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Abstract

We take into account the first order nonlinear neutral differential equation with distributed
deviating arguments. Using Krasnoselskii’s fixed point theorem, we give some new criteria
for the existence of positive periodic solutions to this equation. The theorems we have
established are illustrated by an example.
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1. Introduction

In the current study, we investigate the existence of positive w-periodic solutions to the
first-order neutral differential equation with distributed deviating arguments of the form

Y1) = ~p0a(®) + [ " [elt )/ — gt ) + alt,alt — gt )] di (1.1)

wherea > b >0, p € C(R,(0,00)) is a w-periodic function, first partial derivative of ¢ with
respect to t is continuous on (R x [a,b],R) and w-periodic in ¢, second partial derivative
of g with respect to t is continuous on (R X [a,b],R), w-periodic in ¢, g(t,u) > 0 and
gt(t,p) # 1 for all t € [0,w] and p € [a,b], ¢ € C(R x R,R) is a w-periodic function in ¢,
where w is a positive constant.

Neutral differential equations, which are present in models of population, control, and
blood cell production, have recently attracted a lot of attention, see [5,7,8]. In particular,
investigation of the positive periodic solution to the following equation

o' (t) = —a(t)z(t) + c(t)2'(t — g(t)) + q(t, x(t — g(1))),
with 0 < % <1,-1< % < 0 in [13] served as our inspiration for this article.

In this study, we generalize the findings from [13] for the equation (1.1), and we present
new criteria for the existence of positive periodic solutions to the equation (1.1). Further-
more, the papers [2,3,6,9-12, 14] explore the existence of positive periodic solutions in
various types of first-order neutral differential equations. Additionally, the paper [4] delves

into the study of positive periodic solutions to second-order neutral differential equations.
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Lastly, the paper [1] investigates the oscillation behavior of solutions in even-order neutral
functional differential equations with distributed deviating arguments.

2. Main results

Let @, be a w-periodic continuous function space with the supremum norm ||z| =

sup |z(t)|. Then, it is clear that (®,, || -||) is a Banach space.
te[0,w]

(b—a)c(t,p)
Theorem 2.1. Suppose that 0 < ¢p < =g/ (t.0)

exist positive constants mg and my with my < my such that

< ¢1 < 1. Moreover, assume that there

(1 —co)mo _ qt, ) —r(t,m)z _ (1= ci)m
b—a p(t) S b—a

(2.1)

where
(ext ) + clt, p()) (1 = gult, 1) + gur(t, pelt, )

(1 — g4(t, M))2

r(t, p) = , tel0,w] and € la,b].

Then, (1.1) has at least one positive w-periodic solution x(t) € [mg, m1].

Proof. 1t is important to note that obtaining an w-periodic solution of (1.1) is equivalent
to doing the same for the following integral equation

- [ - gt )
s [ [ 68 vt myats — g(s,m0) + ats, s — g(s, ) s,

where
efts p(u)du

G(t,s) = —fo o

Let ® = {x € &, : mp < z(t) < my, t € [0,w]}, which is a bounded closed and convex
subset of ®,,. Define the operators I';,I's : & — ®,, as follows:

()t / S gtw 2(t — g(t, 1))dp (2.2)

and

t+w
(Taz)( / / G(t, s) c)z(s —g(s,p)) +q(s, x(s — g(s,u)))}duds.(2.3)
For any x € ® and t € R, from (2.2) and (2.3) it can be deduced that

c(t + w, 1)
gt t—l—w )

- / mx(t—g(t, w))dp = (T1z)(t)

Caite) = [ 12 Bt +w = glt +w, 1)) dp
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and
o)t +0) = [ [ G = s mats — (s, + a5 = g(s, )| dds

= /t+w/ G(t+w,v+w)[_r(v+w,,u)l‘(v+w—g(v-i-w,u))
+ qvtw,z(v+w—gv+uw, u)))}d,udv
- [ / Gt 0) [~ (o, v — g(,10) + v, v — glo, )] dpd

