γ1(λ)C(ξ1)

)
.

Using the asymptotics of C(x, λ) and S(x, λ) in (2.2), we find the following asymptotic
expression for ∆(λ) as λ → ∞:

∆(λ) = a(λ)c(λ)
√

λ sin
√

λ − c(λ)γ0(λ) sin(
√

λξ0) sin
√

λ − a(λ)d(λ) cos
√

λ

+b(λ)c(λ) cos
√

λ − c(λ)γ0(λ) cos(
√

λξ0) cos
√

λ + a(λ)γ1(λ) cos(
√

λξ1)

+d(λ)γ0(λ) sin(
√

λξ0)cos
√

λ√
λ

− a(λ)γ1(λ) sin(
√

λξ0)cos(
√

λξ1)√
λ

+b(λ)d(λ)sin
√

λ√
λ

− d(λ)γ0(λ) cos(
√

λξ0)sin
√

λ√
λ

− b(λ)γ1(λ)sin(
√

λξ1)√
λ

+γ0(λ)γ1(λ)cos(
√

λξ0) sin(
√

λξ1)√
λ

+ O(λk+r

√
λ

exp |τ |)

and so

∆(λ) = λk+r
[√

λ sin
√

λ + βr cos(
√

λξ1) − αk cos
√

λ(1 − ξ0) + o(exp |τ |)
]

. (2.3)

Let Gn(ε) =
{√

λ :
∣∣∣√λ − (n − k − r)π

∣∣∣ < ε
}

for n = 1, 2, .... It follows from (2.3) that

there exist some M(ε) > 0 such that |∆(λ)| ≥ M(ε)
∣∣∣√λ

∣∣∣ exp |τ | for sufficiently large
∣∣∣√λ

∣∣∣
in Gn(ε). For sufficiently large n, we can see that λn must be real number.

It can be shown using classical methods in [25] that the sequence {λn}n≥0 satisfies the
following asymptotic expression for n → ∞:√

λn = (n − k − r)π (2.4)

−(−1)n−k−r [βr cos ((n − k − r)πξ1) − αk cos ((n − k − r)π(1 − ξ0))]
(n − k − r)π

+o( 1
n

).

Let ϕ(x, λ) be the solution of equation (1.1), satisfying the initial conditions ϕ(0, λ) =
a(λ) − γ0(λ)S(ξ0), ϕ′(0, λ) = γ0(λ)C(ξ0) − b(λ).

Thus, we have that

ϕ(x, λn) = C(x, λn)U(S(x, λn)) − S(x, λn)U(C(x, λn)). (2.5)

From (2.4) and (2.5), we can see easily the following asymptotic formula

ϕ(x, λn)

= λk
n

(
cos

√
λnx + sin

√
λnx√

λn
(Q(x) − 1) + αk√

λn
sin
√

λn (x − ξ0) + o

( 1√
λn

))
,

(2.6)

is valid for sufficiently large n. We get from (2.6) that ϕ(x, λn) has exactly n − k − r zeros
in (0, 1) .
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Use the asymptotic formula (2.6) to get

0 = ϕ(xj
n, λn)

= λm
n

(
cos

√
λnxj

n + sin
√

λnxj
n√

λn

(
Q(xj

n) − 1
)

+ αk√
λn

sin
√

λn

(
xj

n − ξ0
)

+ o

( 1√
λn

))
and so

tan
(√

λnxj
n − π

2

)
=
(
Q(xj

n) − 1
)

√
λn

+ αk√
λn

sin
√

λn
(
xj

n − ξ0
)

sin
√

λnxj
n

+ o

( 1√
λn

)
.

This yields

xj
n = (j + 1/2) π√

λn
+
(
Q(xj

n) − 1
)

λn
+ αk

λn

sin
√

λn
(
xj

n − ξ0
)

sin
√

λnxj
n

+ o

( 1
λn

)
. (2.7)

Using
√

λnxj
n = (j + 1/2) π + O( 1

n), n → ∞ we can show

sin
√

λn
(
xj

n − ξ0
)

λn sin
√

λnxj
n

= cos ((n − k − r)πξ0)
(n − k − r)2π2 + o

( 1
n2

)
. (2.8)

In addition, we obtain
1√
λn

= 1
(n − k − r)π (2.9)

