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Abstract: In this research, multistage adaptive tests (MST) were compared 

according to sample size, panel pattern and module length for top-down and 

bottom-up test assembly methods. Within the scope of the research, data from PISA 

2015 were used and simulation studies were conducted according to the parameters 

estimated from these data. Analysis results for each condition were compared in 

terms of mean RMSE and bias. According to the results obtained from the MST 

simulation based on the top-down test assembly method, mean RMSE values 

reduced when the module length increased and when the panel pattern changed 

from 1-2 to 1-2-2 and 1-2-3 for MST applied to small and large samples. Within 

the scope of the research, data from PISA 2015 were used and simulation studies 

were conducted using the parameters estimated from these data. Analysis results 

for each condition were compared in terms of mean RMSE and bias. 

1. INTRODUCTION 

The combination of computer technology and test implementations with item response theory 

(IRT) led to the emergence of computer adaptive tests (CAT). While these tests involve the use 

of a computer and are tailored to the examinee, IRT allows the opportunity to develop, apply 

and evaluate a test by considering the abilities of the examinee. Due to these advantages, CAT 

was used instead of paper and pencil tests. The first application of an adaptive test in the 

computer environment was completed by Reckase in 1974 (Wise & Kingsbury, 2000). In 

addition, the emergence and development of item response theory has enabled the realization 

of adaptive tests through the parameterization of examinee’s abilities and item characteristics 

(Linden & Glas, 2000). Through computers, the examinees’ ability can be estimated instantly 

after each response to an item. Thus, the next item is selected according to the examinee’s 

ability.  Accordingly, CAT has been adopted and used in many national and international exams 

around the world (Khorramdel et al., 2020; Kirsch & Lennon, 2017). Today, some of these 

exams prefer MST instead of CAT. For example, GRE (Graduate Record Examinations), 

PIAAC (Program for International Assessment of Adult Competencies), AICPA (American 

Institute of Certified Public Accountants') and MAPT (Massachusetts Adult Proficiency Test) 

use MST instead of CAT because of its advantages (American Institute of Certified Public 

Accountants, 2019; Educational Testing Service, 2018; Hogan et al., 2016; Zenisky et al., 
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2009). One of the reasons behind this trend is that MST acts as a bridge between linear test 

forms of paper and pencil testing and computer-based tests and computer-based test forms that 

are adaptable at item level. MST is both an adaptive test and also allows the opportunity for the 

test developer to investigate the test form ahead of time and check examinee’s responses (Yan 

et al., 2014). 

MST is defined as a a type of computerized adaptive testing allowing adaptation of the difficulty 

of the test according to the ability level of the examinee being tested. This assessment type 

comprises clustered components called modules, stages, panels and pathways. The smallest 

element of this cluster is the module. A module is a group of items formed by bringing items 

together. The level of module or modules is called the stage. A panel is a pattern formed by 

combining stages. The panel is the largest component of MST. For example, a panel formed 

with 1 module in the first stage, 2 modules in the second stage and 3 modules in the third stage 

is called the ‘1-2-3’ MST panel pattern. The route taken by an examinee between stages and 

modules in the panel is called the pathway. Each examinee only follows one pathway during 

the test (Zenisky & Hambleton, 2014). The schematic appearance of the MST components is 

presented in Figure 1.  

Figure 1. An example of 3-stage MST panel. 

 

1.1. Test Assembly 

Based on a variety of statistical features, the combination of items chosen from the item pool 

on test form is called test assembly. The assembly of the forms is formulated as a combinatorial 

optimization (CO) problem, referred to as the test assembly problem (Papadimitriou & Steiglitz, 

1982; Theunissen, 1985; van der Linden & Boekkooi-Timminga, 1989). CO is the research of 

an element in a finite cluster optimized to a certain function. The CO problem may be formu-

lated as in Equation 1.1: 

To maximize 𝐅(𝐱)                                                                                   (1.1) 

Subject to 𝐱 ∈ 𝑋 

𝐱 = (x1, x2, …..., xn)
T is a binary decision vector describing a test. When xi = 1, the item i is 

included in the test; when xi = 0 the item i is not included on the test. 

n is the number of items in the item pool. 

X includes all binary vectors each describing a feasible test. For this reason, this set is called 

the feasible set. In practice, the feasible set is not given explicitly; however, it is implicitly 

indicated by an equation constraining the decision vector and a list of inclusions. This list di-

rectly comprises the test properties. For example, the applicable set containing items from 5 to 

10 is presented in Equation 1.2: 
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5 ≤ ∑ 𝑥𝑖 ≤ 10𝑛
𝑖=1                                                                                       (1.2) 

𝑥𝑖 ϵ {0,1} 

For this feasible set, the second restriction does not involve any CO problem. For example, for 

each appropriate solution x = (x1, x2, …..., xn)
T there should be a binary vector.  

F(x) is a vector function; in other words, the target function (Veldkamp, 1999). For example, 

the Maximum Fisher Information of an adaptive with 𝜃′ ability estimation is calculated with 

the function in Equation 1.3: 

To maximize ∑ Ii(𝜃′ )𝑥𝑖
𝑛
𝑖=1                                                                       (1.3) 

Ii(𝜃′) is the Fisher information for item I at 𝜃′ ability level (Lord, 1980). 

