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Abstract: As a continuation of previous studies, we give some results about the
neutrosophic integers theory. We first stated that the neutrosophic real numbers
are not closed according to the division operation. Later, we gave divisibility
properties of neutrosophic integers. We have given properties such as the greatest
common divisor for two neutrosophic integers being positive and unique. Then, we
gave the Euclid’s Theorem, Bezout’s Theorem for neutrosophic ingers set Z[I]. It is
known that these concepts are important for number theory in integers set Z.
Finally, it is defined the least common multiple for neutrosophic integers. Finally, a
theorem is given which enables one to easily find the least common multiple of
neutrosophic integers and after a conclusion about the sign of the product of two
neutrosophic integers, a theorem is given that shows the relationship of between
the greatest common divisor with the least common multiple.

Notrosofik Tamsayilarda En Biiyiik Ortak Bélen ve En Kii¢iik Ortak Kat

Anahtar Kelimeler
Notrosfik tam sayilar,
notrosofik tamsayilarda

0z: Bu makalede dnceki ¢calismalarin devami olarak, nétrosofik tam sayilar teorisi
ile ilgili baz1 sonuglar verilecektir. Ilk olarak nétrosofik reel sayilarin bélme islemi
altinda kapali olmadig1 ifade edilmistir. Daha sonra nétrosofik tam sayilarin

el?ob, ) boliinebilme 6zellikleri verilmis, iki noétrosofik tam sayinin en biuyiikk ortak
notrosofik tam sayilarda 1 " . e s .

ekok, béleninin pozitif ve tek oldugu gosterilmistir. Sayilar teorisi kuraminda tam sayilar
nétrosofik tam sayilar icin icin verilen Euclid ve Bezout teoremlerinin nétrosofik tam sayilar igin karsilig
Euclid Algoritmasi, incelenmistir. Son olarak iki nodtrosofik tam sayinin en kiiciik ortak kati
nétrosofik tam sayilar icin tanimlanmis ve bu saymin nasil bulunacag ile ilgili sonuglar verilmistir. Iki
Bezout Teoremi notrosofik tam sayiin ¢arpiminin isareti hakkindaki incelemeden sonra en kiigiik

ortak kat ile en biiyiik ortak bolen arasindaki iliski verilmistir.

1. Introduction articles. For some of these, see [7-12]. The source of

inspiration for our work is the studies in [13].
Neutrosophy is a concept that presented by F.

Smarandache to deal with indeterminacy in nature
and science [1]. This concept has many applications
in various fields and many studies have been done in

In this paper, firstly, it is given divisibility properties
of neutrosophic integers. Then we have given some
properties on the greatest of common divisor (gcd) of

this field. The first studies in which algebraic neutrosophic integers, Euclid’s Theorem, Bezout's

structures were applied in neutrosophy theory is
given by Kandasamy and Smarandache in [2,3]. One
of the fields in which neutrosophy theory is applied is
neutrosophic number theory. Neutrophic number
theory is the science that studies the properties of
neutrophic integers. Neutrosophic number theory
was introduced in [4]. Also, in [5] and [6], the authors
examined some properties of neutrosophic integers.
Studies on neutrophic integers have inspired many
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Theorem. Finally, it is defined the least of common
multiple (Icm) of neutrosophic integers and given a
result that shows the relationship of between the gcd
and the lcm.

2. Material and Method

A well-known definition and a theorem of integers
are given below.
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Definition 2.1 Letu,v € Zandu # 0. It is calledu
divides v iff v = uk for any integer k. It is denoted by
ulv.

Theorem 2.2 Let «, 3,6 € Z. Then

i) for a € Z—-{0},|a,

ii) for a € Z —{0},2|0,

iii) forany x € Z, if a|B, then a|Bx,

iv) ifa|B and B|§, then a|6§,

v) forallx,y € Z, if @|B and «|§, then a|fSx + 8y,
vi) if ax|Bx for x # 0, then a|pB,

vii) ifa|B and B # 0, then |a| < |B],

viii) if ¢|f and a # 0, thenglﬁ,

ix) ifa|B and B|a, then @ = £B.

Theset Z[I] = {u + vl:u,v € Z,I? = I} is known as
the ring of the neutrosophic integers and [ is called
an indeterminate element.

Definition 2.3 [4] For any a, 8 € Z[I], we say that
a|B if there exists a k € Z[I] such that 8 = ka.

