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ABSTRACT

In this study, convergence properties of spectral, numerical and Crawford gap functions via convergences of
Hilbert space operator series in difference and ratio cases are investigated. Obtained results have been applied to
some classes continuous functions of the operators.
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Bu ¢alismada, fark ve oran durumlarinda yakinsak Hilbert uzay operator serileri iizerinden spektral, sayisal ve
Crawford bosluk fonksiyonlarinin yakinsama 6zellikleri incelenmigtir. Elde edilen sonuglar operatorlerin bazi
stirekli fonksiyon siniflarina uygulanmustir.
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I. INTRODUCTION

In spectral theory of linear operators, obtaining the spectrum set, the numerical range set of a given
operator and calculating spectral radii, numerical radii and Crawford number are main questions. Generally,
finding the set of spectrums and the numerical range of non-normal linear bounded operators is theoretically and
technically quite difficult.

Throughout this paper, H and L(H) denote any complex Hilbert space with (-,-) is the inner product and
||-]] is its corresponding norm on H and the Banach algebra of linear bounded operators in H, respectively.

In the literature, Gelfand formula is the only one formula used to calculate the spectral radius
r(A) = sup{|A|: 1 € o(A)} of linear bounded operator A € L(H). The following is the Gelfand formula:
1
r(A) = lim ||A™||~  [1].
n—-oo
Note that for a linear bounded normal operator A in H the relation r(A) = ||A]| is true (see [2]).
It is an easy consequence that if A, B € L(H) are commutative operators, then
r(A+B) <r(A)+r(B) [2]
Recall that the numerical radius of A € L(H) is defined by
w(A) = sup |(Ax,x)|.
I

x||l=1
It is known that

w(A) = supl||Re(eiA)|| = sup||Im(e*A)||
teR teR

(see, e.g. [3]). It is obvious that the function w(-) defines a norm on L(H), which is equivalent to the usual operator
norm ||-||. Indeed, for every A € L(H) the following inequality holds:

Pl < wa) < 141l (1)
Moreover, for the linear normal bounded operator A the relation w(4) = ||A|| is true (see [2]).
It is well known that for every two operators A, B € L(H)
w(A +B) <w(4) +w(B) )
is valid (see [2]).

We refer the reader to [2, 4] for the other basic information and results for the numerical radius.
Furthermore, developments on the numerical radius inequalities (1) and (2) can be seen in [3, 5-9] and references
there in.

Furthermore, remember that the following spectral inclusion holds o(4) c W (A) for the spectrum set
o(A) and numerical range W (A) of any A € L(H) (see [2, 4] for more information).

For A € L(H) the Crawford number of A is defined by

c(A) = inf{]A]: 1 € W(4)}.

It is easily seen that the following inequality holds for every A € L(H):
0<clA) <r(d) <w) <Al

Throughout this paper, for A € L(H) the spectral gap, the numerical gap and the Crawford gap functions
in difference cases will be denoted by

g-(A) = llAll = 7(4),8,(A): L(H) - [0, ),

gw(4) = |IAll — w(4), g, (A): L(H) - [0, ),

gc(4) = |lAll = c(4),g.(A): L(H) — [0, ),
respectively.

Similarly, for A € L(H) and A # 0, the spectral gap, the numerical gap and the Crawford gap functions
in ratio cases will be denoted by ¢, (T) = T”(TT“) ,qw(T) = TI;T”) and q.(T) = LiCo} , respectively [10]. The similar

Il
problems for square matrices have been investigated in [11].
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Demuth's open problem in 2015 and the works of Kittaneh and his researcher group in this area had a
significant impact on forming the subject discussed in this paper (see [8, 9, 12]).

Some studies related to this area can be found in [13-18].

This work is organized as follows: In Section 2, convergence properties of spectral, numerical and
Crawford gap functions via convergences of Hilbert space operator series in difference and ratio cases have been
investigated. Note that here a new inequality for difference Crawford numbers of two operator has been obtained.
In Section 3, obtained results have been applied to some classes continuous functions of the operators.

I1. ON THE CONVERGENCE OF SOME SPECTRAL CHARACTERISTICS ON THE
CONVERGENCE OF OPERATOR SERIES

Firstly, define the uniform convergence of operator series from [19].

Definition 2.1. Let H be a Hilbert space and for any n > 1, A,, € L(H). The operator series Y.,—; 4,, is said to
converges uniformly to A € L(H) if for any &€ > 0 there is some n, € N such that for all n > n, it is true that

14— Sall < e

where S, =Y _1AH > Hn>1.
Now give the following simple fact.