Accordingly, estimating the maximum number of non-overlapping tests that can be obtained 

from an item pool given the test characteristics is very important in the construction of the item 

pool. It should be noted that test pooling for MST is a very complex process. This is because 

test combination in MST is realized by simultaneously creating many panels that are parallel in 

terms of both coverage and psychometric properties. This combination is performed in two 

steps: (1) assembling modules from the item pool and (2) assembling panels of modules. These 

panels should also consist of modules that fulfill certain statistical requirements, such as target 

test information functions (TIFs) (Luecht & Nungester, 1998). In this context, limitations re-

lated to content balancing, exposure control, coverage effects, cognitive knowledge levels of 

test takers, item and test item overlap, item format, and word count must also be met (Hendrick-

son, 2007). For this reason, test combining in MSTs is usually performed through automatic 

test assembly (ATA) algorithms and computer programs (Breithaupt & Hare, 2007; Breithaupt 

et al., 2005; Luecht, 2000; Luecht, 2006; Luecht et al., 2006; Luecht & Nungester, 1998; van 

der Linden, 2005). 

1.1.1. Automated test assembly method 

Automated test assembly (ATA) is a modern approach to test assembly that applies advanced 

optimization algorithms on computers to automatically generate test forms. The most important 

feature of ATA is that it greatly improves the efficiency and accuracy of test assembly. This is 

because ATA enables computer-based selection of a suitable set of items from a large pool of 

pre-calibrated items (Theunissen, 1985; van der Linden, 2005; van der Linden & Boekkooi-

Timminga, 1989; Veldkamp et al., 2013). The automated test assembly method may be applied 

with ATA computer software (e.g., CASTISEL, ConTEST) making calculation processes eas-

ier for test developers. The aim is to create test panels by choosing items from the item pool in 

modules taking into account the constraints such as content area, word count and item type. In 

this way, the process of choosing items from the item pool for modules is more convenient. 

This situation allowed the module development process to become more standardized.  

1.1.2. Test assembly methods: Top-down and bottom-up 

Luecht and Nungester (1998) recommended two strategies for the assembly of MST panels: 

top-down test assembly and bottom-up test assembly. Both strategies first require items to be 

assembled one by one into modules, then modules are assembled into panels. However, there 

are statistical differences in the stage of creating panels by combining modules between the 

strategies. The top-down test assembly strategy freely mixes and matches modules to create 

panels. The bottom-up test assembly strategy requires selective matching of modules to create 

panels. This is an indicator that the top-down test assembly method has a more complicated 

structure compared to the bottom-up test assembly method.  

When combining modules to create panels in both test assembly strategies, the following steps 

are taken (Luecht & Nungester, 1998): 

a) Production of statistical targets for test samples in different stages, 

https://www.tandfonline.com/doi/full/10.1080/15305058.2020.1828427
https://www.tandfonline.com/doi/full/10.1080/15305058.2020.1828427
https://www.tandfonline.com/doi/full/10.1080/15305058.2020.1828427
https://www.tandfonline.com/doi/full/10.1080/15305058.2020.1828427
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b) Determination of content features in the stages, 

c) Creation of panels by combining modules abiding by the restrictions in the first and second 

steps. 

Selection of statistical targets for modules is the most important decision in designing the MST 

pattern (Hendrickson, 2007). Zheng et al. (2012) created MST according to the top-down test 

assembly method based on the automatic approach. They compared this method with paper and 

pencil testing and CAT. According to the results of the study, MST utilized the item pool more 

effectively compared to pencil paper test and CAT, and the classification was performed more 

accurately. In a study discussing possible applications of adaptive or multistage tests for a Law 

Faculty Acceptance Test and considering the main approaches applied in the development of 

test assembly methods, a single-form test assembly approach was concluded to be an applicable 

method for testing in programs where the test is defined only by restrictions (Belov, 2016). 

When research about test assembly methods is generally investigated, the common point ap-

pears to be that studies researched the top-down test assembly method proposed by Luecht and 

Nungester (1998) among test assembly methods and the test assembly method completed dur-

ing exams. However, there are no experimental studies on how these test assembly methods 

give results under different conditions. Therefore, there is a question mark about whether the 

right decision is made in determining the test assembly method to be selected. The bottom-up 

test assembly method is chosen less often than the top-down test assembly method and is more 

advantageous for short test applications, which has made the top-down test assembly method a 

focal point for research. In the related literature, the bottom-up test assembly method was 

mostly used in the existing applications of MST (Hembry, 2014; Jodoin et al., 2006; Lu, 2010; 

Luecht et al., 2006; Wang, 2013; Wang, 2017; Yang, 2016; Zheng, 2014). There are a few 

studies in which the top-down test assembly method was used (Davis & Dodd, 2003; Lynn 

Chen, 2010; Zheng et al., 2016). For this reason, it is believed that this study can guide re-

searchers on which of the 'top-down' or 'bottom-up' test assembly methods to prefer in the pro-

cess of constructing the MST. Additionally, comparisons were made of the elements compris-

ing MST like panel pattern, module length and stage number. In this framework, recommenda-

tions were developed regarding the module length, panel pattern and sample size required to 

make estimations with minimum error and bias in MST constructs. Because measurement pre-

cision in MSTs can be affected by module length and panel pattern (Zenisky & Hambleton, 

2014). In addition, within the scope of the study, data from PISA 2015 were used and a simu-

lation study was conducted using the parameters estimated from these data. PISA 2015 is an 

international, validated and reliable assessment, and this computer-based application is the basis 

for the MST to be used in the coming years, which is one of the reasons why PISA data were 

preferred in the research. Thus, a post-hoc simulation study was conducted based on real data. 

This is one of the important features that make the research strong. The results obtained in the 

study are expected to contribute to the applicability of MST. In line with this, within the scope 

of the present research, the aim was to compare test assembly methods and answer the following 

questions. 

How do test assembly methods (top-down, bottom-up) impact the estimation of ability estima-

tion conditional on module length, panel pattern, and sample size? 

