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The solution of differential equation with Hulthen potential in curved space
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Abstract. The solution of the Schrédinger equation for a physical system in quantum mechanics is of great
importance, because the knowledge of wave- function and energy spectrum contain all possible information
about the physical properties of a system. In this paper, we have give solution of the Schrodinger equation in
three dimensional curved space with Hulthen potential on the positive constant curvature. Then we achieve the
wave-function and energy spectrum for the Hulthen potential. In order to solve the corresponding Schrédinger
equation, we use of Nikiforov-Uvarov (N.U) method [1]. The N.U method is based on solving the second- order
linear differential equations by reducing to a generalized equation of hypergeometric type.
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Egik uzayda Hulthen potansiyelli diferansiyel denklem ¢6ziimii

Ozet. Kuantum mekaniginde fiziksel bir sistem icin Schrodinger denkleminin ¢dziimii biiyiik 6nem tasir ciinkii dalga
fonksiyonu ve enerji spektrumu bilgisi, bir sistemin fiziksel 6zellikleri hakkinda miimkiin olan tiim bilgileri icerir. Bu
makalede, pozitif sabit egrilik {izerinde Hulthen potansiyeli ile {i¢ boyutlu kavisli uzayda Schrodinger denkleminin ¢dziimiinii
veriyoruz. Daha sonra Hulthen potansiyeli i¢in dalga fonksiyonu ve enerji spektrumu elde ediyoruz. Karsilik gelen Schrodinger
denklemini ¢6zmek icin, Nikiforov-Uvarov (N.U) yontemini kullaniriz [1]. N.U yontemi, hipergeometrik tipteki
genellestirilmis bir denklemi indirgeyerek ikinci mertebeden lineer diferansiyel denklemlerin ¢dziilmesine dayanmaktadir.

Anahtar Kelimeler: Hulthen potansiyeli, Schrodinger denklemi, (N.U) metodu

1. INTRODUCTION

One of the interesting problems of the nonrelativistic quantum mechanics is to find exact solutions to
the Schrodinger equation for certain potentials of the physical interest. In recent years, considerable
efforts have been done to obtain the analytical solution of non-central problems. The notion of the
constant curvature and the accidental degeneracy first began with Schrodinger[2]. Essential advances of
these systems with accidental degeneracy have been made by Nishino[4], Higgs[5] and Leemon[6]. At
the same time, some papers on curved spherical spaces are concerned with some applications of physics
such as linear and non-linear optics[7] and quantum dots[8, 9]. Furthermore, in[3], the authors studied
Lie Algebraic Extensions of the Mie-type interactions with Positive Constant Curvature. This paper is
organized as follows. Firstly, we take advantage from curvature space and make the Hulthen potential
in spherical coordinates with spaces of constant curvature. Then by using the Laplace-Beltrami operator
and N.U method, we solve the above pointed corresponding Schrodinger. In that case we achieve the
wave-function and energy spectrum for the Hulthen potential.
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2. PRELIMINARIES

As we know the three-dimensional space of constant positive curvature can also be realized
geometrically on the three-dimensional sphere S* of the radius R , embedded into the four-dimensional
Euclidean space when the equation of S* has a form,

S*={(4y4) eR 1 2442 =R, (1)

where the tangent space Xi (i =1,2,3) are the coordinates and /1i is,

ﬂ’i = L, (2)
r.2
1+?
and
R
/10 = T (3)
1+r—2
R

In order to write the Schrédinger like equation in curved space-time, we have to change the
corresponding potential in flat space-time to curved space-time. So, in that case we try to write the

Sy . 2 2 2
general form of Hulthen potential in constant curvature space. We define r’= X +X,”+X; and
following potential,

= (4)

where Vo is the constant and O is screening parameter. By inserting the above new coordinate r into

A , one can obtain the corresponding potential as,

— ®)

1-e V' ”
On the other hand, the spherical coordinates lead us to have following equations,

A, = Rsin y sin & cos g, (6)

A, = Rsin ysin @sin ¢, (7

160



BEHZADI, HAJIMIRGHASEMI

A, = Rsin y cosé, (8)
A, = Rcosy, 9)

where 0<y <z ,0<6 <7 and 0< ¢ < 27 . Here also we will obtain the metric background
for the above corresponding system. The form of metric help us to write the second order equation. By
using the variation with respect to angles ¥ , ¢ and 4 (R is constant curvature) one can obtain the
metric background in four dimension, which is given by,

ds® = R*(dy’ +sin* (6’ +sin” &g*)). (10)

The above information help us to calculate the Hulthen potential in form of angle, so the V (y)
will be as,

—-dRtan
e 4

V)= ~No (11)

Now we are ready to arrange the general form of Schrodinger like equation for (11) on the
constant curvature,

h2
(——ﬂA +V)P = (12)

where A is Laplace-Beltrami operator which is a restriction of the Laplace operator on the
sphere. So, the Laplace-Beltrami operator will be following,

=13 2 (Jgg*

(13)
g ik=1 aX

o
As we see in Laplace-Beltrami operator correspond to the metric of space time, in flat space
time we have just usual Laplace. We can define the general form of metric for the arbitrary space-time

which is given by following expression,

ds? = gikdx‘dxk, (14)

where § =det| g, | and by the chain rule 9™ = (g, ). Thus, using (6), (7), (8), (9) and (13),

Schrodinger equation takes the form,

1 0 21R? h> m(m+1) g R
[E_ -V —zﬁRtany/]

¥ =0, 15
'//81// h? UR? sin’y  Cl-e )

Using a transformation of the wave-function in (15),
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¢(v)
Y(y)=- , 16
(v) Sin () (16)
2UR?