= FQCE

which implies that F1(§>) C &, and I'y(®) C &,,. Now, we show that I'yy + I'sz € & for
all x,y € ® and t € R. By using (2.1) (2.2) and (2.3), we have

T+ 00 = [y gt w)a
v [ [ows —r(s,mx(s—g(s,u»+q<s,:c<s—g<s,u>>>]duds
< amy
b b (s, (s = gls,m)) — r(s, (s — o(sw)
+ /t G(t,s)p(s)/a {q 9540 ) a 9540 ]duds
crmy + (1 —ecp)my ) " G(t,s)p(s)ds
= my
and
b C
OO+ Ca)) = [y g0

[ G s mats s, ) + a5 — g(s, )|

= oMo
N t”‘“ G(t.5)p(s) /ab [q(s, (s — g(s, M)))p(;(s, (s — g(s, M))}duds
como + (1 — co)mo o G(t,s)p(s)ds

t
= my.

That implies that I'yz + I'oy € @, for all z,y € ®. We shall show that I'y is a contraction
mapping on ®. For z,y € ®, we have

bt p) booe(t,p)
/al_gtww(tg(t,u))du/a my(t—g(t,u))dﬂ

< [Tt~ gta )~ ottt

By taking the sup norm on both sides it follows that

[(Ty2) () = (T1y) (1))]

P12 = Tyl < ez =yl

and therefore I'; is a contraction mapping.
We shall demonstrate that I'y is continuous. Consider {z,} € ® be a convergent
sequence of elements such that z,(t) — z(t) as n — oo. Since ® is closed, z € .
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For ¢ € [0,w], we have

(C2)0) ~ @)@ = | [ [ 0] =, m)als — o5, )+ als, s — gt )] dpds

t+w b
- [ [ 6] (st = gls.m) + als. (s — gls,1))] duds

< /ttw /ab G(t,s)|r(s, M)|‘xn(s —g(s, 1) —x(s — g(s, M))‘duds

t+w b
+ [ [ ot s)ats,anls = g(s.1)) — als,als = g(s,10))|duds.
a

The Lebesgue dominated convergence theorem yields that

lim [|(Tyzp) — (Ca)|| = 0

k—o0
because |r,(t) — z(t)| — 0 and |q(t,zn(t)) — q(t,z(t))] — 0 as n — oo. That implies
that T'y is continuous. Now, we show that I'o(®) is relatively compact, it is sufficient

to demonstrate that the family of functions {I'sz : = € ®} is uniformly bounded and
equicontinuous on [0,w]. We see from (2.1) that

)il = | [ [ 69 s, mhls — gl ) +a(s,2(5 — g, )] duds

< t”w G(t.5)p(s) /a” [q(s, z(s — g(s, u)))p—(;(s, p)z(s — g(s, u))}duds
< (I—ea)m e G(t,s)p(s)ds = (1 — c1)my

t
and it follows that

[Poz]| < (1 —c1)ma.

For uniformly boundedness, using (2.1), we obtain

@y = [ [ [ )] = rts,myas — glo, ) + als, 25 — gl )]s

[ttt — gt ) + alt. ot — g(t, )] dn

a

< 'G(t,t—I—w)/

- G [ [ r(twa(t — glt.m) + alt,a(t — glt, )] di — p(t) T)(®)

<

(1) /ab [q(u x(t —g(t, u)))p—(tg(t, Wzt — g(t, )

[ — p(t)(T2m)(2)

< 21 = ci)ma|pl

which show that {T'sz : € ®} is uniformly bounded and equicontinuous on [0,w]. As a
result, I'a(®) is relatively compact. The aforementioned findings lead us to the conclusion
that I'y is completely continuous. According to fixed point theorem of Krasnoselskii, there
is an x € ® such that I'yx 4+ I'ex = 2. This implies that x(t) is a positive w-periodic
solution of (1.1). O
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Theorem 2.2. Suppose that —1 < ¢y < %

exist positive constants mg and m1 with mg < my such that

< ¢1 £ 0. Moreover, assume that there

mo —comy _ q(t,z) —r(t,m)r _ mq—cimg
b—a p(t) S b—a

(2.4)

where

(et )+ elt, (1)) (1 = ge(t, 1)) + gt w)elt, 1)
(1 — a(t, u))2

Then, (1.1) has at least one positive w-periodic solution x(t) € [mg, m1].

r(t,p) = , te0,w] and p€ la,b].