1.2. Subproblems 

1. What changes occur in RMSE and bias values according to module length (6 and 12), panel 

pattern (‘1-2’, ‘1-2-2’ and ‘1-2-3’) and sample size (250 and 2000) for the top-down test as-

sembly method in MST applications? 

2. What changes occur in RMSE and bias values according to module length (6 and 12), panel 

pattern (‘1-2’, ‘1-2-2’ and ‘1-2-3’) and sample size (250 and 2000) for the bottom-up test as-

sembly method in MST applications? 
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2. METHOD 

2.1. Research Model 

In this research, the aim was to compare the performance of test assembly methods for MST 

patterns with different features using IRT-based estimation and post-hoc simulation methods 

for the science literacy ability of examinees participating in the PISA implementation 

completed in 2015. For this purpose, real item data were used in the study. Therefore, this study 

is descriptive research based on post hoc simulation using real item parameters. Simulation 

studies consist of data generation and analysis processes appropriate to real-life situations 

(Burton et al., 2006; Ranganathan & Foster, 2003). Simulation data are often preferred because 

most MST applications have implementation problems, require a large sample size and a large 

item bank (Pihlainen et al., 2018; Xu et al., 2021; Zheng & Chang, 2015). 

2.2. Participants 

The participants in the research comprised examinees participating in PISA 2015 in the field of 

science literacy and answered booklet 91 because it is suitable for the structural features of the 

MST. The reason for choosing science literacy is that it constitutes the predominant area of the 

PISA 2015 application. Nearly 540,000 students representing 29 million students in nearly 72 

countries, including 35 OECD countries, participated in the PISA 2015 implementation 

(OECD, 2015). Booklet number 91 was chosen as the data collection tool for the study, since 

the number of science literacy items and examinees who received the booklet were higher than 

for the other booklets, out of a total of 66 booklets (Forms 31-96) created according to the 

computer-based test. This booklet contained a total of 501 items in a variety of categories (two 

categories, multiple categories, open-ended) in the science literacy field. The item pool for the 

study comprised 159 items with two categories among the total of 501 items in booklet number 

91. Analyses were completed on the dataset related to 15,059 students who answered these 

items.  

2.3. Analysis 

Analysis of data in the study was completed in two stages. In the first stage, data obtained from 

the study group comprising students participating in the PISA exam in 2015 were analyzed 

according to the 2 PL model based on IRT and an item pool was created for MST. In line with 

this, first, the data set obtained from the PISA implementation in 2015 was tested for a single 

dimension, local independence, model-data fit, item and ability parameter invariance assump-

tions. The suitability of the data set for factor analysis was tested with Bartlett’s test and Kaiser-

Meyer-Olkin (KMO) criteria (Bartlett’s = 1584902.1, sd = 12561, p = 0.00; KMO = 0.98) and 

the data set was suitable. Item parameters and ability parameters related to examinees were 

estimated with the BILOG-MG (Zimowski et al., 1996) program. As the items had low corre-

lation in the limited ability interval and the single dimension assumption was met, the local 

independence assumption was accepted. With the aim of investigating which logistic model 

was suitable for the data set, the data set was analyzed for suitability to 1 PL, 2 PL and 3 PL 

models. Accordingly, considering the difference between the –2 log (probability) values for 3 

PL and 2 PL models was not much, the 2 PL model was chosen (–2 log (probability) (1 PL) = 

2125726.00 –2 log (probability) (2 PL) = 2017798.00, (–2 log (probability) (3 PL) = 1977773.91). 

These results are consistent with the technical report released by OECD (OECD, 2017). Thus, 

the 2 PL model was estimated to be suitable for calibration of the two-category data set identi-

fied to have a single dimension. According to descriptive statistics related to item and ability 

parameters, the data set had an item discrimination parameter value mean 1.16 and a standard 

deviation of 0.06 and a difficult parameter value mean 0.07 and a standard deviation of 0.30. 

The smallest ability parameter of individuals was -2.85, while the highest ability parameter was 

calculated as 2.97. In order to determine the invariance of item parameters, individuals were 

randomly divided into 11 groups. The item parameters were estimated according to the 2 PL 

model in different groups and the item parameters were compared between groups with the 
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Pearson moment multiplication correlation technique. Finally, significant and high levels of 

correlation (p<0.01) were identified between item parameters estimated in 11 groups compris-

ing 1.369 individuals each and the invariance of item parameters assumption was met. The 

invariance of ability parameters was identified with significant positive, high-level correlations 

between ability parameters estimated in three randomly assigned subgroups comprising 53 

items for all 15.059 individuals. 

In the second stage of data analysis, an MST simulation was developed for each subproblem. 

Analyses were completed with item parameters chosen in accordance with 24 simulation con-

ditions from the item pool and according to individual ability chosen in accordance with 24 

simulation conditions. To create the MST, the ‘xxIRT’ (Luo, 2017) program using R (R Devel-

opment Core Team, 2011) software was used. With the aim of increasing the generalizability 

of the results, 30 repeats were performed for each condition (Tian, 2018). The MST variables 

used in the MST simulations were test assembly (top-down and bottom-up), module length (6 

and 12), panel pattern (‘1-2’, ‘1-2-2’ and ‘1-2-3’) and sample size (250 and 2000). 