Cl = T E, (17)

24R* h’m(m+1)
C,=- , 18
2 h2 ( 2#R2 ) ( )

24R?
Cs = _%Vo’ (19)
C, = -3R, (20)
(15) turns into
2¢ , eC4tanz//

5 + (Cl +C2 CSC /4 +C3 m)¢ = O (21)

3. THE SOLUTION WITH THE NIKIFOROV-UVAROV METHOD

The main equation which is closely associated whit the method is given in folloing form (Nikiforov-
Uvarov , 1988)

d’p  2(s) d¢ , o(9)
ds®* o(s) ds  o(s)

#(s) =0, (22)

where &(s) and o(S) are polynomials at most second-degree and 7(S) is a first-degree
polynomial and y/(s) is a function of the hypergepmetric-type.

We turn (22) to

d2¢+ a4 — QS d_¢+_§152+§25_§3

dSZ S(l—a3S) dS [S(l—(ISS)]Z ¢ = 0 (23)

The above equation have the recursive equation as follows:

a.
(o p——23)

#(s) = g“2 (1-a,s) a3 pn(aloflvf;*“m*l) (1-2a,8), (24)

and eigenvalue for (23) is as:

aN—(2n+1)a; + (N +1)(Jay + e ) +n(N+1)a, + @ + 20,05 + 2( 2z, ) = 0, (25)
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where @; (i =1,2,3,...,13) are special functions and we define as follows:

@ =2 (1-a), 29)
1
s = > (a, —2a3), (27)
;= ()" +&, (28)
a, =2a,a; —¢,, (29)
ay = (a,)" +&;, (30)
- 2
Qg = 0 + 0, + (), (31)
o =0y +20,+ 2,0, (32)
o, =a, 20, + 2(\/079+a3\/078), (33)
o, = o, +4/ag, (34)

O3 = U5 — (\/079 + Qg \/078) (35)

Now we assume,

C, =1, (36)
tan y/;sin vy, (37)
(21) turn to,
2 v
99 e Gve gm0 @)
dy 7 1-¢”

With using of equivalence, we have,

-1 1
e’ l+y > pe” _1—>;;1_ew ) (39)
and so
1 1
y ey o0
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We put (40) in (38) as:

d’¢ 1 ev .
e +[C,+C, o) +C31—e‘/’]¢_0' (41)
Moreover let us substitute,
s=e’, (42)
hence we have,
d d
Lo @3
4
and also
d? d
df e @rer @Y (@4)
Using (43),(44) and substituting into (41), we obtain,
, 1 e’ . _
(¢ ¢)+eV( ¢)+[c +Co e‘/’)2+C31—e"’]¢_o’ (45)
and with substituting (42) into (45), we have,
2
d? (1 S) d¢ [s? (C,-C))+s(C,—-2C))+(C, +C)]¢:O. (46)
ds® s(l-5s) ds [s(1-3)])
(46)is Similar to(23) where 04 = &, = Q3 =1 ang,
& =C -G, (47)
& =C;-2C, (48)
& =C +C,, (49)
a, =0, (50)
==, (51)
a6=%+Cl—C3, (52)
a,=2C,-C, (53)
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oy =%+4cl+c:2 ~2C,, (55)

o, =1+2({/C,+C,), (56)

o, = 2(1+\/%+4Cl +C,-2C, +,/C,+C,), (57)
a, =+/C,+C,, (58)

1 1
als_—E—( Z+4C1+C2—ZC3+1/01+C2)- (59)

Therefore with using (N.U)method and (24), the solution for(46)is as:
1 /1

#(s) = sV (1 S)E*\IZ*4°1*°2’2°3 Pn(2[”/(C1+c2)]'Z[H‘/%MC“CZ_ZCS D (1-2s), (60)

According to (42)we have,

s=e" s>y =s, (61)
then (60) turn to,
1+ l+4C +C,-2C 1

¢(‘//) - W(m)(l_v/)z R R Ra:] Pn(Z[ /(C1+C2)]v2[1+~/;+4C1+Cz—2‘33]) (1_2!//). (62)

Now according to (16), wave-function as follows:

1 1
( ) ) W(m)(l_v/)ih Z+4C1+CZ*2C3 Pn(z[\/WLZ[:H %+4C1+C272C3 D (1_ 2(//)

Wy - (63)
sin i
By using the above equation and (25), one can obtain the eigenvalue as,
n+%(2n +1)+(@2n+1)(M)+n(n—-1)+4C, +2C, -C,+2C, +2C, +2N =0, (64)
where
1
N = (Z+4C1+C2 -2C,)(C,+C,), (65)

and
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1
M :\/Z+4Cl+CZ_ZC3+1/Cl+CZ' (66)
So by using equations(18),(19),(64), we obtain C, and finally the energy spectrum will be as:

1. 1
2m(m+1)—-2N —(n+>)—=
(m+1) (n+2) 42

E :[ R2 h2

V,. (67)

In case of flat space R — oo ,one can achieve the energy spectrum as,

Ez_%ﬁw. (68)

So, we see the energy in curved space time depent to 1 and M as a quantum number. In flat space time,
the energy not depent to I and M . We note here, different potential in curved space time give very
interesting wave-function and eigenvalues. So, in future we can do different potential in three and four
dimension in curved space.

4. CONCLUSION

We know that the time-independent has the second-order differential equation in the Schrodinger picture
as well. Therefore, in this paper we confined our attention to this equation and its approximate solutions
for the Hulthen potential. We have studied the Hulthen potential in spherical curved spaces with constant
positive curvature through N.U method. It is seen that, Hulthen potential is transformed into other
potentials such as Harmonic Oscillator, Coulomb, Kratzer, Morse in spherical spaces. The solution
meant that we have obtained the energy spectrum and the corresponding wave-function of a particle
subject to one of these potentials.
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