Theorem 2.4 [6] Leta = a; + a,land f = f; + 5,1
be any two elements in Z[I]. In this case, |f iff a;|B;
and a; + a,|B; + Bs.

Definition 2.5 [6] Leta+bl € Z[I]. a+ bl is a
positive neutrosophic number if and only if a > 0,
a+ bl > 0.

Definition 2.6 [4] Let a = a,; + a,l € Z[I]. The
conjugate and norm for « is defined by
a=a, +a,—a,l
and
N(a)=a.a=a;(a; + ay)
respectively.

Theorem 2.7 [4] Let «, 8 € Z[I]. Then

N(aB) = N(a)N(B).

Proposition 2.8 [4] The elements +1,+(1 — 2I) of
Z[I] have inverses in Z[I].

Definition 2.9 [6] We say that a = gcd (B,y) if 2|8
and a|y and for each divisor §|8 and 8|y, then |a.
Also if gcd(B,y) = 1, thenitis called that 8 and y
are relatively prime in Z[I].

Theorem 2.10 [6, Theorem 3.7] Leta = a; + a,l
and f = B, + 1 € Z[I]. Thenm + nl = gcd (e, B) if
m = gcd (a4, f1) and m+n = ged (a; + 1, az + 52).

Theorem 2.11 [4] (Division Theorem) Letx andy €
Z[I] and N(y) # 0. In this case, there exist b, 7 € Z[I]
such that x = by + #~, where [N(#)| < [N(y)|.

3. Results

The set R[I] = {u + vI:u,v € R} are not closed under
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the division. For example; % =4 —9] € R[I] but

there do not exist any a + bl € R[I] such that%

a + bl. In the following, we will answer the question
"for which neutrosophic real numbers division
operation is closed".

Definition 3.1 Let a+ Bl and y+ 4l be two
neutrosophic real numbers and a + I # 0. Ify +
81 = (k+tI). (a + BI) for any k + tI € R[I], then we
say a + BI divides y + 61 and denote a + SI|y + 61 .
In this case 22 =k + ¢1 € R[!].

a+pI

Theorem 3.2 Let «, B8,y € Z[I]. Then

i) «al0and a|a forany a # 0,

ii) if a|B, then a|Bu forallu € Z[I],

iii) if |B and B|y, then aly,

iv) if |8 and a|y, then a|By,

v) ifea|p and aly, then a|Bu + yv forall u,v € Z[I].
vi) ify|lae anda # 0, then N(y) < N(a),

vii) ifyla,y # 0, then%la,

viii) if y|a and a|y, then & = uy where u is a unit
element.

Proof. The proofs of (i)-(v) are similar in Z.
(vi) [4], Theorem 3.10.
(vii) By Theorem 2.4, x|y if and only if x, |y, and x; +
x,|y1 + y,. We see that
Y _ 3’_3_5 ()Y | Xy, — X0y
x  x.x (g tx)x; (g +x)x;
By hypothesis, we have z—i |y;and so
x1(y1 +¥2)
x1 (% + x2)
by Theorem 2.2 (viii). Hence we obtain % [y.

lyi + 2

(viii) if x|y and y|x, then x = ky and y = txfor any
k,t € Z[I]. Hence we have x = (kt)x. So it should be
kt = 1.Then we obtaink =t =Flork=t=+(1—
21). So we have y = ux where u is an unit element.

Proposition 3.3 The gcd of two neutrosophic
integers is positive.

Proof. Letu=a+bl,v=c+dl€Z[l[landz=m+
nl = ged(u,v) . Then, by Theorem 2.10, m =
gcd(a,c)€Zand m+n=gcd(a+b,c+d)eZ. It
is known that gcd of two integer is positive integer.
So we havem >0andm +n > 0. Then we obtain
z =m + nl > 0 by Definition 2.5.

Proposition 3.4 Letu=a+bl€Z[I]. Ifu>0or
u < 0,then N(u) > 0.

Proof. Ifa+ bl >0ora+ bl <0, then (a > 0,a+
b > 0)or (a<0,a+b < 0)by Definition 2.5. Hence
we have N(a + bl) = a(a + b) > 0.

By Definition 2.6 and using Theorem 3.2 (vi), we can
write the following Definition:



Y. Ceven et al./ The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers

Definition 3.5 For non-zero a and g in Z[I], the gcd
of ¢ and fis a common divisor which its norm is
maximal.