2.3.1. Panel pattern 

In the research, MSTs with two (‘1-2’) and three (‘1-2-2’ and ‘1-2-3’) stage panel patterns were 

created. These three-panel patterns were used in the research as they are included among the 

most researched MST panel patterns (Jodoin et al., 2006; Luecht et al., 2006; Wang, 2017; 

Zenisky, 2004). The ‘1-2’ panel pattern comprises two stages and one panel. In the first stage, 

there is Module-1 (M) with a moderate difficulty level and in the second stage there is Module-

2 (E) with an easy difficulty level and Module-2 (H) with a high difficulty level. The ‘1-2-2’ 

panel pattern comprises three stages and two panels. The first stage includes Module-1 (M) 

with moderate difficulty, the second stage includes Module-2 (E) with easy difficulty and Mod-

ule-2 (H) with high difficulty level and the third stage includes Module-3 (E) with easy diffi-

culty and Module-3 (H) with high difficulty level. The ‘1-2-3’ panel pattern comprises three 

stages and two panels. The first stage includes Module-1 (M) with a moderate difficulty level, 

the second stage comprises Module-2 (E) with easy difficulty and Module-2 (H) with high dif-

ficulty and the third stage includes Module-3 (E) with easy difficulty, Module-3 (M) with mod-

erate difficulty and Module-3 (H) with high difficulty level.  

2.3.1.1. Module length. The test length in MST studies was identified to vary between 

33 and 60 items (Hambleton & Xing, 2006; Jodoin et al., 2006; Patsula, 1999; Zenisky, 2004). 

In this research, the number of modules representing short test length was chosen as 6, while 

the number of modules representing moderate test length was determined to be 12, twice that 

of the short test length. MSTs were designed so that when module length was 6, with the ‘1-2’ 

panel pattern, individuals answered a total of 12 items, and with the ‘1-2-2’ and ‘1-2-3’ panel 

patterns they answered a total of 18 items. When the module length was 12, with the ‘1-2’ panel 

pattern, individuals answered a total of 24 items, and with the ‘1-2-2’ and ‘1-2-3’ panel patterns 

they answered a total of 36 items. 

2.3.1.2. Item Pool. There was a total of 159 items in the two-category data set calibrated 

according to the 2 PL model obtained from the PISA data administered in 2015.  

2.3.1.3. Sample Size. The research sample comprised 250 and 2000 individuals chosen 

at random from among 15,059 individuals participating in the PISA test in 2015. When the 

literature is investigated, it appears sample sizes from 250 (Yan et al., 2014) to 5000 studies in 

MST research (Dallas, 2014; Sari, 2016; Wang, 2017; Xing & Hambleton, 2004; Yang, 2016). 

In this research, as the target was to assess the applicability to small samples in addition to large 

samples for the MST pattern, in the research 250 individuals represented the small sample and 

2000 individuals represented the large sample.  
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2.3.1.4. Test Assembly. Most commonly used top-down and bottom-up automated test 

assembly methods used in MST studies were chosen. For both methods, the target test infor-

mation function (TIF) value was determined with the mean maximum information (MMI) 

(Luecht, 2000; Luecht et al., 2006) strategy. 

2.3.1.5 Referral Strategy and Scoring. In this study, the referral strategy was chosen 

as the commonly-used mean maximum information (MMI) strategy and scoring was done ac-

cording to maximum likelihood estimation (MLE) (Luecht et al., 2006; Zenisky et al., 2010). 

2.3.2. Test administration  

The steps followed during test administration of the ‘1-2’, ‘1-2-2’ and ‘1-2-3’ panel patterns 

investigated in the study were: (a) the individual was assigned one of two different panel pat-

terns at random, (b) the individual responded the referral module (moderate difficulty) they 

were assigned, (c) after completing the referral module, the individual’s ability was estimated 

using the maximum probability estimation (MPE), (d) after the first stage, the estimated ability 

of the individual (𝜃) and previously determined referral points were compared, and the individ-

ual was directed from the first stage to the second stage, (e) after the second stage, the individ-

ual’s ability was again estimated with the MPE method, and (f) the test ended here for individ-

uals tested with the ‘1-2’ panel structure. For test administration of individuals tested with the 

‘1-2-2’ and ‘1-2-3’ panel structures, their ability was predicted after the second stage (𝜃) and 

compared with the previously determined referral points and the individual was referred from 

the second stage to the third stage. 

2.3.3. Evaluation criteria 

The performance of the MST based on ability estimation was assessed according to mean 

RMSE and bias criteria that are frequently used in MST studies (Xiao & Bulut, 2022; Kim et 

al., 2015; Park, 2015; Sari & Raborn, 2018; Zheng, 2014). RMSE, and bias values for each 

simulation condition were calculated as follows: 

𝑅𝑀𝑆𝐸 =  √∑ (�̂�𝑗− 𝜃𝑗)𝑁
𝑗=1

2

𝑁
, and 

𝐵𝑖𝑎𝑠 =  
∑ (�̂�𝑗− 𝜃𝑗)𝑁

𝑗=1

𝑁
, 

where 𝜃𝑗  and 𝜃𝑗 , j examinee predicted and true ability values; N is the total number of examinee. 

Multivariate analysis of variance (ANOVA) was used to test the significance of the MST vari-

ables in various conditions on the mean RMSE and bias values. 'Bonferroni' multiple compari-

son test was used to find out between which conditions the differences between the means were 

between. When interpreting the effect size, 0.00-0.19 was taken as very small, 0.20-0.49 as a 

small, 0.50-0.79 as medium, and 0.80 and larger as large effect sizes (Cohen, 1988).  

3. FINDINGS 

3.1. Findings on the Top-down Test Assembly Methods 

We examined how the precision of ability estimation changes according to model lengths (6 

and 12), panel patterns ("1-2", "1-2-2" and "1-2-3") and sample sizes (250 and 2000) in the top-

down test assembly method in the MST application. In line with this, in order to interpret the 

findings, firstly MSTs were created in accordance with the simulation conditions in the prob-

lem. The findings related to ability estimation in MSTs created according to a variety of simu-

lation conditions are presented in Table 1 and Figure 2.  
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Table 1. Mean RMSE and bias values for MST created according to top-down test assembly method. 