Remark 2.2. If the series Yo—;||A4,,| is convergent, then series Y., A, : H = H uniformly converges in H.
Now we give results on the difference gaps repeatedly.

Theorem 2.3. Let A,, € L(H),n = 1, the series Y5, A,, uniformly converges to some operator A € L(H) and for
any i,j = 1 the operators 4; and A; are commutative. Then

9r(A) = lim g,(Sy).
Proof. In this case it is clear that
AS, = S,An > 1.
Then from the subadditivity property of spectral radius
r(A) <r(A—S,) +r(S,),
r(S,) <r(A—S,) +r(4).
Since the series Yo ; A, is uniformly converges to A, then
Ir(A) —rS)l < 7(A=$p) < lA=Spll —> 0.
So, it is obtained that
r(A) = rlll—>nt;lo r(S,).
Consequently, it is clear that
lg-(A) = g (S| = [UIAIl = 7(A)) = (ISull = (S| < 1A = Spll + I (A) = (S| < 2|4 = Spll,n = 1.
Then, since the series Yo, 4, is uniformly converges to A, then we get

gr(A) = _’lll_r};lo gr(sn)-

Theorem 2.4. If the operator series Yo, A, A, € L(H),n = 1 uniformly converges to operator A € L(H), then
9w(4) = lim g,,(Sy,).

Proof. From the subadditivity property of numerical radius function it is clear that
w(4) —w(S)| <w(d=S5,) < |4 =Sl - 0,n - co.

From this and uniform convergence of operator series Y5, A, to operator A it is established that

w(4) = Tlll_r){)lo w(S,).
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Therefore, the following inequality

lgw (A) = 9w (S| < ANl = lISalll + w(A = Sp) < IA = Spll + 1A = Spll < 2||A = Spll,n =1
is hold. Consequently, since the series Yo—; 4, is uniformly converges to 4, then we have

Gw(A) = lim g,,(S,).

Now prove the following proposition.
Lemma 2.5. For any A, B € L(H) the following relation

lc(A) — c(B)| < w(A £ B)
is hold.
Proof. In this case, for any x € H with ||x|| = 1, the following relation

[(Ax, )| = |((A + B)x,x) — (Bx,x)| = |((4 + B)x,x)| — |(Bx, x)|
is true. Then from the last relation it is clear that

c(4) = c(A+ B) —w(B). 3)
Similarly, from the following inequality

|((A +B)x,x)| = |(Ax,x) — (Bx,x)| = |(Ax, x)| — |(Bx, x)]|
satisfying for any x € H with ||x|| = 1, it implies that

c(A+ B) = c(A) —w(B). 4)
Consequently, from inequalities (3) and (4) it implies that

[c(A + B) — c(4)] < w(B).
In this case, if we take B — A instead of B in the last inequality, we have

[c(A) — c(B)| <w(4 - B).
Also, from the last relation if we take —B instead of B, then we have

[c(4) — c(B)| < w(A + B).
In this way, the lemma's proof is complete.
Theorem 2.6. If the operator series Yo, A, A, € L(H),n = 1 uniformly converges to operator A € L(H), then

c(4) = lim c(Sy),

gc(A) = lim g (Sp).
Proof. Indeed, by Lemma 2.5, we have

lc(A) — eIl = w(A=S5,) < |A=S,ll = 0,n — co.
Hence the validity of claim

c(4) = lim c(Sy)
is clear. And also, since

19c(A) — gc (S < IJA = Spll + [c(A) — (Sl < 2)IA = Splln = 1,
the validity of second claim of theorem is established.

For the ratio gaps the following claim is true.

Theorem 2.7. If the operator series Y51 A,, A, € L(H),n = 1 uniformly converges to operator A € L(H) such
that foranyn > 1 S, # 0 and A # 0, then the following conclusions are true

(@) Ifforanyn>1 S,A = AS,, then q,(4) = lim q,(S,),
n—-oo

(b) qw(A) = -,111—1»1;10 qw(Sn)n
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(© qc(A) = 7111_1)1;10 QC(Sn)'

Proof. In this case from Theorem 2.3, Theorem 2.4 and Theorem 2.6, it implies that

@ 1g-(4) — g (Sl < T2y 4 — 51— 0,
[ISnIllAl n-oo
(0) 1w (A) — gy (S| < XL 4 5| — 0,
[ISn Al n-oo
© 1gc(A) — (S < <Al 4 _ s, | — 0.
[ISnIllAll n-ooo

Example 2.8. Consider the following sequence of operators in Hilbert space of complex-valued functions L2 (0, 1)
in form:

1
Anf () = s

Jo f®dt, f € 12(0,1), Ap: L*(0,1) - 12(0,1),n = 1.