If zis the gcd of aand B, we have N(z) > 0. Unit
multiples of z are z,—z, (1 — 2I)z,—(1 — 2I)z. These
are some common divisors of x and y. We see that
N(=z)=N((1-2Dz)=N(—(1-2Dz) =-N(2) <
0 by Proposition 3.5 (vi) in [4].

Definition 3.6 We call x and y are relatively prime
when they only have unit factors in common.

Lemma 3.7 Letr,x € Z[I]. If r|x, then ur|x where u
is a unit element.

Proof. Let r|x. Then we have x = kr for any k € Z[I].
We know thatu € {+1,+(1 — 2)}and (1 — 21)? = 1.
Since also we can write xas x = (=k)(—r) or x =
k(1-2DA-2Drorx =k(=1+20)(-1+ 2Dr, we
get that —r, (1 —2D)r, (=1 + 2)rdivide x. Hence
ur|x where u is a unit element.

Lemma 3.8 Letx = a + bl € Z[I]. Then only one of
the numbers x, —x, (1 — 2I)x, (—1 + 2[)x is a positive
neutrosophic integer.

Proof. Case 1: Letx > 0. Then we know thata >0
anda + b > 0. In this case, since —x = —a — bl and
—a <0,—(a+b) <0, we have —x < 0. Since (1 —
2Dx =1 -2)(a+bl)=a+ (—2a—>b)] and a>
0,a+ (=2a—b) =—(a+b) <0, we have (1 —2)x
is neither positive nor negative. Similarly since —a <
0, —a+2a+b)=a+b>0,-(1-2Dx=—-a+
(2a + b)I we have —(1 — 2I)x is neither positive nor
negative.

Case 2: Let x < 0. Then we know thata < 0 and a +
b < 0. In this case, since —x = —a — bl and —a > 0,
—(a + b) > 0, we have —x > 0.

Sincea < 0,a+ (—2a—b)=—(a+b)>0,(1—
2Dx = a+ (—2a — b)I, we have (1 — 2[)x is neither
positive nor negative. Similarly since —a > 0, —a +
(2a+b)=a+b<0,—(1—-2Dx=—a+ (2a+ b)I
we have —(1 — 2)x is neither positive nor negative.

Case3: Suppose thatx = a + bl is neither positive
nor negative. Then aand a + b are opposite sign. If
a>0,a+ b <0, it can be easily seen that only (1 —
2Dx > 0.1fa < 0,a+ b > 0, we easily see that only
-1 -2Dx>0.

Proposition 3.9 The gcd of two
neutrosophic integers is unique.

non-zero

Proof. Let v and z be gcd of neutrosophic numbers x
and y. Then it is clear that v|z and z|v. By Theorem
3.2 (viii), we have z = uv where u is a unit. Since gcd
of two neutrosophic integers is positive by
Proposition 3.3 and only one of the numbers
+v,+(1 — 2I)vis a positive by Lemma 3.8,z = uv
where uv > 0is the gcd of neutrosophic numbers x
and y.
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Theorem 3.10 (Euclid’s Algorithm) Letx andy €
Z[I] be non-zero and N(x) # 0, N(y) # 0. Define the
neutrosophic integers r; and q; fori > 1 by repeated
application of the Division Algorithm to divisors and
remainders. We have

y =xq; + 1, |N(@)| <|N(x)|and N(ry) # 0,
x =1q, + 15, |[N(p)| <|N(r)|and N(r,) # 0,

1 =143 + 73, |[N(13)| <|N(rz]and N(r3) # 0,

T2 = Tj-1q; + 7, [NOp| < [N(r-1)| and N(ry) #
0’

Tj—1 = Tjqj+1

Then, for any unit element u,ur; is positive
neutrosophic integer where 7;is the non-zero last
remainder and it is the gcd of x and y.

Proof. We have a decreasing sequences of positive
integers such that [N(x)| > |N(r;)| > [N(ry)| >.... So
this sequence is finite and r, = 0 for any k € Z*. Now
starting from the last equation to first equation, we
have rj|rj_1,rj|rj_2,rj|rj_3, ...,Tjlx and 7j|y. By Lemma
3.7, urj|x and ur;|y. Sourjis a common divisor of x
and y. If z is another common divisor of x and y, we
have z|x and z|y. Hence starting from the first
equation to last equation, we have z|r1,z|r2,...,z|r]-.
By Theorem 3.2 (ii), z|urj. Then, by Lemma 3.8, for
any unit element uur; is positive neutrosophic
integer where 7; is the non-zero last remainder and it
is the gcd of x and y.