Sample Panel pattern Module length RMSE Bias 

250 

“1-2” 
6 0.538 -0.017 

12 0.321 0.004 

“1-2-2” 
6 0.416 -0.005 

12 0.274 -0.003 

“1-2-3” 
6 0.381 0.005 

12 0.254 0.002 

2000 

“1-2” 
6 0.521 -0.005 

12 0.312 0.003 

“1-2-2” 
6 0.400 -0.003 

12 0.252 -0.001 

“1-2-3” 
6 0.441 -0.001 

12 0.255 0.000 

Figure 2. Plots of mean RMSE and bias values for MST created according to top-down test assembly 

method. 
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As can be seen in Table 1, with the top-down test assembly method, the mean RMSE values 

obtained for different sample sizes, test lengths and panel patterns varied from 0.252 to 0.538. 

When the general lines of the results are investigated, the lowest error estimation was for the 

moderate length module applied to the large sample size with the ‘1-2-2’ panel pattern, while 

the largest error estimation was for the short-length module applied to the small sample with 

the ‘1-2’ panel pattern. When findings are investigated in terms of module length, for both 

sample sizes as module length increased, mean RMSE values appeared to reduce. When results 

are investigated in terms of panel pattern, the mean RMSE amount appeared to change for all 

test levels with the differentiation of panel patterns in small and large samples. In the transition 

from the ‘1-2’ panel pattern to the ‘1-2-2’ and ‘1-2-3’ panel patterns, mean RMSE values fell. 

However, the mean RMSE values for both module lengths for ‘1-2-2’ and ‘1-2-3’ panel patterns 

applied to large samples were different with an increase for the transition from the ‘1-2-2’ panel 

pattern to the ‘1-2-3’ panel pattern. This increase was 0.041 for short module length and 0.003 

for moderate module length in the transition from ‘1-2-2’ panel pattern to the ‘1-2-3’ panel 

pattern. When findings are investigated in terms of sample size, the increase in the sample size 

appeared to reduce mean RMSE values for both module lengths in all patterns, apart from the 

‘1-2-3’ panel pattern. For small samples, the lowest mean RMSE value was for the ‘1-2-3’ panel 

pattern with a moderate length module, and for large samples, the lowest mean RMSE value 

was calculated for the ‘1-2-2’ panel pattern with the moderate length module.  

If the findings related to bias in Table 1 are investigated, mean bias values generally appear to 

be low. When the top-down test assembly method is chosen, the mean bias values vary from -

0.017 to 0.005 for sample size, panel pattern and module length simulation conditions. The 

highest mean bias values were for ‘1-2’ panel patterns applied to small samples with short mod-

ule lengths. This was followed by short module length in small samples with ‘1-2-2’ and ‘1-2-

3’ patterns, and the ‘1-2’ panel pattern applied to large samples. The lowest mean bias value 

was calculated for the ‘1-2-3’ panel pattern with moderate module length applied to large sam-

ples. This value was 0.000; in other words, this simulation condition had unbiased calculations. 

When findings were investigated in terms of module length, as module length increased, bias 

in panel patterns for both sample types was concluded to be reduced. When results are investi-

gated in terms of panel pattern, for both module lengths, in small and large samples, the transi-

tion from the ‘1-2’ panel pattern to ‘1-2-2’ panel pattern and from ‘1-2-2’ panel pattern to ‘1-

2-3’ panel pattern appeared to cause a fall in mean bias values. When findings are investigated 

in terms of sample size, as the sample size increased, the mean bias values were observed to 

fall by a small amount. 

Within the scope of the subproblem in the research, whether the module length, panel pattern 

and sample size had statistically significant effects on the mean RMSE and bias findings ob-

tained according to the top-down test assembly method was tested with the versatile ANOVA 

test. The F value and effect sizes (η2) obtained from the ANOVA test are presented in Table 2.  

Table 2. Mean RMSE and ANOVA results for mean RMSE and bias values obtained when top-down 

test assembly method is chosen. 

 Evaluation Criteria 

 RMSE Bias 

Study Conditions df F η2 df F η2 

Module length (M) 1 3379.332* 0.051 1 20.662* 0.049 

Panel pattern (P) 2 404.320* 0.012 2 1.841 0.007 

Sample (S) 1 0.034 0.052 1 3.753 0.007 

P*M 2 50.648* 0.015 2 2.51 0.014 

P*S 2 27.878* 0.008 2 8.395* 0.042 

M*S 1 10.489* 0.001 1 0.686 0.014 

P*M*S 2 12.019* 0.005 2 6.059* 0.028 

*p<0.05 
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As observed in Table 2, the mean RMSE value obtained according to the top-down test assem-

bly method significantly differed according to module length and panel pattern (F1-358(module 

length) = 3379.332, p < 0.05; F2-357(Panel pattern) = 404.320, p < 0.05). The eta-square values showed 

the efficacy of the module length and panel pattern on mean RMSE value was at moderate 

levels and the effect size was very small (η2
(module length) = 0.051, η2

(Panel pattern) = 0.012). To iden-

tify which panel patterns caused the difference among the panel patterns, the Bonferroni two-

way comparison test was performed. According to the results of the test, the mean RMSE value 

was more affected by the ‘1-2-3’ panel pattern (Χ̅ = 0.423) compared to the ‘1-2-2’ panel pattern 

(Χ̅ = 0.335) and ‘1-2’ panel pattern (Χ̅ = 0.333). Additionally, the effects of the interactions of 

panel pattern-module length (F4-355(P*M) = 50.648, p < 0.05), panel pattern-sample size (F4-

355(P*S) = 27.878, p < 0.05), module length-sample size (F3-356(M*S) = 10.489, p < 0.05) and panel 

pattern-module length-sample size (F6-353(P*M*S) = 12.019, p < 0.05) on mean RMSE values 

were significant. The panel pattern-module length (η2
(P*M) = 0.015), panel pattern-sample size 

(η2
(P*S) = 0.008), module length-sample size (η2

(M*S) = 0.001) and panel pattern-module length-

sample size (η2
(P*M*S) = 0.005) had small levels of effect on mean RMSE value. However, the 

sample size did not significantly change the mean RMSE value. 