Proof. We define ®, G(t,s), I'y and I's as in the proof of Theorem 2.1. It can be seen
from the proof of Theorem 2.1 that I'y(®) C ®, and I'y(®) C ®,. Now, we show that
Iy+Tox € ® for all x,y € ® and t € R. By using (2.2), (2.3) and (2.4), we have

boo¢
OO+ Ca)) = [y g,

t+w b
b [ 69 = s mats — g(s,)) + als, s — gl )] duds
< amyg
tw b —g(s —r(s,p)z(s —g(s
. t+ G(t,S)p(S)/a [Q(S,x(s 9( w)))p(s)( 1) 2(s = g( w))}duds
cimo + (my1 — c1my) " G(t,s)p(s)ds

t
= m].

and

T+ o)) = [y gt w)an
[ [ @) [ = vt mets — gt m) + a5 — gl ) s

= comy
N t”“ G(t.5)p(s) /a" [q(& z(s — g(s, u)))p—(sg(& p)x(s — g(s, u))}duds
> comy + (mo — comy) " G(t,s)p(s)ds

t
= my.

That implies that T'yax + I'yy € @, for all z,y € ®. Now, we shall show that I'; is a
contraction mapping on ®. For x,y € ®, we have

(T12)(0) — (Cay)(0 Lt gt [y gt
b —C(tvﬂ)
< [ TR gt.10) = wlt = gt fdn.

By taking the sup norm on both sides it follows that
[Tz =Tyl < —collz — yl|

and therefore I'y is a contraction mapping. Since the rest of the proof is similar to that of
Theorem 2.1, it will not be given to avoid repetition. ]
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Example 2.3. Consider the following first-order neutral differential equation

Z(t) = =5 Wyp(t) (2.5)
2 ; 4 .
i /”/ [6_75“‘(?“) 2t — eL(?“)) 4 ¢1=0-16 cos(t)+0.9sin() (10+ 2 (t — es‘““;“)))}d#‘
w/3
_ sin(t+p)

It can be seen that (2.5) is of the form (1.1) with p(t) = 5e%*®), ¢(t,pu) = e~ 5

g(t,p) = esm(tﬂo, w =2, q(t,x) = et=0-16cos()+0.9sin(t) (10 4 27). After straightforward
calculation, we can obtain

cos(t + _sin(t4p) cos(t + sin (t4-p)
Ct(tnu) = _(BM)G 5 ) gt(tnu’) = (E)Iu)e 5 )
sine+p) r—sin(t + p)  cos?(t + p)
gtt(tnu) =€ 5 [ 5 + 25 }7

(cat 1) + et mp()) (1= gult, 1) + gur(t, pelt, 1)

T(tv :u) = 2
(1 - gult. )
B (_ cos(é-{-u) + 5€sin(t)) (e_w _ cos(é—‘ru)) + (—sinét-i—u) + 00522(?_“))
(1 _ COS(é+H)€SiII(g+u) )27
sin(t+u)
b— t 2—m/3)e”
0<038= ¢y LWelbp) _ (m/2-mf3)e” 5~ 691

L= gi(t, 1) 1—%54_“)6W

1-— 1-0. 1-— 1-0.69)2
( Co)mg _ ( 038)3 — 35523 and ( 01)m1 . ( 069) 0

b—a (/2 —7/3) b—a  (7/2—7/3)

= 11.8211

and

1-— t —
dcodmo 1959 < WD) — T2 1 g7 «
b—a p(t) b—a
It shows that the conditions of Theorem 2.1 are met when mg = 3 and mq = 20. Thus
(2.5) has at least one 27-periodic positive solution x(t) satisfying 3 < z(t) < 20.

(1 —c1)m

3.5523 = L _ 11.8211.
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