In the division operation in Z, the quotient and
remainder are unique. But as we will see in the
following example, the quotient and remainder are
not unique in division in Z[I].

Example 3.11 We apply the Division Theorem to the
numbers y =445] and x =649/ . Since N(4 +
5I) =36and N(6+91) =90, we can write asx =
by + k such that |[N (k)| < |[N(y)|. Consider the ratio%

and rationalize the denominator:
x_x.y_54+61_54 6

y vy 36 36 36

=3¢ +3g! =15+ (0,16)]
The neutrosophic integers around 1,5 + (0,16)/ is the
numbers 140,24+ 0,1+ and 24+ in the
coordinate plane (see [5]). If we chooseq, =1+
0/,g,=2+4+0I,q3=1+1and q, =241, then we
can write

6+91 =1.(4+51)+2+41, |N(r)|=12<|N(y)| =36,

NI

X n

a1 y
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6+91 =2.(4+51)+-2-1,
|

X gz y 2

IN(r,)| =6 <|N(y)| =386,
6-+91 = (1+1).(4+51)+2-51,
M TT r3
IN(r,)|=6<|N(y)|=36,
6+91 = (2+1).(4+51)+-2-10I,
X —_— N

)

IN(r,)| =24 <|N(y)|=36

94 y

Also it can be another equalities satisfying x = qy +
r such that [N(r)| < |[N(y)]|.

Example 3.12 Let us find gcd of 4 + 5/ and 6 + 91. By
Division Algorithm and Euclid Algorithm, we have
6+9=@4+5)2-2-],

IN(=2-D|=6<|NM4+5)| =36

4451 =(-2-0D(-2-D+0.
Hence, since =2 — 1 < 0, we have —(=2—-1)=2+1
isgcd of 4 + 57 and 6 + 91.
Secondly, since

6+9l=4+5)1+2+4l,

IN2+4D)| =12 < [N(4 +51)| =36
44+51=02+4D.1+2+1,
INC+D|=6<|N(2+4D)| =12

24+4l=02+DA+D+0,
we getthat 2 + [ is gcd of 4 + 5/ and 6 + 91.
Thirdly, since
6+9l=@+5).(1+1)+2-5],
IN2-5D|=6<|N(4+5)| =36
4451 =2-5)(2-5)+0,
and since 2 —5/ is not a positive neutrosophic
integer, we obtain that (1-2)(2—-5I)=2+11is
gcd of 44+ 51 and 6 + 91.

Example 3.13 The conjugate of the number 4 + 5/ is
9 —51. Since
4+51=(9-50)21+4-3],
IN4—-3D|=4<|N09—-5)| =36
9-5I=4-3D2+D+1|IND|=1<
IN(4 =3D)| = 4,
4—-5I=(M4-5)1+0,
we get gcd(4 + 51,9 — 51) = 1. So they are relatively
prime in Z[I].

Theorem 3.14 (Bezout’s Theorem) For 0 # x and
0#yeZ[I] andN(x) #0,N(y) # 0, ifgcd(x,y) =
z,then z = xa + yb for some a, b € Z[I].

Proof. By back-substitution in Euclid Algorithm, we
can find a, b € Z[I] such thatr; = xa + yb. If rj is the
ged of x and y, proof is clear. If 7 is not gcd but ur;
where u is a unit element is gcd of x and y, then we
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get ur; = x(ua) + y(ub) multiplying the above
equality by u. So proof is clear.
Corollary 3.15 For 0 #a and 0 # 8 € Z[I] and

N(a) # 0,N(B) # 0, x and f are relatively prime iff
aa + fb = 1forsomea,b € Z[I].

Proof. Since a and 8 are relatively prime, we know
that gcd(a, ) = 1. Hence, by Theorem 3.14, aa +
Bb =1 for some a,b € Z[I]. Conversely, let aa +
Bb = 1 for some a, b € Z[I]. If wis a joint divisor of «
and 3, then, by Theorem 3.2 (v),we havew|aa + b =
1. Hence we get gcd(a, ) = 1.

Theorem 3.16 For «,fandy € Z[I], if a|By and
gcd(a, B) = 1, then aly.

Proof. Let a|By and gcd(a, 8) = 1. By Corollary 3.15,
we have aa+fb=1 for some a,b€Z[l] .
Multiplying y, we have aya + fyb =y. Then, by
Theorem 3.2 (v), since a|aya and a|Byb, we have
alaya + Byb =vy.