As seen from Table 2, when the effects of module length, panel pattern and sample size on the 

mean bias values obtained according to the top-down test assembly method were examined, the 

mean bias values only appeared to significantly differ according to module length (F1-358(module 

length) = 20.662, p < 0.05). This finding is supported by the eta-square value (η2
(module length) = 

0.049). Panel pattern and sample size did not cause a significant change in mean bias values. 

When significant effects of the interactions of these three variables on mean bias value were 

examined, panel pattern-sample size (F4-355(P*S) = 8.395, p < 0.05) and panel pattern-module 

length-sample size (F6-353(P*M*S) = 6.059, p < 0.05) interactions caused significant differences 

in mean bias value. Additionally, the effect of these variables on mean bias was at moderate 

levels (η2
(P*S) = 0.042, η2

(P*M*S) = 0.028). 

3.2. Findings on the Bottom-up Test Assembly Methods 

Findings related to the change in the precision of ability estimations according to module 

lengths (6 and 12), panel patterns (1-2, 1-2-2 and 1-2-3) and sample sizes (250 and 2000) with 

the bottom-up test assembly method for MST applications are presented in Table 3 and Figure 

3. 

Table 3. Mean RMSE and bias values for MST created According to bottom-up test assembly method. 

Sample Panel pattern Module length RMSE Bias 

250 

“1-2” 
6 0.639 -0.012 

12 0.400 -0.008 

“1-2-2” 
6 0.445 0.009 

12 0.272 0.005 

“1-2-3” 
6 0.381 -0.008 

12 0.272 -0.003 

2000 

“1-2” 
6 0.450 -0.010 

12 0.400 0.002 

“1-2-2” 
6 0.419 0.004 

12 0.281 0.001 

“1-2-3” 
6 0.410 -0.003 

12 0.263 0.000 
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Figure 3. Plots of mean RMSE and bias values for MST created according to bottom-up test assembly 

method. 

 

 

As can be seen in Table 3, the mean RMSE values obtained for different module lengths, panel 

patterns and sample sizes according to the bottom-up test assembly method varied from 0.263 

to 0.639. The lowest mean RMSEA estimation was for the ‘1-2-3’ panel pattern with a moderate 

length module applied to a large sample, while the highest mean error estimation was for the 

‘1-2’ panel pattern with a small length module applied to a small sample. When the findings 

were investigated in terms of module length, for both sample sizes as the module length in-

creased, the mean RMSE value appeared to reduce. When the findings were investigated ac-

cording to panel pattern, for large and small samples, the differentiation of panel patterns 

changed the mean RMSE amount at all test levels. In the transition from the ‘1-2’ panel pattern 

to ‘1-2-2’ and ‘1-2-3’ panel pattern, the mean RMSE values fell. When the findings were ex-

amined in terms of sample size, the increase in sample size appeared to reduce the mean RMSE 

values in many conditions. However, for the small sample, the moderate module length and ‘1-

2-2’ panel pattern, there was an increase of 0.09 when the same module length and panel pattern 

were applied to large samples. Additionally, when the ‘1-2-3’ panel pattern was applied with 

short module length to small and large samples, a 0.29 increase was noticed. In small samples, 

the lowest mean RMSE value was calculated for the moderate length module with ‘1-2-2’ and 

‘1-2-3’ panel patterns, while for large samples, the lowest mean RMSE value was obtained with 

the moderate length module applied in ‘1-2-3’ panel pattern. 

When the results relating to the bias obtained according to the bottom-up test assembly method 

are examined in Table 3, it appears that the mean values of the bias are generally very low. 

When the bottom-up test assembly method was chosen, the mean bias values according to mod-

ule length, panel pattern and sample size simulation conditions varied from -0.012 to 0.009. 

The highest mean bias value belonged to the small sample with a short module length in the ‘1-
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2’ panel pattern. This pattern with short module length was followed by large samples with ‘1-

2’ patterns, then by short module length and small samples with ‘1-2-2’ panel patterns. The 

lowest mean bias value for large samples was calculated for moderate module length with the 

‘1-2-3’ panel pattern. In these conditions, the calculated 0.000 mean bias value indicated bias-

free calculations were performed. When the findings were examined in terms of module length, 

as module length increased, the bias for panel patterns in both sample types appeared to reduce. 

When the findings were examined in terms of panel patterns, for both module lengths with 

small and large samples, the transitions from the ‘1-2’ panel pattern to ‘1-2-2’ and from ‘1-2-

2’ panel pattern to ‘1-2-3’ panel pattern reduced mean bias values. When the findings were 

examined in terms of sample size, as the sample size increased, the mean bias values appeared 

to reduce. 

Within the scope of this subproblem, whether the effect of module size, panel pattern and sam-

ple size were statistically significant on mean RMSE and bias findings obtained according to 

the bottom-up test assembly method was tested with the versatile ANOVA test. The F value 

and effect sizes (η2) obtained from the ANOVA test are presented in Table 4. 

Table 4. Mean RMSE and ANOVA results for mean RMSE and bias values obtained when bottom-up 

test assembly method is chosen. 