Then it is clear that 4,4,, = A, A, mn=1,S,=Y"_ 1A, = (1 — n%l) foxf(t)dt,n > 1 and the sequence
(S,,) uniformly converges to Volterra integration operator

Af(x) = [, f(Ddt,f € L2(0,1), A:L*(0,1) - L*(0,1).

It is known that ||A|| = % and o(A) = {0} [2]. Therefore, by Theorem 2.3 and Theorem 2.7, it implies
that

lim g,(S,) = =~ and lim ¢,(S,) = 0.
n—-oo A n—-oo
Example 2.9. Consider the following sequence of operators in real space L2(0, 1) in form:

; t
Anf () = Of (1+ (n— D)L+ nt)

F(Odt, f € L2(0,1), A,: 12(0,1) > [2(0,1),n > 1.

In this case, it is clear that

¢ 1
S fx) = 0f(1— 1+nt>f(t)dt,f€L2(0,1),n21.

Using the Lebesgue Dominated Convergence Theorem it can be proved that the series Yo 4, uniformly
converges to the Volterra integration operator

Af(x) = [, f(Ddt,f € L2(0,1),A: 12(0,1) - L*(0, 1).

It well known that ||A|| = % and o(A4) = {0} [2] and numerical radius w(4) = % [20]. Then by Theorem
2.4, Theorem 2.6 and Theorem 2.7 we have

- _2 1 _ A oad i _r
lim g,,(Sp) = —+ =~ and lim q,,(S,) =7,

lim g.(S,) = 2 and lim q.(S,) = 0.
n—-oo T n-oo

I11. APPLICATION

Now it will be given one important function class (A,), (see [21]). Let w be a modulus of continuity,
i.e., w be a nondecreasing continuous function on [0, ) such that w(0) =0 and for x >0 w(x) > 0 with
property w(x +y) < w(x) + w(y),x,y € [0,00). And also, it will be denoted by D :={z € C: |z| < 1} unit
disc and A(D) class of all analytic functions on D.

Let us denote one space of analytic functions

p @(u-vl)
u#v

(ORIO)
(Ao)s = {f €AD) : [flla,, = sup LT < oo
uv

427



BSEU Fen Bilimleri Dergisi / BSEU Journal of Science, 2023, 10(2): 423-429
E. Otkun Cevik

Given a modulus of continuity w, it will be defined the function w, by

w(t) d
t2

w,(x) = xf t,x > 0.
X

Note that lim w,(x) = 0.
x—0t

Recall that the following result has been proved in [21].

Theorem 3.1. There exists a constant ¢ > 0 such that for every modulus continuity w, for every f € (A,), and
for arbitrary contractions T and S, the following inequality holds

If(T) = FON < clliflla, @ IT = SID.

Here we will investigate how the results obtained in the previous section will change for operator-
functions.

Theorem 3.2. Let (4,,) be a sequence of bounded linear operators in H such that for any n > 1 the operator
Sn = X4 A, isacontraction operator. If the series Y.o>_; A, uniformly converges to the A: H — H, then for any
f € (Ay)4, the following statements are correct:

(1) Ifforany n>1 $,4 = AS,, then g, (f(4)) = lim g,(f(S,).

@ gu(f(A) = lim g, (F(Sa)),

@) g:(f() = lim go(F(S,),

(4) Ifforanyn =1 S,A = AS, and f(4) # 0, then q,(f (4)) = lim q.(f (Sw)),
(3) aw(f(A) = lim ¢, (f(Sy), f(4) 0,

(®) q:(f(A) = lim q.(£(S,)), f(4) # 0.

Proof. Let f is any function of (A,,), and contraction operators sequences (S,) in H which uniformly converges
to operator A : H — H. Then A is a contraction operator. Moreover, since f € (A,)., then by Theorem 3.1, there
exists ¢ > 0 such that || £ (4) — f(S)Il < cllflla, @.(lA = Sy, n = 1.
Consequently, since lim w,(||A — S,||) = 0, then the operator sequences (f(S,)) uniformly converges
n—-oo

to f(A). Thus, the validity of the claims of this theorem under corresponding conditions it is clear from Theorems
2.3, 2.4 and Theorems 2.6, 2.7.
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