×
(

1 + (−1)n−k−r [βr cos ((n − k − r)πξ1) − αk cos ((n − k − r)π(1 − ξ0))]
(n − k − r)2π2 + o

( 1
n3

))
,

1
λn

= 1
(n − k − r)2π2 + o

( 1
n3

)
(2.10)

using by (2.4).
Substituting (2.8), (2.9) and (2.10) in (2.7), it is concluded that

xj
n = j + 1/2

(n − k − r)

−(−1)n−k−r (−1)n−k−r [βr cos ((n − k − r)πξ1) − αk cos ((n − k − r)π(1 − ξ0))]
(n − k − r)2π2

× (j + 1/2)
(n − k − r)

+
(
Q(xj

n) − 1
)

(n − k − r)2π2 + αk cos ((n − k − r)πξ0)
(n − k − r)2π2 + o

( 1
n2

)
.

�

Let X0 be a subsequence of the numbers xj
n that is dense on (0, 1). According to above

result, the existence of such a set is obvious.
Consider the problem L̃ = L

(
q̃, α̃i, β̃i

)
under the same assumptions with L. Without

loss of generality, we assume that
∫ 1

0 (q(x) − q̃(x)) dx = 0.

Theorem 2.2. If X0 = X̃0 then αk = α̃k, βr = β̃r and q(x) = q̃(x) a.e. in (0, 1). Thus,
the coefficients αk, βr and the potential q(x) are uniquely determined by X0.

Proof. Put ξ0 = p0
r0

and ξ1 = p1
r1

, where pi, ri ∈ Z for i = 0, 1. For each fixed x ∈

[0, 1], there exists a sequence
(
xj

n

)
converges to x. For ns = 2sr0r1 + k + r, s ∈ Z, the
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subsequence
(
xj

n

)
converges also to x. Therefore we get from the asymptotic in Theorem

2.1 the following limit is finite and given equality holds:

lim
s→∞

(n − k − r)2π2
(
xj

n − j+1/2
(n−k−r)

)
= g(x) = (αk − βr)x+

+Q(x) − 1 + αk,
(2.11)

Direct calculations in (2.11) yield

q(x) = 2
(
g′(x) − g(1) + g(0)

)
(2.12)

αk = g(0) + 1, (2.13)
βr = 2g(0) − g(1) + 1

Since X0 = X̃0 then g(x) = g̃(x) and so q(x) = q̃(x), a.e. in (0, 1) . �

3. Algorithm

Let X0, ξi = pi

ri
for i = 0, 1 be given. Then q(x), αk and βr can be reconstructed by the

following algorithm:
i) Denote ns = 2sr0r1 + k + r, s ∈ Z;
ii) Find q(x) by (2.12) ;
iii) Find αk and βr by the formulas (2.13).

Example 3.1. We consider the following nonlocal boundary value problem

`y := −y′′ + q(x)y = λy, x ∈ Ω = (0, 1)

a(λ)y′(0) + b(λ)y(0) − γ0(λ)y(2
3) = 0,

c(λ)y′(1) + d(λ)y(1) − γ1(λ)y(5
6) = 0,

where q(x) ∈ C1 [0, 1]; a(λ), b(λ), c(λ), d(λ), γ0(λ) and γ1(λ) are unknown coefficients of
the problem. For sufficiently large n, let the nodal points provide the following asymptotic

xj
n = j + 1/2

(n − k − r) +

−(−1)n−k−r
[4 cos

(
(n − k − r)5π

6

)
− 3 cos

(
(n − k − r)π

3
)
]

(n − k − r)2π2
(j + 1/2)

(n − k − r) +

+
3
(
cos

(
(n − k − r)2π

3

)
− 1/3

)
(n − k − r)2π2 − (j + 1/2)

6(n − k − r)3π2 + (j + 1/2)3

6(n − k − r)5π2 + o

( 1
n2

)
.

According to these data, we can calculate q(x), αk and βr. i)
Let ns = 36s+k+r, s ∈ Z. ii)
One can calculate that

lim
s→∞

(n − k − r)2π2
(
xj

n − j+1/2
(n−k−r)

)
= g(x) = −x + 2 − x

6 + x3

6 . iii)
By the formulas (2.12) and (2.13) ;

αk = 3
βr = 4

q(x) = x2 − 1
3 .
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