 Evaluation Criteria 

 RMSE Bias 

Study Conditions df F η2 df F η2 

Module length (M) 1 2721.284* 0.032 1 6.400* 0.016 

Panel pattern (P) 2 1000.355* 0.023 2 22.277* 0.105 

Sample (S) 1 119.354* 0.001 1 1.786 0.005 

P*M 2 10.654* 0.002 2 7.451* 0.033 

P*S 2 140.741* 0.003 2 0.324 0.005 

M*S 1 117.107* 0.001 1 0.592 0.005 

P*M*S 2 149.044* 0.003 2 4.561* 0.022 

*p<0.05 

As can be seen in Table 4, the mean RMSE values obtained according to the bottom-up test 

assembly method differed significantly according to module length, panel pattern and sample 

size (F1-358(module length) = 2721.284, p < 0.05; F2-357(Panel pattern) = 1000.355, p < 0.05; F1-358(sample) 

= 119.354, p < 0.05). Module length and panel pattern had moderate effect on mean RMSE, 

while sample size had small effect (η2
(module length) = 0.032, η2

(Panel pattern) = 0.023, η2
(sample) = 

0.001). To identify which panel patterns caused the difference, the Bonferroni two-way com-

parison test was performed. According to the test results, the ‘1-2-3’ panel pattern (Χ̅ = 0.472) 

had more effect on mean RMSE value compared to the ‘1-2-2’ panel pattern (Χ̅ = 0.356) and 

‘1-2’ panel pattern (Χ̅ = 0.332). Additionally, the interactions of panel pattern-module length 

(F4-355(P*M) = 10.654, p < 0.05), panel pattern-sample (F4-355(P*S) = 140.741, p < 0.05), module 

length-sample (F3-356(M*S) = 117.107, p < 0.05) and panel pattern-module length-sample (F6-

353(P*M*S) = 149.044, p < 0.05) had significant effects on mean RMSE value. The effect of these 

variables on mean RMSE was small (η2
(P*M) = 0.002, η2

(P*S) = 0.003, η2
(M*S) = 0.001, η2

(P*M*S) = 

0.003).  

As seen in Table 4, when the effects of module length, panel pattern and sample size on the 

mean bias values obtained according to the bottom-up test assembly method are examined, 

mean bias value differed significantly according to panel pattern and module length (F1-358 (module 

length) = 6.400, p < 0.05; F2-357(Panel pattern) = 22.277, p < 0.05). The effect of module length on 

mean bias was small (η2
(module length) = 0.016), while the effect of panel pattern was at moderate 
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levels (η2
(Panel pattern) = 0.105). The Bonferroni two-way comparison test was performed to iden-

tify which panel pattern caused the difference. According to the test results, the ‘1-2-2’ panel 

pattern (Χ̅ = 0.008) was more effective on mean RMSE value compared to the ‘1-2’ panel pat-

tern (Χ̅ = 0.006). However, sample size did not cause a significant difference in mean bias val-

ues. The interactions of panel pattern-module length and panel pattern-module length-sample 

size were observed to cause a significant difference in mean bias values (F4-355(P*M) = 7.451, p 

< 0.05; F6-353(P*M*S) = 4.561, p < 0.05). The effect of these variables on mean bias was at mod-

erate levels (η2
(P*M) = 0.033, η2

(P*M*S) = 0.022). 

4. DISCUSSION and CONCLUSION 

Within the scope of the research, the performances of MSTs created according to top-down and 

bottom-up test assembly methods tested for module length, panel pattern and sample size using 

an item pool created from a real data set were compared. The MST components were module 

length, panel pattern and sample size. However, the study attempted to identify the correlation 

of these components with the test assembly method. For this reason, the focal point of the study 

was the top-down and bottom-up test assembly method recommended for combining MST pan-

els introduced to the literature by Luecht and Nungester (1998). The research findings first 

showed that the module length affected mean RMSE and bias values with the top-down and 

bottom-up test assembly methods. For both test assembly methods, the moderate module length 

produced lower mean RMSE and bias values compared to the short module length. The proba-

ble reason for the difference in mean RMSE and bias values calculated for short and moderate 

module lengths may be the total item count. This situation may be interpreted as showing that 

as the total number of items in the test increases, the mean RMSE and bias values reduce. This 

finding is parallel to the findings of the study by Sari (2016) using the top-down test assembly 

method creating MST and CAT according to test management, content count and test length 

variables and comparing the performance of these two test types. In their study, they concluded 

that only test length had a significant effect on the mean RMSE value. This finding is also 

supported by the study of Yang (2016). In their study, the top-down test assembly method was 

used and as the test length increased, the RMSE and standard error values reduced. When the 

test length was 60, the bias was minimum, while it was maximum when the test length was 20. 

The mean bias values obtained according to the bottom-up test assembly method in this study 

significantly differed according to module length. For both samples, panel patterns with short 

module length had highest mean bias, while panel patterns with moderate module length had 

the smallest mean bias value. The study by Hembry (2014) studied the effect of two test lengths 

of short and moderate in MSTs created using the bottom-up test assembly method. This study 

had mean bias measures very close to zero and panel patterns with short test lengths had reduced 

mean RMSE and bias values. This finding is parallel to the findings in our research. Other 

similar findings were obtained in studies by Kim et al. (2013) using an OTB program as the test 

assembly method, Lynn Chen (2010) using the top-down test assembly method and Lu (2010) 

using the bottom-up test assembly method. A study by Zheng (2014) using the top-down test 

assembly method did not find a consistent difference between different module lengths. 