Example 3.17 Consider x =4+5] and y =9 —

51. We know that gcd(x,y) = 1 from Example 3.13.

Hence using the equalities in Example 3.13, we have

1=9-5I1-(4-3D2+D
=9-5I-(4+5I-09-5D2D2+1)

-2+ Dx+ 1 +6ly

Example 3.18 For the neutrosophic numbers x =
4 + 5] and y = 6 + 9] in Example 3.12, if we use the
equality 6 + 91 = (4 +5I).(1 + 1) + 2 — 51, we have
2—=51=6+9]—(4+5I).(1+1). Multiplying both
sides by 1 — 2/, we have, since (1 —21)(2—-5]) =
241,
gcd(4+51,6+9)=2+1
=(6+9D(1-2)—-A+5DA+DH(A-2D
=x.(1-2D)+y.(-1+3D)

Definition 3.19 (LCM) For a and B € Z[I], if ¢|y and
Bly, v is called a joint multiple of @ and 8. The
smallest of the positive joint multiples of a and S is
called the Icm of a and .

Theorem 3.20 Forx = x; + x,1,y =y, + y,I € Z[I]
and x; #0,x;+x, #0,y;, # Oand y; +y, # 0, w =
w; +wyl = lem(x,y) if and only if w; = lem(xq,y;)
and wy + wy, = lem(xy + x5, 1 + Vo).

Proof. Letw = w; + w,I = lem(x,y). We know that
x|lw and y|lw. If v =v; +v,] is another common
multiple of x and y then w|v. Then x;|w;, x; +
Xalwy +wy, yilwy, y1 +yalwy +wy, wylvy, wy +
w,|v; + v, by Theorem 2.4. In this case, we have
w; =lem(xy,y;) and w; +w, =lem(x; + x5,y +
y,). Conversely, let w; = lcm(xy,y,) and wy + w, =
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lem(x, + x5,y; +v,). Then we have x;|w;, y;|wy,
X1 + x;|lwy + wy, ¥ + y,|lw; + w,. Hence we get x|w
and y|w and so w is a common multiple of x with y.
Now let v be another common multiple of x with y.
Then x|v and y|v. Since x;|vy, y1|vy, x4 + x5|v1 + vy,
v1 + y,|v; + v,, v; is a common multiple of x; and y,
and v, + v, is a common multiple of x; + x, and y; +
y,. Since w; = lem(x;,y;) and wy; + w, = lem(x; +
X5, Y1 +¥2), we have wy|vy, w; + wy|v; + v,. So we
obtain w|v and w = w; + w,I = lem(x, y).

Example 3.21 Considerx = 2+ 4/,y = 3+ . Since
Iem(23)=6=w; and Im(2+43+1)=12=
w; +w,, we havew =w; + w,] =6+ 6l =Ilcm(2+
41,3 +1).

We remember the coordinate system for Z[I]in [5]:
Letx € Z[I]. We know thatx > 0in Region 1,x < 0
in Region 3, xis neither positive nor negative in
Region 2 and 4.

Region2 4 3+41
=243l 3
-5%21 2 Region1l
Region3

Region3 -2

Regior'1l

-3-4| -4] Region'4

Figure 1. Neutrosophic integers

Theorem 3.22 Let a, 8 € Z][I].

i) If @ and f have the same sign, then aff > 0,

ii) if @ and B have the opposite sign, then a8 < 0

iii) if « and B are neither positive nor negative and
are in the same region, then a¢ff > 0

iv) if @ and f are neither positive nor negative and
are in the different region, then a8 < 0

v) if only one of « and f is positive or negative and
the other is neither positive nor negative, then af is
neither positive nor negative.

Proof. Let a=a;+a,] and B =p;+f(,]. By
Definition 2.5, we know that
o a=a+ay, >0iffa; >0,ay +a, >0,
o a=a+a,] <0iffa; <0, +a, <0,
e «a = a; + a,l is neither negative nor positive
iffa; >0, ¢y +a, <0 ora; <0, a; +a, >
0.
Since aff = a,f; + (a8, + a,f; + a,5,)1, we should
investigate the signs of ayf; and a;8;, + a8, +
axfr + @Bz = (a1 + az)(By + B2).

i) Leta = a; + ay,l and § = B; + ] have the same
sign. Then a,,a; + a,, 1,5, + B, has same sign.
Hence we get a8, >0, (a; + a3)(B; + B2) > 0. So
af > 0.

ii) Let a =a; +ayl and B = f; + [,] have the
opposite sign. Then we see that ay,a;+
a, are positive and f;, B; + [, are negative or «ay,
a, + a, are negative and f;, f; + f,are positive
Hence we geta;f8, <0, (a; +a,)(B; + B,) <0. So
af < 0.

iii) Let « = a; + a,I and B = f; + S, are neither
positive nor negative and are in the same region.
Then we see that a4, §; are positive and a; + a5, 5; +
B, are negative or ay,f; are negative and a; +
a,, 1 + B, are positive. Hence we geta;f5; >0,
(a; + a3)(By + B,) > 0.So0aB > 0.

iv) Let @ = a; + a,] and f = f; + B,] are neither
positive nor negative and are in the different region.
Then we see that a4, f; + [, are positive and a4 + «,
and B, are negative or a; + a,, f; are positive and
a4, 1 + B, are negative. Hence we get a6, <0,
(a; + ay)(B; +B,) <0.Soap <0.

v) Let only one ofa = a; + a,l and f = f5; + 3,1 be
positive or negative and the other neither positive
nor negative. Since af = a8, + (@18, + a5, +
a,fB,)] we should investigate the signs of a;f; and

a1+ a1y + ayf + @B = (a1 + az)(By + Bo).

Then we have eight case:
a1 >0,6,>0, ay+a,>0,6,+6,<0

= af is neither positive nor negative,
. 0;>0,6, <0,y +a,>0,p,+5,>0

= af is neither positive nor negative,
a1 >0,6,>0,ay+a,<0,6,+6,>0

= af is neither positive nor negative,
. 0;>0,6, <0, +a,<0,5,+5,<0

= af is neither positive nor negative,
.0 <0,6,>0, a;+a,>0,p,+B,>0

= aff is neither positive nor negative,

a, <0, <0, +a,>0,6,+5,<0

= af is neither positive nor negative,
L1 <0,8,>0a,+a,<0,6,+6, <0

= af is neither positive nor negative,
L0 <0,6, <0, ay+a, <0, +B,>0

= af is neither positive nor negative.

Theorem 3.23 For neutrosophic integers a and S,

gced(a, B)lem(a, B) = af ifaf > 0

gcd(a, B).Iem(a, B) = —af ifaB < 0.

Proof. Let af > 0. Denote gcd(a, 8) = 6 and % =m.

Then since §|f8 andé|a, we have B = 6t and a = Sk
for any k,t € Z[I]. It is clear that gcd(k,t) =1,
otherwise gcd(a, B) > . Hence since m = 2B _ SkB _

s s
kB and m=%=%&=at, we get alm and B|lm.

and
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Hence m is a joint multiple of ¢ and f. Now if
another joint multiple of @ and g is n, then since a|n
and B|n, we haven = ar and n = s for anyr,s €
Z[I]. In this case, since ar = Bs and 8kr = §ts, we
have kr =ts. Hence we see that k|ts. Since
gcd(k,t) =1, by Theorem 3.16, we get k|s. Hence
s=klfor any!l € Z[I]. Then since n = fis = Bkl =
ml, we obtain m|n. Therefore m = lcm(a, 8), by the
equality% =m. We have gcd(a, B).lcm(a,B) = af.
If af <0, then since or —af =a(—f) or—aff =
(—a)p, taking —af = ab > 0, the proof can be easily
proved.

Example 3.24 Consider Example 3.21. We see that
ged(x,y) =1+ 1andxy = 6+ 18] > 0. Since
lem(x,y) = 6 + 61, we have
ged(x,y).lem(x,y) = (1 + 1)(6 + 6])

=6+ 18I

=Q2+4DB+D

4., Discussion and Conclusion

In this study, as a continuation of previous studies [4,
5], we gave some results about the neutrosophic
integers theory. We first stated that the neutrosophic
real numbers are not closed according to the division
operation. Using known properties on integers and
properties given on Gaussian integers ([13]), we gave
divisibility properties of neutrosophic integers. We
defined the gcd of two neutrosophic integers and
proved it is positive and unique. Then, we gave the
Euclid’s Theorem, Bezout’s Theorem for
neutrosophic ingers set Z[I] which it is an important
concept in number theory in the integers set Z.
Finally, it is defined the lcm of two neutrosophic
integers. A theorem is given which enables one to
easily find the lcm of two neutrosophic integers. After
a conclusion about the sign of the product of two
neutrosophic integers, a theorem is given that shows
the relationship of between the gcd and the lem.
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