However, in addition to the top-down and bottom-up test assembly methods, there are some 

MST studies, though few, using NAMSS, one of the automatic assembly methods. One of these 

studies by Dallas (2014) studied the directive and point effects of MSTs created by using 10 

and 20 module lengths. The results of the study were similar to the results obtained for module 

lengths affecting MSTs investigated according to top-down and bottom-up test assembly meth-

ods completed in this study. 

As supported by the studies mentioned above, the effect of module length on mean RMSE and 

bias values and the reason for the fall in mean RMSE and bias values as module length increases 

may be due to MSTs comprising short tests having lower measurement sensitivity. Longer tests 

ensure higher classification accuracy and consistency (Crocker & Algina, 1986; Luo, 2020). 
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Another finding in the research is the effect of panel patterns in top-down and bottom-up test 

assembly methods on mean RMSE and bias values. The change from the ‘1-2’ panel pattern to 

‘1-2-2’ and ‘1-2-3’ panel patterns according to the top-down test assembly method reduced 

mean RMSE and bias values in many conditions, while for the bottom-up test assembly method, 

it reduced mean RMSE and bias values in all conditions. This finding may be interpreted as 

showing that the increase in stage numbers in MST panels reduces the mean RMSE and bias. 

This finding is supported by the findings of a study comparing three-stage and two-stage MSTs 

by Patsula (1999), which found that three-stage MSTs produced less measurement error than 

two-stage MSTs. Additionally, the findings obtained from this study are consistent with the 

results of a study based on the 3 PL model by Zenisky (2004). Another similar finding was 

encountered in the study by Hembry (2014). In this study, MSTs created using the bottom-up 

test assembly method were investigated in four panel patterns of ‘1-3’, ‘1-5’. ‘1-3-3’ and ‘1-5-

5’. Very small differences were obtained for estimated ability and mean bias values for the four 

panel patterns. Generally, mean bias measures very close to zero were obtained, as in this study. 

RMSE values were lower for the two-stage tests, different to the findings of this study. How-

ever, the difference between panel patterns was reported to be very low in this study. Addition-

ally, there was a significant difference between ‘1-2’, ‘1-2-2’ and ‘1-2-3’ panel patterns accord-

ing to both methods in this research, with the ‘1-2-3’ panel pattern concluded to have more 

effect on mean RMSE and bias values compared to other patterns. Sari (2016) obtained different 

findings in a study completed with the bottom-up test assembly method. In this study, the effects 

of the two-stage ‘1-3’ and three-stage ‘1-3-3’ panel patterns on RMSE were investigated, and 

it was reported that no significant difference was found. In research applying the bottom-up test 

assembly method, Yang (2016) obtained similar results to Sari (2016). In this study, four-panel 

structures were investigated (“1-3”, “1-5”, “1-3-3” and “1-5-5”) and significant differences 

were not found. Another parallel finding to these studies was obtained in the study by Jodoin 

et al. (2006) and Luo and Kim (2018). Studies by Zheng et al. (2012) and Zheng (2014) used 

the top-down test assembly method and reported no significant differences were found between 

four-stage models and three-stage models. As can be seen, there are two different results about 

the effect of panel patterns on MST studies. The probable cause for the different results may be 

other variables that were fixed in both studies. In fact, it should not be ignored that increasing 

the number of stages in the panel structure may provide better measurement sensitivity as it is 

directly proportional to the individual’s responses to higher numbers of items. 

According to the research findings, for the top-down test assembly method, for ‘1-2’ and ‘1-2-

2’ panel patterns with short and moderate module length, the increase in sample size lowered 

the mean RMSE and bias values. For the bottom-up test assembly methods, the increase in 

sample size with the ‘1-2’ panel pattern for short and moderate module lengths, the ‘1-2-2’ 

panel pattern with short module length and the ‘1-2-3’ panel pattern with moderate module 

length lowered mean RMSE and bias values. Additionally, for the bottom-up test assembly 

method, the sample size had a statistically significant effect on mean RMSE and bias values, 

while for the top-down test assembly method, it was concluded there was no significant effect. 

In this context, no definite conclusion can be made about which test assembly method should 

be chosen for small or large sample sizes. In fact, in international studies of MST, the use of 

large-scale tests is an indicator of applicability for large samples. Based on the research find-

ings, interpretations can be made about the applicability of the bottom-up test assembly method 

using ‘1-2’ panel pattern with short and moderate module lengths, ‘1-2-2’ panel pattern for 

short module lengths and ‘1-2-3’ panel pattern with moderate module length for large samples. 

The reason for choosing sample size as a variable in the research is to ensure the ability to see 

possible outcomes when MST’s, used for samples in large-scale international tests, are applied 

to institutional exams like for inspectors, specialists, and judges, completed with smaller sam-

ples in our country, or even in lesson selection exams applied in middle schools and high 

schools, in the future if appropriate computer infrastructure is developed. In a similar study 
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investigating small sample sizes, Yan et al. (2014) investigated MSTs in accordance with the 

‘tree-based’ approach. The study concluded that MSTs applied to small samples displayed good 

performance. 

When assessed as a whole, the top-down and bottom-up test assembly methods produced sim-

ilar findings and both methods are recommended for use in creating MSTs. Additionally, the 

research investigated the top-down and bottom-up test assembly methods among automatic test 

assembly methods. Later studies are recommended to study other methods like ASM, NAMSS 

and maximum priority index, in addition to these methods, linear programming methods and 

the test assembly method performed at the time of the exam called the ‘on-the-fly’ test assembly 

method in the literature. In the research, item and ability parameters suitable for only the 2 PL 

model were estimated as the item pool was created according to a real test set and the MST was 

created accordingly. In later studies, parameters may be estimated according to 2 PL and 3 PL 

models to research the effect of logistic models on MST performance. 
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